

M I C R O P O W E R V O L U M E 2 , N U M B E R 2

 A M A G A Z I N E F O R N A S C O M U S E R S

 � �

 A p r i l , 1 9 8 2 £ 1 . 0 0

Q. W HA T’S th at s up erb -loo k ing
 P.C.B . on th e Fron t Co ver?
A . Th e NEW 64K RAM, PCG and
 B u ff er B o ard f ro m
 M ICRO POW ER L IM ITED

Fro m W HO ?

MICRO POWER LIMITED The company formed by PROGRAM POWER to
handle the marketing and distribution of their hardware and associated products, as
well their excellent range of software.
Q. Great. But what’s so special about this new board?
A. 1. High Quality, double-sided PCB with plated through holes
 2. It will take up to four 16K blocks of dynamic RAM, mappable at any 4K
 Boundary
 3. Room for an on board programmable character generator
 4. Nascom 1 Buffer Board, providing buffering facilities, power-on/ reset logic
 (incl. re-set to any 4K boundary), and accepting the 8K Basic ROM
Q. How much, then and are they available?

A. O n ly £39 .50 + V a t & 55p postage .

And available in production quantities from the middle of June.
Q. Can I secure one of the first now?
A. Certainly, Just send a cheque or credit card order (neither of which will be banked
until date of delivery).

* * W ORDEASE IN ROM * *

Our wordprocessor is now available in a 4K ROM. This single package wll provide you
with the following facilities:-

Comprehensive on screen editing
Copy and reposition blocks of text
Read text in from tape
Find and replace routine
Insert embedded printer control codes
Set Tabs, Indents, Line Length, Page Length
Single or Double Spacing
Use your own parallel or serial printer routines, or those contained in Wordease
Automatic output of page number
Print all the text or any section
Turn justification on/off

In 2732 £25.00+35p Postage+V.A.T.
Other EPROMS Price on application

* Ribb o n Ref il ls fo r Ep so m s *

Why pay £6.00 or more. Refill your old Epsom cartridge quickly and cleanly with one of
our ribbon packs.

£2.95+VAT

M I C R O P O W E R VOLUME 2, NUMBER 2 APRIL, 1982

CONTENTS

Editorial Page 1

Using 2732s on the Nascom 2 Page 2

The Poor Man’s Disc Page 5

The Nas-Sys Monitors Page 7

Eprom Programmer/Reader/Checker Page 12

Planning a Program Page 20

Expanding the Nascom 1 Keyboard Page 27

Nas-Sys Monitors Page 27

64K RAM on the RAM-B Board Page 30

Coordinate Life Page 34

EDITORIAL

I intend to use this issue’s editorial for another plea for material. We can only

continue to publish the magaqzine if we get enough articles to fill our pages, so
please dig out some contribution and send it in.

In the reader replies on the back of the subscription forms the two main
requests were for programs and reviews of hardware. So if you have added some
interesting goodies to your system and are prepared to write a short article about
them, or if you have an interesting program you would like to see published, then
we shall be particularly interested to hear from you.

Remember, it is no use waiting for someone else to write articles if you are not
prepared to contribute yourself. The magazine is written for enthusiasts, by
enthusiasts, and it will only continue to exist with your enthusiastic support.

FOR SALE Teletype 33. All manuals and diagrams
Full working order. All leads and Sittings for Nascom2
No punch. £80.

Ring Alf Want Evenings Maldon (0621) 82752

Page 1

MODIFYING THE NASCOM 2 BOARD FOR 2732 EPROMS

by D. A. Boyd

At present, 4K byte EPROMs offer the best value for money in ROM program
storage. For example, a number of retailers sell 2732s for around £4.00 to
£4.50. This article describes the modifications needed to fit 2732 EPROMs to
the Nascom 2 main board, with bank selection to select one-of-four 8K byte
EPROM banks, or the Nascom Basic ROM.

 The flexibility built into the Nascom 2 board means that 4K EPROMs can be
fitted by rewiring the link blocks. The 2732 requires two extra address lines, wired
from the ‘special’ link block, LKB9. Bank selection is done by a small board which
takes control of the chip select decoder, IC46. The bank selection board plugs
into the socket occupied by the memory selection links LKS, and needs 9
soldered connections to the main board. Bank 0 is always selected on reset, and
the active bank is changed by OUT 3, n, where n is 0 - 4 as required. Port 3 WR is
also spare on the Nascom 2, and could be used to provide a safety interlock
against accidental bank switching.

Fig. 1 BANK SELECTION LATCH

The bank control board is shown in figure 1. The 74LS175 latch is a three bit
output port, strobed by the inverted PORT 3 WR signal from the I/O decode
PROM IC26. Latched data bits BS0 and BS1 are connected to pins 13 and 3 of the
chip select decoder IC46, to select one-of-four EPROM banks. These two IC pins

Page 2

must be bent sideways so that they miss the socket, and can be wired to the Bank
Select board. Data bit BS2 and its complement are gated with E000-FFFF from
the MD PROM in a quad OR gate, 74LS32. A logic 0 on BS2 will select XROM
and hence the EPROM block, and a logic 1 will select the Basic ROM (BROM). The
CLR input of the 74LS175 is wired to the system RESET line, ensuring that bank
0 is selected on reset or power-up.

Wiring of the link blocks LKB1 - LKB8 is shown in figure 2. Addresses A10
and A11 are wired from the workspace RAM linkblock, LKB9. Link switches
LSW1/7 and LSW1/8 should be up. Note that the wiring scheme shown is only
suitable for 2732s; Texas 2532s do not have the same pinout.

Fig. 2 LINK BLOCK WIRING FOR 2732 EPROMS

One further complication of this method of bank selection is that the
addresses E000-EFFFH are confined to EPROM block A, and addresses F000-
FFFFH are in block B. This is best explained by the table bellow:-

E000-EFFF

F000-FFFF

Bank 0

A1
(IC35)

B5

(IC39)

Bank 1

A2
(IC36)

B6

(IC40)

Bank 2

A3
(IC37)

B7

(IC41)

Bank 3

A4
(IC38)

B8

(IC42)

My own system Jumps to D000H on reset, where a menu display and control
program select the required bank and execute at the appropriate address.
Software intended for execution in RAM is copied down to 1000H by the control
program.

Figure 3 shows a suitable vero layout for the bank selection unit. The unit is

shown from the component side.

Page 3

It is connected to the header plug LKS by means of 9 veropins attached to the
copper side of the board at the marked locations. Note that the breaks in the copper
tracks are not shown in the layout.

Fig. 3 VERO LAYOUT OF BANK SELECTION UNIT

Page 4

THE POOR MAN’S DISC

LOGIC CONTROLLED TAPE DECKS

by David Elliott

Most computer hobbyists work on a shoestring budget, and finding the money

to buy expensive disc drives can be difficult. But anyone who has to rely on
cassette systems for storing and retrieving programs knows the frustration of having
to search through tapes for the required program, and the inherent unreliability of the
tape system when using domestic audio cassettes. One reason for this
unreliability is the variable quality of the tape in most cassettes, and some so-called
‘digital’ tapes are just as bad, with drop outs caused by pinholes in the
magnetic coating and even folds in the tape being common. Everyone has their
favourite tape, and I use TDK-C46 tapes, which I have found to be very high quality.

Nevertheless, the average hobbyist is unlikely to be able to discard cassette

tape as his storage medium until the cost of disc systems reduces drastically, and
so a way has to be found to make the system more flexible and more reliable.
The introduction of the cheap logic-controlled cassette deck onto the hi-fi market
led us to consider controlling such a deck from the Nascom output port, and
writing a cassette operating system to give many of the features of disc drives at a
fraction of the cost, whilst retaining the standard Nascom tape format, allowing
complete compatability with standard tapes.

 This is how E.C.O.S. was born. The Elliott Cassette Operating System is an
attempt to enable all the hard work of locating, storing and reliably retrieving
programs from tape to be carried out by the computer. The hardware couldn’t
be simpler, as most logic-control led decks have a convenient remote control socket
enabling easy interfacing with the computer. The deck selected was a Scott
665DM which costs £75, but many similar decks are on the market at around £75 -
£80. Audio quality is not paramount, and can even be said to be a disadvantage in
some respect , as the program information is encoded as a series of audio tones of
1200 hz and 2400 hz, and it would be better to suppress frequencies much
outside this range. Another problem encountered was that of level matching.
The standard cassette interface on the Nascom expects to receive a high level
signal (1 - 2 volts peak to peak), but most hi-fi decks are intended to feed a high
quality amplifier and are therefore designed to give a relatively low level output,
typically 50 - 100 mv into 600 - 50K ohms. This was the case with the Scott deck,
and a simple two stage transistor amplifier had to be interposed between the output
and the Nascom cassette input in order to produce the required level. Another
alternative would have been to use the headphone output, but this was not as
reliable.

 Control of the cassette deck was via the remote socket, and it was found that
all the front panel buttons controlling the tape transport were brought out to an

Page 5

eight pin socket on the rear panel, and that simply taking the required pin to logic
low briefly was enough to operate an internal latch which enabled the appropriate
function. This was eventually done direct from the Nascom output port, but could
easily have been done via a reed relay similarly driven. Only one modification
was made to the deck internally, and this was to bring a connection out from a
reed relay which monitored the tape digital counter, pulsing to logic low ten times
every digit. This enables ECOS to calculate tape speed, and hence use timing to
fast-forward and reverse the tape, to speed up searching operations.

Having achieved total control of the tape transport via the computer, the next
task was to decide upon the features to be included in the operating system, and
the additional information to be recorded at the start of the tape and as header to
each program stored. At the start of each tape there is a header which gives the
tape number and name, and at the start of each program on the tape there is a
header giving program number; name (up to 16 characters); type of record (machine
code, zeap file, basic, data file, erased); length of program; and execution address.
This information enables ECOS to create a catalogue on request by reading off the
headers, fast-forwarding automatically between programs, and fast rewinding when
the end of tape marker is found. Any tape erors which occur are handled
automatically by ECOS which rewinds one block and attempts to reread the faulty
block up to four times before abandoning it, leaving the standard ‘?' to denote an
uresolved tape error. This sometimes occurs with old tapes not recorded on the
deck. A dodge sometimes used in this case is to re-read the block with only one of
the stereo channels, and this usually retrieves the situation. Once recorded on
the logic deck via ECOS loading is usually foolproof, and the computer can be left
to ‘do its own thing’.

 Once loaded ECOS is controlled via a menu which gives one letter
command for:-

A -- Assembler (warm starts Zeap)
C -- Catalogue (prints last directory used)
D -- Directory (print a list of programs on tape)
E -- Erase program
G -- Load and execute program
I -- Initialise tape (create tape header)
L -- Load program
N -- Nas-Sys (returns to monitor)
R -- Read tape (Nas-Sys read)
V -- Verify (Verify program written under ECOS)
W -- Write program (under ECOS)
Z -- Write Zeap file

As it Stands, ECOS is 3K long, and with additional refinements it is
intended to put it in EPROM and interface Nas-Sys to it, providing
ECOS functions direct from Nas-Sys. ECOS by its nature is
inherently machine-specific, but more details of the software will be
published if there is a demand.

Page 6

THE NAS-SYS MONITORS

by J. Haigh

SCAL KBD, DF 61

The keys of the keyboard are connected in an array of eight rows by seven
columns (six columns in the case of the Nascom 1 keyboard). Each row of keys is
connected to one output line of a chip known as a ‘BCD to Decimal Decoder/Driver’.
This chip accepts a four-bit binary pattern and if it represents a valid decimal digit
(i.e., if it is in the range 0 - 9) it drives the corresponding output line to zero volts.
Three of the input lines are taken from a binary counter, which merely counts a series
of clocking pulses and outputs a corresponding binary number; the fourth bit is
derived from the clocking pulse, in such a way that one of the eight lines used by
the key rows is activated only for a short period after the clocking pulse has been
received.

 Each key is effectively a miniature transformer, the magnetic circuit of which
is only complete when the key is depressed. Thus as a row is pulled to zero volts by
the decoder/driver, a pulse is output on by each key in that row which is down. The
pulses are amplified and output to the data bus via a buffer which is only enabled
when port 0 is read. Thus the circuitry produces a sequential scan of the keys and
makes the information on which keys are pressed available to the processor.

 The clocking pulses which step the binary counter for the keyboard scan are
produced under the control of SCAL KBD. The routine starts by ‘flipping’ bit 1 of port
zero, that is, taking this bit to 1 for a short period, and then returning it to 0. This
sends a pulse along the ‘Keyboard Reset’ line, which resets the binary counter to
zero. The status of row 0 is then read, complemented so that keys pressed are
represented by 1’s, and saved in the bottom byte of the KEYMAP region of the
workspace (£0C01 - £0C09).

 The routine now scans each row of the keyboard by flipping bit 0 of port 0
eight times. Each time bit 0 is flipped the next key row is selected; the routine then
reads the status of the keys in that row, complements the result, and saves it
temporarily in the D register. It then looks to see if it differs from the status obtain
the last time the row was scanned, which is stored in the appropriate byte of
KEYMAP. If there has been no change the routine continues to scan successive
rows. After all the rows have been scanned the carry flag is reset and the routine is
terminated.

 If a change is detected, a short delay (approximately 2.7 msec at 4 mhz) is
inserted and the status is re-read. This is designed to remove spurious inputs caused
by key bounce. The value obtained on this second read is stored in the E register,
and the first read is recovered from D; this value is ‘Exclusive ORed with the mapping

Page 7

byte, so that the accumulator now contains a 1 at each position corresponding to a
changed bit. The accumulator is now rotated right so that successive bits pass into
the carry flag while a single bit is rotated left in the D register and the rotations are
counted in the C register; this process stops as soon as the carry flag is set. The
result is that D now contains a single bit set corresponding to the pressed key with
the lowest column number, and C contains that column number.

D is now used as a mask to select the appropriate bit from the second read of
the row (contained in E), and to compare it with the same bit of the mapping byte. If
the two are identical, it is assumed that the first ‘change’ was spurious, and the
routine continues with the next row. When the two are different, the mapping byte is
updated and the status of the bit in E is tested. If this bit is zero, the change was
caused by the release of a key, and no further action need be taken. However, when
the bit is set a key press has occurred, and the routine now has to determine the
ASCII code of the key.

The information identifying the key pressed is first combined into a single byte in

which bits 0 - 2 represent the column number, obtained from the C register, bits 3 - 6
represent the row number, from the B register, and bit 7 is set to 1 if the shift key
was pressed. A table is then searched for this identifying byte; The HL register pair
is set to the top byte of the table, BC is loaded with the length of the table, and the
search is carried out by the CPDR instruction (Compare, Decrement, and Repeat).
The table is arranged in such a way that when the byte is found the C register
contains tha ASCII code of the corresponding key. If the byte is not found in the
table, the search is repeated for the unshifted byte (i.e., with bit 7 reset). If this
second search also fails, the carry flag is reset and the subroutine aborted.

When an ASCII code has been obtained from the table the subroutine proceeds

to test the shift, graphics and control keys, and the Keyboard Option byte (£0C27),
modifying the ASCII code in the appropriate manner. Finally, the carry flag is set, to
indicate that a valid key press has been detected, and the routine is terminated.

If two or more keys are depressed simultaneously, the key in the lowest row will

be detected first; if the keys are in the same row, the one with the lowest column
number will be detected first. The corresponding mapping byte will be updated, and
on the next scan no change will be detected in the first key, so the routine will now
deal with the next key in the row or column priority. You will note that row 0 is
scanned twice; once at the beginning of the routine, when its status is stored at
£0C01, and once at the end of the routine when it is scanned as row 8 and its
status stored at £0C09. The first scan is a special one carried out because the
status of the shift key is needed whenever a keypress is detected; in the second scan

Page 8

the keys in row 0 are read in the standard way.

SCAL IN, DF 62

This input routine picks up the address of the input table from the workspace at
£0C75; this table contains a series of numbers representing Nas-Sys
subroutines, and these are called in turn until a zero entry is reached. The address
at £0C75 normally points to a table which contains two subroutines, the keyboard
input and serial input, but it can be reset by the U or the X commands, or it can
be changed by the user to point to a table of his own. In Nas-Sys 1 the keyboard
routine in the input table is DF 61, but in Nas-Sys 3 it is the repeat keyboard routine,
DF 7D, which itself calls DF 61 as a subroutine.

SCAL INLIN, DF 63

 This routine calls SCAL 7B, which blinks the cursor while waiting for a key
to be pressed. When a key is pressed the character is printed and if it was not a
carriage return the routine loops back to SCAL 7B. When a carriage return is
detected, the current address of the cursor, which was moved to the start of the
next line by the carriage return, is loaded into HL from £0C29, DE is set to -64, HL
and DE are added together and interchanged, and the subroutine is terminated.
The result is that on return DE contains the address of the start of the line which
the cursor was on when carriage return was pressed.

SCAL NUM, DF 64

This routine converts a single string of hex characters into a sixteen bit
number. On entry the DE register pair should point to the start of the string,
although leading blanks are ignored. As each character is obtained from the string
it is tested for validity (i.e., is it ASCII 0 - 9 or ASCII A - F). If an invalid character is
detectd the carry flag is set and the routine ends. Each valid character is converted
to a binary number in the range 0 - 15, counted in location £0C20, and the four bit
value is rotated left into £0C21, using the instruction RLD (Rotate Left Decimal).
This instruction transfers the bottom four bits in the accumulator into the bottom
four bits of (HL), the bottom four bits in (HL) are transferred into the top four bits,
and the top four bits of (HL) are transferred back to the bottom four bits of the
accumulator. The HL register pair is now incremented and the RLD instruction
repeated. The result is that the characters in the string are successively converted
into a sixteen bit number in NUMV. If the number overflows on the second RLD
instruction, this indicates that the hexadecimal string represented a number greater
than £FFFF, the carry flag is set, and the routine terminates. When the end of the
string is encountered, marked by a space character or a null character (screen
margin) the routine returns with the carry flag reset, the value of the string in NUMV,

Page 9

and the number of characters in the string in NUMN.

SCAL CRT, DF 65

This outputs the contents of the accumulator to the screen. The routine
first tests for a null (00) or a line feed (0AH); these are ignored. The next control
code to be handled is Clear Screen (0CH). On receipt of this code 48 spaces are
written in the top line (£080A - £0839), 16 nulls are written in the margin (£83A -
£849), the line is copied 16 times to fill the whole screen, and the cursor is
repositioned to the top left.

The remaining control codes are tested for in turn and the appropriate action

taken. Normal characters are inserted at the current cursor position and the cursor
moved one space right. If this takes it into the screen margin, the margin bytes are
skipped. When the cursor moves beyond the limits of the screen RAM, the screen is
scrolled by copying the bottom 14 screen lines (£084A - £0BB9) up one line,
clearing the bottom line, and repositioning the cursor to the bottom left.

SCAL TBCD3, DF 66

The contents of the HL register pair are printed as a four-character
hexadecimal number followed by a space by this routine. The H register is first
transferred to the accumulator and printed out using SCAL TBCD2, DF 67; the L
register is then treated similarly, and a space character is then output.

SCAL TBCD2, DF 67

This routine prints out the contents of the accumulator as two hexadecimal
digits; it differs from SCAL B2HEX, DF 68, which forms the last part of the
subroutine, only in that it adds the byte being printed to the checksum in register
C.

SCAL B2HEX, DF 68

The contents of the accumulator are rotated right four times so that the most
significant nibble becomes the least significant nibble. SCAL B1HEX, DF 7A, is
then used to print the necessary hex digit. The accumulator contents are recovered,
and the appropriate digit for the bottom nibble is printed. The method of converting
each nibble is rather clever; 90H is added to the nibble and the DAA (Decimal
Adjust Accumulator) instruction is applied to the result. This produces a value in the
range 90H - 99H, with the carry flag reset if the original nibble is in the range 0 - 9.
When 40H is added with the carry flag, the result lies in the range 30H - 39H, or
41H - 46H; i.e., the appropriate hex digit has been produced!

Page 10

Page 11

EPROM PROGRAMMER/CHECKER/READER

by C. Bowden

This article continues the listing of the controlling software for the Eprom

programmer.

350
351
352
353
354
355
356
357
358
359
360
361
362
364
365
366
367
368
369

 VERFY4

VERFY5

VERFY6

CALL RESET1
LD A, (ERRFLG)
CP 0FFH
JR Z, VERFY5
CALL CLRCRT
LD HL, TEXT16
LD DE, 090BH
LD BC, 1BH
LDIR
JR VERFY6
DEFB SCAL, TDEL
DEFB SCAL, TDEL
LD HL, TEXT5
LD DE, 090BH
LD BC, 24
LDIR
DEFB SCAL. TDEL
DEFB SCAL, TDEL
JP RESTRT

;
;

;

;

;

;

;

IF 0FFH, THERE WERE ERRORS
SO SKIP O.K. MESSAGE

ELSE SAY COMPARISON O.K.

HOLD DISPLAY 2 SECS

ERROR MESSAGEREEN 363

2 SECS PAUSE

EXIT ROUTINE

370
371
372

;
;
;

*
ROUTINE TO COPY EPROM INTO RAM
*

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

 TRNFER

TRNFR1

TRNFR2

LD HL, TEXT9
LD DE, 0A4BH
LD BC, 11H
LDIR
CALL RAMADR
LD DE, 0000H
LD A, (ROMFLG)
CP D
JR Z, TRNFR2
CALL ENABLE
IN A, (ADATA)
LD (HL), A
CALL COUNT
INC HL
INC DE
JR TRNFR1
CALL RESET1
CALL MESS19
JP RESTRT

;

;

;
;
;
;
;
;

;

‘FILLED FROM EPROM’

JUMP IF ALL DONE

GET BYTE FROM EPROM
STORE IT IN MEMORY
INCR. ADD., DISABLE CHIP
NEXT MEMORY LOCATION
INCREMENT BYTE COUNTER
CONTINUE TILL FINISHED

ALL DONE MESSAGE

392
393
394

;
;
;

*
ROUTINE TO CHECK IF FULLY ERASED
*

395
396
397
398
399
400
401

 ERASED
ERA1

LD DE, 0000
LD A, (ROMFLG)
CP D
JR Z, ERA3
CALL ENABLE
IN A, (ADATA)
CP 0FFH

;

;
;

JUMP IF FINISHED

GET BYTE FROM EPROM
IS IT ‘FF’

Page 12

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

NOTERA

ERA3

ERA4

JR NZ NOTERA
CALL COUNT
INC DE
JR ERA1
LD HL, TEXT14
LD DE, 090BH
LD BC, 1AH
LDIR
JR ERA4
LD HL, TEXT15
LD DE, 090BH
LD BC, 15H
LDIR
CALL RESET1
DEFB SCAL,TDEL
DEFB SCAL TDEL
JP RESTRT

;

;
;

;
;

;

IF NOT, JUMP

KEPP GOING
EPROM NOT ERASED

JUMP TO END OF ROUTINE
EPROM ERASED

2 SECS DELAY

419
420
421

;
;
;

*
ROUTINE TO OUTPUT EPROM TO PRINTER
*

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

 OUTPUT

BUFF
OUT1

OUT2

OUT3
OUT4

OUT5
OUT6

CALL ROMADR
LD DE, 0000H
LD IY, LINBUF
LD A, (ROMFLG)
CP D
JR Z, OUT6
LD HL, (STOR1)
ADD HL, DE
LD A, H
CALL PRTHEX
LD A, L
CALL PRTHEX
CALL GAP
LD B, 16
CALL ENABLE
IN A, (ADATA)
LD (iY), A
PUSH BC
CALL COUNT
POP BC
INC IY
INC DE
DJNZ OUT4
CALL PRTLIN
JR BUFF
CALL RESET1
CALL MESS19
JP RESTRT

;
;
;

;

;
;
;

;
;

;
;

;

;
;
;

;
;

GET NORMAL ADD. OF ROM
BYTE COUNT
POINT TO 16 CHAR. STORE

SEE IF ALL DONE

GET OFFSET
FORM ROM ADDRESS
AND PRINT IT

4 SPACES
16 BYTES PER LINE

GET BYTE
SAVE CHARACTER

INC. ADD., TURN CHIP OFF

LOOP FOR 16 BYTES
NOW PRINT LINE
LOOP TILL ALL DONE

COMPLETED MESSAGE
BACK TO START

450

455
456

;

; *

ROUTINE TO PRINT ALL 16 CHARS. IN LINE BUFFER
; *

457
458
459
460

 PRTLIN

PRLIN1

LD B, 16
LD IY, LINBUF
LD A, (IY)
CALL PRTHEX

;
;
;
;

NO. OF CHARS IN BUFFER
IY POINTS TO BUFFER START
GET CHARACTER
PRINT HEX AS 2 ASCII CHARS.

461 LD A, 20H ; SPACE BETWEEN BYTES

Page 13

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

PRLIN2

DOT
DOT1

CALL PRINT
INC IY
DJNZ PRLIN1
CALL GAP
LD B, 16
LD IY, LINBUF
LD A, (IY)
CP 20H
JP M, DOT
CP 7BH
JP P, DOT
JR DOT1
LD A, “.”
CALL PRINT
INC IY
DJNZ PRLIN2
LD A, CR
CALL PRINT
LD A, LF
CALL PRINT
RET

;
;
;
;
;
;
;
;
;
;
;

;
;
;
;

;

PRINT IT
NEXT CHARACTER
LOOP FOR 16 CHARACTERS
PRINT 4 SPACES
NOW DO 16 ASCII CHARACTERS
START OF BUFFER
GET CHARACTER
IS IT A CONTROL CHAR.?
IF SO, PRINT A DOT
IS IT GREATER THAN z?
IF SO, PRINT A DOT

PRINT IT
NEXT CHARACTER
LOOP UNTIL 16 DONE
PRINT CARRIAGE RETURN

AND LINE FEED

483
486
487

;
;
;

*
ROUTINE TO O/P CHARACTER TO PRINTER
*

488
489
490
491
491
492
493

 PRINT
PR1

PUSH AF
IN A, (HSHAKE)
AND 80H
JR Z, PR1
POP AF
DEFB SCAL, SRLX
RET

;
;

;
;

SAVE CHARACTER
HANDSHAKE, BIT 7 PORT 0

RECOVER CHARACTER
NAS-SYS SERIAL O/P

494
496
497

;
;
;

*
SUBROUTINE FOR 4 SPACE GAP
*

498
499
500
501
502

 GAP

GAP1

LD B, 4
LD A, 20H
CALL PRINT
DJNZ GAP1
RET

;
;
;
;

NUMBER OF SPACES
SPACE CHARACTER
PRINT
LOOP UNTIL DONE

503
504
505

;
;
;

******* **** ***** ***** ***** **** ***** ****
PRINT HEX CDE AS TWO ASCII CHARS.
******* **** ***** ***** ***** **** ***** ****

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

 PRTHEX

PRTH1

PRTH2

PUSH AF
AND 0F0H
RRCA
RRCA
RRCA
RRCA
CP 0AH
JP P, ADD37A
ADD A, 30H
CALL PRINT
POP AF
AND 0FH
CP 0AH
JP P, ADD37B
ADD A, 30H
CALL PRINT

;
;
;

;
;
;
;
;
;
;
;
;
;

SAVE CHARACTER
GET TOP 4 BITS
SHIFT TO BOTTOM 4 BITS

IS IT MORE THAN 10
IF SO, JUMP
CONVERT TO ASCII 0 – 9
PRINT IT
RECOVER CHARACTER
GET BOTTOM 4 BITS
MORE THAN 10?
IF SO, JUMP
CONVERT TO ASCII 0 – 9
PRINT IT

Page 14

522
523
524
525
526

ADD37A

ADD37B

RET
ADD A, 37H
JP PRTH1
ADD A, 37H
JP PRTH2

;

CONVERT TO ASCII A - F

527
528
532

;
;
;

*
GENERAL SUBROUTINES
*

533
534
535
536
537
538

 ENABLE

STABLE

LD A, 00
OUT (BDATA), A
LD A, 20H
DEC A
JR NZ STABLE
RET

;
;

;

ENABLE CHIP
CONTROL PORT B

WAIT FOR CHIP

539
542
543

;
;
;

*
SCROLL TO CLEAR CRT, CURSOR TO BOTTOM
*

544
545
546
547
548
549
550
551
552
553
554
555
556
557

;

CLRCRT
CLR1

RESET

RESET1
RESET2

WAIT6

LD B, 0FH
DEFB SCAL, CRLF
DJNZ CLR1
RET

LD A, 2AH
JR RESET2
LD A, 0AH
OUT (BDATA), A
LD B, 10H
DJNZ WAIT6
RES 3, A
OUT (BDATA), A
RET

;
;
;

;

;

;

SCROLL 15 TIMES
TO CLEAR SCREEN AND
LEAVE TOP LINE INTACT

12V, RESET, WE, OE BITS SET

RESET, WE, OE BITS SET

END OF RESET

558
559
560

;
;
;

*
O/P SHORT PULSE TO INC. ADDR. COUNTER
*

561
562
563
564
565
566
567

 COUNT

WASIT7

LD A, 6
OUT (BDATA), A
LD B, 10H
DJNZ WAIT7
LD A, 2
OUT (BDATA), A
RET

;

;

COUNT PULSE ON

TURN COUNT PULSE OFF

568
569
570
571

;
;
;
;

*
SET PIO PORT A – INPUT, B – OUTPUT
 BOTH PORTS TO MODE 3
*

572
573
574
575
576
577
578
579

 STPIO1

STPIO2

LD A, 0FFH
OUT (BCTRL), A
LD A, 00
OUT (BCTRL), A
LD A, 0FFH
OUT (ACTRL), A
OUT (ACTRL), A
RET

;

;

;
;

MODE 3

OUTPUT

MODE 3
INPUT

580
582
583

;
;
;

*
SET PIO PORT A TO MODE 3, OUTPUT
*

584
585

 STPIO3 LD A, 0FFH
OUT (ACTRL), A

;

MODE 3

Page 15

586
587
588

 LD A, 00
OUT (ACTRL), A
RET

;

OUTPUT

589
590
591

;
;
;

*
ROUTINE COMPLETED MESSAGE
*

593
594
595
596
597
598
599
600

 MESS19 CALL CLRCRT
LD HL, TEXT19
LD DE, 090BH
LD BC, 16
LDIR
DEFB SCAL, TDEL
DEFB SCAL, TDEL
RET

;
;

;

CLEAR SCREEN
ROUTINE COMPLETE

WAIT 2 SECONDS

601
602
605
606
607

;
;
;
;
;

*
GET START ADDRESS OF 1K OR 2K BLOCK
 OR 4 DIGIT TYPE NUMBER OF EPROM
 OR MEMORY START ADDRES OF EPROM
*

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

 ROMADR

RAMADR

SCANT1

SCAN1A

CLRLIN

SCAN2
SCAN3

SCAN4

LD HL, TEXT18
LD DE, 09CBH
LD BC, 22H
LDIR
LD A, 00
LD (SCNFLG), A
JR SCANT1
LD HL, TEXT6
LD DE, 09CBH
LD BC, 2EH
LDIR
LD A, 0FFH
LD (SCNFLG), A
LD HL, TEXT10
LD DE, 0B0BH
LD BC, 12H
LDIR
LD HL, 0B19H
LD B, 20H
LD DE, STORLN
LD A, 20H
LD (DE), A
INC DE
DJNZ CLRLIN
LD IY, STORE
LD D, 4
XOR A
DEFB SCAL, KBD
JR C, SCAN4
JR SCAN3
CP “O”
JP M, SCAN2
CP “:”
JP P, SCAN5
LD (HL), A
SUB 30H
LD (IY), A
INC HL
INC IY

;

;

;
;

;
;

;

;

;
;

;

;
;

;
;
;
;
;

“NORMAL ROM START ADDR?”

SET JUMP BACK FLAG

MESSAGE TO CRT
FOR ADDRESS

SET FOR JUMP BACK TO HERE
PROMPT “ADDRESS ??”

SCREEN ADD. FOR ENTRY

CLEAR LINE STORE

STORE FOR ENTRIES
FOUR KEY ENTRIES

GET ENTRIES FROM KEYBOARD

ONLY ACCEPT ENTRIES
IN THE RANGE 30H – 39H

PRINT IF O.K.
CONVERT TO 0 – 9
STORE IT
NEXT SCREEN ADDRESS
NEXT STORE

Page 16

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

SCAN5

SCAN7

DEC D
JR NZ, SCAN2
JR SCAN7
CP “A”
JP M, SCAN2
CP “G”
JP P, SCAN2
LD (HL), A
SUB 37H
LD (IY), A
INC HL
INC IY
DEC D
JR NZ SCAN2
LD HL, 0A4BH
LD DE, STORLN
LD BC, 20H
LDIR
DEFB SCAL, CRLF

;
;
;
;
;

;
;
;
;
;
;
;
;
;

;

REDUCE ENTRY COUNTER
JUMP IF NOT FINISHED
JUMP TO SCAN7 WHEN DONE
IS IT ASCII A – F?
IF NOT, REJECT IT

PRINT IT IF O.K.
CONVERT TO 10 – 15
STORE IT
NEXT SCREEN LOCATION
NEXT STORE
REDUCE ENTRY COUNTER
JUMP IF NOT DONE
SAVE THIS MESSAGE IN CASE
ENTRY IS TO BE CHANGED

SCROLL CRT

667 DEFB SCAL, CRLF ; TWICE
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

SCAN8

SCAN9

SCAN10

SCAN6

LD HL, TXT11A
LD DE, 0B0BH
LD BC, 14H
LDIR
XOR A
DEFB SCAL, KBD
JR C, SCAN9
JR SCAN8
CP “Y”
JR Z SCAN6
CP “N”
JR Z SCAN10
JR SCAN8
CALL CLRCRT
LD HL, STORLN
LD DE, 0A4BH
LD BC, 20H
LDIR
LD A, (SCNFLG)
CP 00
JP Z, ROMADR
JP RAMADR
JP SCANT1
LD IY, STORE
LD A, (IY)
RLCA
RLCA
RLCA

;

;

;
;
;
;
;
;
;

;

;
;
;
;
;
;
;
;

CORRECT –Y/N?

GET ANSWER

ANSWER “YES”?
IF SO, JUMP TO SCAN6
ANSWER “NO”?
IF SO, JUMP TO SCAN10
REJECT OTHER REPLIES
CLEAR SCREEN
RESTORE SAVED MESSAGE

FIND OUT WHERE TO JUMP

IF ZERO, JUMP TO ROMADR
ELSE WAS FROM RAMADR
BACK TO GET ADDRESS AGAIN
POINT TO FIRST ENTRY
GET FIRST
ROTATE BITS 4 TIMES
TO PUT VALUE INTO
 INTO MOST SIGNIFICANT

NIBBLE
696
697
698
699
700

 RLCA
ADD A, (IY+1)
LD H, A
LD A, (IY+2)
RLCA

;
;
;
;

ADD SECOND VALUE
SAVE IN H REGISTER
GET 3RD ENTRY
 PUT IN MOST SIGNIFICANT

NIBBLE
701
702
703

 RLCA
RLCA
RLCA

Page 17

704
705
706
707

 ADD A, (IY+3)
LD L, A
LD (STOR1), HL
RET

;
;
;
;

ADD 4TH ENTRY
PUT IN L REGISTER
SAVE THE ADDRESS
BACK TO ROUTINE

708
709
710

;
;
;

*
MESSAGES USED BY THE ROUTINES
*

711 TEXT1 DEFM /EPROM PROGRAMMER/
712 TEXT1A DEFM /PRESS KEY ‘A’ FOR TYPE 2708 EPROM/
713
714
715
716
717
718
719

 TEXT1B
TEXT2
TEXT2A
TEXT2B
TEXT2C
TEXT2D
TEXT3

DEFM “KEY ‘B’ FOR TYPES 2516/2716”
DEFM /PRESS P FOR ROUTINE TO PROGRAM EPROM/
DEFM /C TO COMPARE EPROM WITH MEMORY/
DEFM /T TO TRANSFER EPROM INTO MEMORY/
DEFM /E TO CHECK EPROM IS FULLY ERASED
DEFM /D TO DUMP EPROM TO PRINTER
DEFM /TURN OFF PROGRAMMER WHILE CHANGEING

EPROM/
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

 TEXT4
TEXT5
TEXT6

TEXT7
TEXT8
TEXT9
TEXT10
TEXT11
TXT11A
TEXT12
TXT13A
TXT13B
TEXT14
TEXT15
TEXT16
TXT17A
TEXT18
TEXT19
TEXT20

DEFM /PRESS C TO CONTINUE/
DEFM /ROM AND RAM DO NOT MATCH/
DEFM /ENTER START ADDR(HEX) OF/
DEFM / 1K OR2K BLOCK TO BE /
DEFM /COPIED INTO EPROM/
DEFM /COMPARED TO EPROM/
DEFM /FILLED FROM EPROM/
DEFM /START ADDRESS ????/
DEFM /KEY -/
DEFM “IS THIS CORRECT?-Y/N”
DEFM /YOU MUST TYPE AN ‘A’ OR A ‘B’/
DEFM /TYPE – 2708 /
DEFM “TYPE – 2516/2716”
DEFM /EPROM NOT FULLY ERASED/
DEFM /EPROM IS FULLY ERASED/
DEFM /COMPARISON OK. – NO ERRORS. /
DEFM “SAME EPROM - Y/N?”
DEFM /NORMAL R.O.M. START ADDR.(HEX) - ?/
DEFM /ROUTINE COMPLETED/
DEFM /CAUTION :ONLY ONE EPROM AT A TIME./

741 TEXT21 DEFM /OBSERVER THE EPROM HANDLING PRECAUTIONS/
742
743
744
745
746
747
748
749
750
751

;

;
;
;
;

*
 .DEPHASE
THIS DENOTES THE END OF A PROGRAM BLOCK IN
THE MACRO 80 ASSEMBLER
IT HAS NO EQUIVALENT IN ZEAP
*
 .PHASE 0D00H
THIS DENOTES THE START OF A NEW BLOCK
IT IS EQUIVALENT TO THE ORG PSEUDO-OP IN ZEAP
*

752 ; PROGRAM WORKSPACE AREA
753
754
755
756
757
758
759
760

 SCNFLG
ERFLG
ROMFLG
STORE
STOR1
STORLN
LINBUF

DEFS 1
DEFS 1
DEFS 1
DEFS 4
DEFS 2
DEFS 20H
DEFS 10H
.DEPHASE

;
;
;
;
;
;
;
;

JUMP BACK FLAG
ERROR FOUND FLAG
1K OR 2K ROM FLAG
STORE FOR KEY ENTRIES
MEMORY START ADDRESS
TEMPORARY MESSAGE STORE
BUFFER FOR PRINTER O/P

761 ; *

Page 18

762
763

;

 END
*

This completes the listing of the control software.

A number of errors have come to light in the previous articles. The first is

an error in the circuit diagram for the programmer power supply. The negative lead
of the 470uP, 64V capacitor should connect to the bridge rectifier AC input, not to
the positive output of the rectifier as shown.

Secondly, a link is missing from the vero layout. This is the link connecting

pin 24 of the 2708 socket to the +5v supply. One may be fitted in a similar way to
that on the 2716 socket.

Thirdly, a series of minor errors occurred in the listing. There was a

superfluous right-hand bracket is assembler line number 144; it should read

 144 LD (ROMFLG), A

Line 150 was omitted and line 149 was wrong; this section should read

 149 JR PROMPT
 150 TYP2K LD A, 08H ; FLAG FOR 2K EPROM
 151 LD (ROMFLG), A

An incorrect address appeared in line 167; the correct address is 0A52H.

In line 216 the label TEXT7 was given as TEXT17. In line 293 a superfluous WAIT2
occurred at the end of the line; this of course is the label for the delay loop on line
294

Finally, note 1 on page 20 of the last article could be expressed better as

follows:-

1) The layout is shown from the copper side. All components including

 links are mounted on the other side of the board, except the links
 mentioned in Note 5 and the two diodes in Note 6.

+ - + - + - + - + - + - +

Page 19

PLANNING AND WRITING A PROGRAM

by Viktor

INTRODUCTION

Program Power asked me if I had time to write a program to deal with the
administration of their royalty payments. I didn’t have , of course. Nor did I have time
to write this article. However, like most computer enthusiasts, once a program
idea has got implanted in my tiny mind it tends to act like the proverbial cuckoo and
creates its own time and space. Here, therefore, follows the first results of my
deliberations.

THE PROBLEM

Program Power sells programs which in the main have been written by
individuals not employed by the company, these individuals being remunerated by
way of 20% royalties, calculated on the prices at which the programs are sold.

Including those for certain micros whose names may not be printed in this
magazine, there are t present approx. 100 programs being offered for sale, written by
say 50 authors, though the number per author varies from one up to sixteen. Each
Quarter the royalties payable are calculated according to number sold at the
company’s selling price price.

If there were only one price for each program, then it could easily be
argued that the job could be handled by a competent clerk with a calculator.
However, in recent months, due to the sale of programs to trade customers, at
discounts varying with quantities sold, together with special offers to direct
customers, the number of different prices has grown enormously. A computerised
solution is therefore being sought before the Job gets into a tangle or consumes too
much valuable time.

OUTPUTS

When writing a program, I always look first at the ‘outputs’ of the task, both
in terms of which pieces of paper have to be produced, and also the detail which
will appear on them. In this case there is firstly a statement to each author, giving his
name and address, the names of his programs ,the number sold at each price, the
royalty calculated and the grand total payable. These, of course, are printed on
single sheets. The second output is a summary for each computer, listing the same
information without the author’s addresses, and giving the overall total for that
computer. A continuous list is acceptable for this part of the Job.

INPUTS

 The next stage is to look at inputs and to establish how they are to be made
available to the computer. The main inputs are the authors’ names and addresses,

Page 20

the program names, the program prices and the numbers sold at each price. The
first two are essentially ‘standing’ or file information. We will therefore need some
means of building up a file of these, together with routines to enter new data and
amend or delete existing data. My solution was to make use of Program Power’s
‘Basic File Handler’ program, which gives amongst other things the ability to save
and load string data.

The numbers of each program sold must obviously be entered each quarter.
This leaves the price information. I established that, although there were perhaps
only 10 basic prices for programs, the variations discussed earlier could easily
multiply this by a factor of at least 10. Thus I thought it best to deal with this in the
same way as numbers sold.

STRUCTURE & HANDLING

Name and Address File - this can fairly simply be held as follows:

N$(I), A$(I), B$(I), C$(I), D$(I) - where N is the name; A, B & C are a three line
address; and D is the telephone number, (strictly speaking not required for this
application). The subscript ‘I’ will be used as a key effectively to the file of
authors.

As regards the programs, I decided to go for a two dimensional string
array, as this permits ease of handling. Thus, for a file of 30 authors (covering just
one of the micros), we have the array P$(I,J), where J is the key to the programs
of each author. Since there are very few authors who have more than two
programs, this is very wasteful of memory space, but as it is not a problem in this
particular case, the benefits of ease of handling will be allowed to take preference.

I mentioned earlier that the majority of the information has to be output
twice. This means that the price and numbers sold data must be held between
one print run and the next. Alternatively, it could be saved as a temporary file, but
this solution was not thought to be very elegant. My first solution to this problem was
to create two three- dimensional numeric arrays viz. P(I,J,K) to hold the prices and
S(I,J,K) to hold the relevant numbers sold. A quick calculation of 2(arrays) x
30(authors) x 20(programs) x 10 (prices) x 6 bytes per variable = 72000bytes
persuaded me I had better think again.

I then thought of the way in which the information will be used. The main
part of the program will start with the first author, deal with his programs in turn and
then move on down the list of authors until they have all been looked at. A solution
much less wasteful of space would therefore be to create two single tier arrays viz.
K(X) for prices and L(X) for numbers sold, with a variable element deliberately left

Page 22

equal to zero to signify the end of the prices for any one program. The routine
to enter the prices would skip an element, and the routine to calculate and print the
royalties would search for those elements equal to zero, and then move onto the next
program. The calculation is then [2(arr ays) x say 75(programs)] + 75(vacant
elements) = 225. Multiplying by the 6 bytes per element then gives 1350 bytes.
Phew!!

On reflection, this method might also be adopted in handling the program
name information. But since the program was written first and it works, we’ll save
that up our sleeves, in case we need the space in some future enhancement.

We do not of course have to write one large program containing all the
options. The tasks to be done can conveniently be split into ‘file maintainence’ i.e.
create, amend or delete the standing information, and the ‘operating’ program
to enter the prices and numbers sold and print the letters and summary. However,
since space did not prove a problem, the program has been left as one complete
entity. The version which now follows has been more or less de-bugged, although
some improvements, for example, in the print layout, remain to be made.

 In the next issue I will cover some sections of the program in greater detail, and
discuss the operation of the Basic File Handler.

.

 5 DOKE4271,-20482:DOKE4100,-14336:TC$=”RESET”:TR=USR(0)

10 CLEAR10000:DIMN$(30),A$(30),B$(30),C$(30)
15 DIMD$(30),E$(30),P$(30,20),K(100),L(100)
50 CLS:PRINTAB(17);“ROYALTIES PROGRAM”
55 SCREEN8,3:PRINT“Options:-
60 SCREEN5,5:PRINT“1) New Authors
65 SCREEN5,6:PRINT“2) New Programs
70 SCREEN5,7:PRINT“3) Amend/Delete Authors/Programs
80 SCREEN5,8:PRINT“4) Quarterly Sales/Prices
85 SCREEN5,9:PRINT“5) Print Authors’ Letters
90 SCREEN5,10:PRINT“6) Print Summary
93 SCREEN5,11:PRINT“7) Read Program File
96 SCREEN5,12:PRINT“8) Write Program File
100 PRINT:SCREEN5,14:INPUTC
110 ONCGOTO200,400,600,1000,1200,1400,1600,1800
120 IFC<1ORC>8THEN50
200 FORI=1TO30
205 IFN$(I)=“”THENZ=I:I=30:GOTO240
210 NEXT
220 PRINT“No Space for New Author !”
230 FORA=1TO3000:NEXT:GOTO50
240 CLS:I=Z:INPUT“Author’s Name”;N$(I)
245 IFLEN(N$(I))=<13THEN250
247 PRINT:PRINT“Max. 13 chrs.”:FORC=1TO3000:NEXT:GOTO240
250 INPUT“Correct”;L$
255 IFL$<>“Y”THEN240
260 INPUT“ADDR 1”;A$(I)

Page 23

 265 IFLEN(A$(I))>20THENPRINT“Max. 20 chrs.”:GOTO260

267 INPUT“Correct”;L$
270 IFL$<>“Y”THEN260
275 INPUT“ADDR 2”;B$(I)
277 IFLEN(B$(I))>20THENPRINT“Max. 20 chrs.”:GOTO275
280 INPUT“Correct”;L$
285 IFL$<>“Y”THEN275
290 INPUT“ADDR 3”;C$(I)
292 IFLEN(C$(I))>20THENPRINT“Max. 20 chrs.”:GOTO290
295 INPUT“Correct”;L$
300 IFL$<>“Y”THEN290
320 INPUT“Tel. No.”;D$(I)
322 IFLEN(D$(I))>20THENPRINT“Max. 20 chrs.”:GOTO320
325 INPUT“Correct”;L$
330 IFL$<>“Y”THEN320
335 GOTO50
400 CLS:INPUT“Enter Author’s Name”;Y$
402 IFY$=“”THEN400
405 FORI=1TO30
410 IFN$(I)=Y$THENZ=I:I=30:GOTO440
415 NEXT
420 PRINT:INPUT“Name not Found – another try”:L$
430 IFL$=“Y”THEN400
435 GOTO50
440 I=Z
450 FORJ=1TO20
455 IFP$(I,J)=“”THENZ=J:J=20:GOTO470
460 NEXT
465 PRINT“No Space for New Program!”
467 FORA=1TO3000:NEXT:GOTO50
470 CLS:J=Z:INPUT“PROG. NAME”;P$(I,J)
472 IFP$(I,J)=“”THEN470
475 PRINT:INPUT“Correct”;L$
480 IFL$<>“Y”THEN470
485 PRINT:INPUT“Any More Progs”;L$
490 IFL$=“Y”THENZ=Z+1:GOTO470
495 GOTO 50
600 CLS:FORI=1TO30
605 PRINTI;“ ”;N$(I);:I=I+1
610 PRINTTAB(16);I“ ”;N$(I);:I=I+1
615 PRINTTAB(32);I“ ”;N$(I):NEXT
620 PRINT:INPUT“Which Author”;I:IFI<1ORI>30THEN600
622 IFN$(I)=“”THEN600
625 CLS:PRINTN$(I):PRINT:INPUT“Correct Author”;L$
630 IFL$<>“Y”THEN600
635 PRINT:PRINT:PRINT“Options”;TAB(20)“1) Programs”
640 PRINTTAB(20)“2) Names & addresses”
645 PRINT:PRINTTAB(20):INPUTC:IFC<1ORC>2THEN645
650 ONCGOTO700,800
700 CLS:PRINTN$(I)“:”:FORJ=1TO20
710 PRINTJ“ ”P$(I,J);:J=J+1
720 PRINTTAB(24);J;P$(I,J):NEXT
725 INPUT“Amend/Delete Y/N”;L$
730 IFL$=“N”THEN50
735 INPUT“Enter Program No.”;J
737 IFJ=999THEN50
740 IFJ<1ORJ>20THEN735

Page 24

 742 IFP$(I,J)=“”THENPRINT“Old data only!”:GOTO735

745 PRINTP$(I,J)
750 INPUT“Enter new data”;P$(I,J)
752 IFP$(I,J)<>“”THEN756
753 INPUT“Delete Program”;L$
754 IFL$=“Y”THEN775
755 GOTO750
756 INPUT“Correct”;L$:IFL$<>“Y”THEN750
760 INPUT“More changes this author”;L$
765 IFL$=“Y”THEN700
770 GOTO50
775 J=J+1:IFP$(I,J)=“”THEN700
780 P$(I,J-1)=P$(I,J):P$(I,J)=“”:GOTO775
800 CLS:PRINTN$(I):PRINT
805 PRINTA$(I):PRINTB$(I):PRINTC$(I):PRINT:PRINTD$(I):PRINT
810 INPUT“Amend/Delete Y/N”;L$
815 IFL$=“N”THEN50
820 PRINT“Name “;N$(I)” “;:INPUT”New Data Y/N”;L$
825 IFL$=“Y”THENINPUTN$(I)
826 IFN$(I)<>“”THEN830
827 INPUT“Delete Author”;L$
828 IFL$=“Y”THENGOTO900
829 GOTO820
830 PRINT“ADDR1 ”;A$(I)“ ”;:INPUT“New Data Y/N”;L$
835 IFL$=“Y”THENINPUTA$(I)
840 PRINT“ADDR2 ”;B$(I);“ ”:INPUT“New Data Y/N”;L$
845 IFL$=“Y”THENINPUTB$(I)
850 PRINT“ADDR3 ”;C$(I);“ ”;:INPUT“New Data Y/N”;L$
855 IFL$=“Y”THENINPUTC$(I)
860 PRINT“Tel. No. ”;D$(I); “ ”;:INPUT“New Data Y/N”;L$
865 IFL$=“Y”THENINPUTD$(I)
875 GOTO50
900 I=I+1
905 IFN$(I)=“”THEN600
910 N$(I-1)=N$(I):N$(I)=“”
915 A$(I-1)=A$(I):A$(I)=“”
920 B$(I-1)=B$(I):B$(I)=“”
925 C$(I-1)=C$(I):C$(I)=“”
930 D$(I-1)=D$(I):D$(I)=“”
935 GOTO900
1000 CLS:X=0:FORI=1TO30:PRINTB$(I);
1002 IFN$(I)=“”THENI=30:GOTO1060
1005 FORJ=1TO20:PRINTTAB(20);P$(I,J)
1007 IFP$(I,J)=“”THENJ=20:GOTO1055
1010 INPUT“Enter Price”;K(X)
1015 INPUT“Correct”;L$
1020 IFL$<>“Y”THEN1010
1025 INPUT“No. Sold”;L(X)
1030 INPUT“Correct”;L$
1035 IFL$<>“Y”THEN1025
1040 X=X+1:INPUT“More Prices this Program”;L$
1045 IFL$=“Y”THEN1010
1050 K(X)=0:L(X)=0:X=X+1:NEXTJ
1055 NEXTI
1060 GOTO50
1200 DOKE3187,1918:IFPEEK(1910)=0THENDOKE3187,1912
1205 CLS:WIDTH80:INPUT“Enter Date”;M$
1210 PRINT:INPUT“Correct”;L$:IFL$<>”Y”THEN1205

Page 25

 1215 X=0:FORI=1TO30

1216 IFN$(I)=“”THENI=30:GOTO1290
1217 F=0:PRINT:PRINT:PRINTN$(I)
1220 PRINTA$(I):PRINTB$(I):PRINTC$(I):PRINTD$(I):GOSUB1350
1230 FORJ=1TO20:PRINTP$(I,J);:E=0
1235 IFP$(I,J)=“”THENJ=20:GOTO1270
1240 PRINTTAB(20):K(X);
1245 D=INT(100*((K(X)*.2)+.005))/100
1250 PRINTTAB(30);D;TAB(40);L(X):TAB(50):D*L(X)
1255 E=E+D*L(X)
1260 X=X+1:IFK(X)<>0THEN1240
1265 PRINT:PRINTTAB(60):E:PRINT:F=F+E:NEXTJ
1270 PRINT:PRINT:PRINTTAB(50);“Total £ ”;F
1275 INPUT“Change paper for New Author”;L$
1280 IFL$<>“GO”THEN1275
1285 NEXTI
1290 DOKE3187,1919:IFPEEK(1910)=0THENDOKE3187,1913
1295 GOTO50
1350 PRINTTAB(25):CHR$(14);“ROYALTIES PAYMENTS”
1355 PRINTTAB(15);“for the Quarter ended ”;M$
1360 PRINTTAB(5)“PROGRAM”TAB(17)”PRICE”;
1365 PRINTTAB(27)“ROYALTY”TAB(37)”NO. SOLD”
1370 PRINT:RETURN
1400 DOKE3187,1918:IFPEEK(1910)=0THENDOKE3187,1912
1405 CLS:WIDTH80:INPUT“Enter Date”;M$
1410 PRINT:INPUT“Correct”;L$:IFL$<>“Y”THEN1405
1415 X=0:G=0:FOR1TO30
1420 IFN$(I)=“”THENI=30:GOTO1475
1425 GOSUB1350:F=0:PRINT:PRINT:PRINTN$(I)
1430 FORJ=1TO20:PRINTP$(I,J);:E=0
1435 IFP$(I,J)=“”THENJ=2-:GOTO1470
1440 PRINTTAB(20):K(X);
1445 D=INT(100*((K(X)*.2)+.005))/100
1450 PRINTTAB(30);D;TAB(40);L(X);TAB(50);D*L(X)
1455 E=E+D*L(X)
1460 X=X+1:IFK(X)<>0THEN1440
1465 PRINT:PRINTTAB(60);E:PRINT:F=F+E:NEXTJ
1470 G=G+F:NEXTI
1475 PRINT:PRINT:PRINT:PRINTTAB(30)“Total this micro £ ”;G
1480 DOKE3187,1919:IFPEEK(1910)=0THENDOKE3187,1913
1485 GOTO50
1600 INPUT“Start Tape & Press ENTER”;L$
1605 TC$=“OPEN: IN(‘AUTH,1,6395)”:TR=USR(0)
1610 FORI=1TO30
1615 TC$=“READ(N$(I),A$(I),B$(I),C$(I),D$(I))”
1620 TR=USR(0):NEXT
1625 FORI=1TO30:FORJ=1TO20
1630 TC$=“READ(P$(I,J))”:TR=USR(0):NEXTJ,I
1635 TC$=“CLOSE: IN”:TR=USR(0):GOTO50
1800 INPUT“Start Tape & Press ENTER”;L$
1805 TC$=“OPEN: OUT(‘AUTH’,1,6395)”:TR=USR(0)
1810 FORI=1TO30
1815 TC$=“WRITE(N$(I),A$(I),B$(I),C$(I),D$(I))”
1820 TR=USR(0):NEXT
1825 FORI=1TO30:FORJ=1TO20
1830 TC$=“WRITE(P$(I,J))”:TR=USR(0)
1835 NEXTJ,I
1840 TC$=“CLOSE:OUT”:TR=USR(0):GOTO50

Page 26

EXPANDING THE KEYBOARD OF THE NASCOM

USING NORMAL KEYSWITCHES

by J. M. H. Hill

An article was published in issue number 2 of Micropower on the expansion of
the Nascom 1 keyboard. Now although the keyboard uses special Licon keys, it is
possible to expand it using ordinary push-to-make keyswitches. I have been using
such an expanded keyboard for about a year without any problems, and there seems
to be no reason why the principle should not be extended further if desired to cover
a separate numerical keypad.

The only modifications to the existing keyboard conductors is the cutting of the

tracks running between the open collector outputs of IC5 and the original key matrix,
to allow the insertion of the isolating diodes D3 - D8. The presence of these siodes
does not affect the operation of the original keys. Their purpose is to prevent the
voltages of the inactive drive lines from being affected via the Licon key windings by
others which are active. A more ambitious expansion would also involve the other
two outputs from IC5 on pins 7 and 9, which would also need to be fitted with
isolating diodes.

To duplicate any existing key, as in the case of the SHIFT key shown in the

circuit, it is necessary to connect the right drive line output from IC5 via a keyswitch
and diode (D9) to the input of the appropriate RS flip-flop. The connections are
shown for the SHIFT key, but others can be worked out by examining the Nascom
1 keyboard circuit diagram. A further locking keyswitch could be connected in parallel
with the SHIFT key to give a shift lock if required. Such a shift lock could be added to
the standard Nascom 2 keyboard to provide the facility requested by Mr. R. C. Taylor
in issue 2.

Duplication of the standard keys will work with any monitor, but the remaining

keys shown in the diagram are for use with Nas-Sys 1 or 3. They give most of the
facilities of the Nascom 2 keyboard, inluding single key cursor movement. The
GRAPHICS key will of course only work if a suitable graphics unit has been fitted.

 The standard Nascom 1 keyboard only uses the lowest six bits of port 0. To
handle the extra keys a sense line using bit 6 is needed, plus an extra flip-flop.
Fortunately, there are two unused gates in IC3 which can be used for this purpose,
as shown in the diagram. An extra wire will be needed to connect the output from
the new flip-flop to pin 7 of the keyboard socket on the main board.

Page 27

Page 28

Page 29

64K RAM ON A NASCOM RAM B BOARD

by Douglas M. Barr

This article is aimed at the owner of a Nascom RAM-B board who wants to
increase the available RAM to the full 64K that the Z-80 microprocessor can
address. There may well be something of interest for readers who are considering
the modification of other boards populated with 4116 dynamic RAM chips; be
warned, however, that although the modified board will work on a Nascom 2 or a
Gemini multiboard system, it will NOT work on a Nascom 1 as described. The
modification uses the MEXT line, whih is essential to the correct operation of a
Nascom 1. That said, there is no reason why some enterprising Nascom 1 owner
should not circumvent this problem and find some suitable alternative way of routing
what we shall call the ‘RAM BLK 3’ signal on the board

One of the very attractive features of Nascom products so far has been the
literature that the firm has published with their hardware, and I am assuming that
you have the circuit diagrams which came with the board when you bought it. In
particular, I shall be referring to figures 10, 11 and 12, which are the circuit diagrams
issued with the manufacturer’s instructions for the board, but it should be possible
to follow the gist of the theory behind the modification from this article alone. If you
are interested only in the practical aspects of ‘how to do it’, then the article should be
self explanatory.
 The modification should not be beyond the skill of the average Nascom owner,
but I am well aware that for some who are new to the game, what I am proposing
may sound a bit daunting. For their benefit I shall take things rather slowly, and
I ask any old hands to bear with me if some of what I say is ‘old hat’ to them. After
you have completed the modifications you will have a board which will support 64K
of RAM at 4 Mhz without wait states, will retain the ability to ‘write protect’ the
banks of 4116s, and will also retain the Nascom page mode of operation. For
several months I have been running such a modified board on my Nascom 2, and
more recently I have used it also on a Gemini Multiboard system. What is interesting
is that I used 200 ns RAMs, apparently without any adverse effects, but if you add
up all the gate and delay-line times, you will realise that there is probably a certain
element of luck in getting the board to run at 4 Mhz, and that the RAMs may be
running a bit faster than spec. Those of a weak disposition may consider the use
of 150 ns RAMs if they cannot bear the thought of the memory dumping at an
inopportune moment.
 The modification involves soldering sockets or chips on top of other delicate chips
- with all the risks that entails. Many argue that the best way to do this is to wrap
a couple of layers of cooking foil around a spare piece of polystyrene tile and plug the
chip into the foil. This does two things; it ‘commons’ all the pins of the chip, and it
helps conduct away heat and thereby reduces the risk of damage to delicate
connectors inside the DIL package. If you are short of space inside your Nascom
and there is not too much space between the boards, you may have to solder the

Page 30

upper chips directly on top of the lower chips, but otherwise you would be well
advised to solder DIL sockets for the upper layer onto the chips of the lower layer,
as only one chip is put at hazard, and you will retain the option to remove the top
chip easily in future. Before soldering on the top chip/socket, wrap it in a couple of
layers of foil as well, with the pins protruding through the foil. Again, the foil acts as
an insulator and heat sink.

One unfortunate by product of this ‘ recommended’ method is that when you
have finished you have to dig bits of cooking foil from between the pins of your
newly mated chips, and you may prefer to make yourself a Jig with a spare DIL
socket which has all its pins commoned in some scrap veroboard. One last thought
on piggybacking ICs; it is a good idea to make sure that pin 1 is clearly recognisable
from below on the bottom IC, otherwise just as you finish a beautifully neat soldering
Job, you realise that you can’t remember having checked the orientation of the
bottom chip. If the end of the 4116 is not clearly notched, lightly scratch the
underside of the IC next to pin 1, or mark it with a small dot of marker dye; and do
this before you start any soldering.

Now for a quick look at the theory behind the modification. Fig. 12 of the

instructions which accompany the RAM-B board show the memory ICs arranged in
three banks of eight, with addresses commoned from the right of the diagram,
and data commoned vertically. On the left there are essentially three lines to each
bank; a column address strobe (CAS) which is common to all three banks, a unique
row address strobe (RASx) to each bank, and a write strobe (WRx), again unique to
each bank. The logic behind the latter two runs something like this. Each bank
MUST be individually addressed and if you want to create another bank then you
MUST create an additional RASx signal from somewhere. Since the existing
banks are numbered 0 - 2, with their associated RAS0 - RAS2 signals, it makes
sense to number the new bank 3, and call the new signal RAS3. The third signal is
the WRx signal, which must be taken low when whenever you (the CPU really!)
want to write to the respective bank. If the WRx signal is held high, bank x will
become write protected, and if the relevant pins of the upper bank are soldered to
those of the lower bank, the upper bank will take the same write protect status as
the lower. At this stage, let me state that it is possible to arrange for the new bank
of RAMs to have independent write protect , but to be frank, although I have run my
board in this condition, I have never found the need for separate write protect on
the new bank of RAMs, and in the end I Just removed the additional wiring as it was
a bit of an eyesore. For this reason, I shall not cover this aspect of the
modification, but if any reader is interested in the details, please contact me
through this magazine.

From what I have said, it should be obvious that all 16 pins of the upper and

lower 4116s can be commoned (is there really such a word in English?) except for
pins 4, which must be separated between banks but comoned along the new bank.

Page 31

We are now in a position to start piggybacking the RAM chips. Pin 4 of every socket
should be bent out at right angles to the socket. The remaining pins should be
soldered using the smallest bit available. As you complete each 4116, it is a good
idea to put it back into the board and test it. (If you are soldering chips directly onto
chips, you must take pin 4 of the top IC to +5 volts when testing. lf the pin is allowed
to float, neither IC will work correctly, and the memory test will fail.) When all eight
chips have been piggybacked all the pn 4s should be commoned by connecting them
to a wire link running along the bank. As a further check the top ICs can now be
inserted and if the linking wire is pulled to +5 volts through a suitable resistor (I
found that 330 ohms was O.K.) the board should function normally as a 48K board
at this stage.

Now that we have the fourth bank of chips mounted successfully on top of one of
the other banks, and the board is working normally, we can start looking for the extra
logic signals that are needed. If you look at fig. 10 of the RAM-B instructions you
will see SK1 where the DIL header plug (4K BLOCK DECODE) is inserted at the top
left of the diagram. Pin 20 is labelled NAS1 SEL and goes direct to MEXT on line
11 of Nasbus. If you are working with Nascom 2 or Multiboard, this signal is not
required, and pin 20 of SK1 provides an ideal point for the connection of the RAM
BLK3 signal. Cut the MEXT line on the solder side of the board where it runs from
the plated through hole opposite pin 11 of IC43 to the hole opposite C52. I strongly
advise that you check that you have the correct line by using a multimeter or some
other form of LOW VOLTAGE continuity tester before you do any cutting.

You will see from diagram 10 that RAM BLK0/1/2 signals go to pins 4/2/1 of

IC35. We need to connect pin 20 of SK1 to pin 5 of IC35. This pin is connected to
+5 volts by a wide track which is hidden by the socket, so the simplest way to
make the connection is to remove the IC from the socket and bend pin 5 at right
angles so that it remains clear of the socket when reinserted. A wire should be
soldered on this pin and taken to intercept the line from pin 20 of SK1. Look at the
area on the component side of the board between IC35, IC36, RP5 and IC42;
there are two through plated holes in this area, and the one nearer to IC35 is on
the MEXT line and connected to pin 20 of IC35. The wire from pin 5 of IC35 should
be connected to this point. Once again, check carefully that you have the
correct point.

The RAM BLK signal lines are pulled up to +5 volts by 1Kohm resistors R7, R8

and R9. RAM bLK3 must be pulled up by a similar resistor. A convenient place to do
this is beside SK1, where there are two plated through holes next to the silk-
screened numbers 7 and 9; the one near the 7 connects to pin 20 of SK1, and the
one near the 9 is at +5 volts. The MEXT line is already pulled up to +5 volts by a
4K7, so to achieve a pull-up of 1 Kohm the resistor used should be 1.2 Kohms.

Page 32

The RAM BLK 0 - 2 signals are taken to pins 2, 5 and 10 of IC36, where they

are ANDed with the RFSHB signal, taken to pins 1, 4 and 9. Another gate is
required to support the RAM BLK 3 signal. Two spare gates are available on IC41,
which is also a 74LS00. Pins 12 and 13 of IC41 are connected to +5 volts by a
wide track. After double checking, carefully cut this track to isolate these pins. Join
pin 13 of IC41 to the new RAM BLK 3 line using light hookup wire, or Verowire; the
best point to join the wire is at pin 10 of RP5. The RFSHB signal can be tapped from
the plated through hole beside pins 10 and 11 of IC36; it should be connected to pin
12 of IC41.

If you hold the board up to a strong light, and look at a point halfwasy

between pins 8 and 9 of IC35 and pins 6 and 7 of IC36 you will see that there
is quite a large area where there are no tracks on either side of the board. Mark the
centre of the clear area and, after rechecking, drill a hole through the board. The
hole only needs to be large enough to permit hookup wire to pass through. One
end of this wire should be soldered to pin 11 of IC41, and the other end of the wire
is passed through the hole to the component side of the board where it passes
between IC36 and C61 and is soldered to a point vertically above pin 1 of IC37.

We now have to find a new OR gate to generate a RAS signal for the exta

memory bank, and we do this by piggybacking a new 74LS32 onto IC37. The
only signals needed from IC37 for the new IC are +5 volts (pin 14), 0 volts (pin 7),
and RAS, which is at pins 2, 5 and 10. For purey mechanical reasons, pin 2 is
used, as it spaces the mounting pins evenly.

Now make up a DIL socket for the new IC. This requires some ‘nice’ soldering,

and I would strongly advise against soldering the new IC directly on top of IC37.
Take a 14 pin DIL socket and break off pins 6, 8 and 11. Solder pins 2, 7 and 14 to
the 74LS32; a touch of instant glue between the IC and socket is recommended.
Carefully bend out pins 1, 3, 4, 5, 9, 10, 12 and 13. Pins 4 and 5 should be taken
low by linking them to pin 7. Similarly, pins 9, 10, 12 and 13 should be taken to +5
volts by linking them to pin 14. Insert the joined up IC and DIL socket, and link the
wire from pin 11 of IC41 to pin 1 of the socket. Next soldedr a hookup wire to pin 3
of the socket, and connect this through a 33 Ohm resistor to the wire which links the
pin 4s on the new memory bank. Plug a 74LS32 into the socket, check the board
thoroughly, and when satisfied insert the board in the Nascom and check for normal
operation. If all is well, you can rewire the DIL header plug that fits in SK1; the
only difference from the addressing shown in the RAM-B instructions is that pin
20 is now used to decode the new memory bank. You should now have a RAM-B
board which will run 64K of dynamic RAM at 4 Mhz.

Page 33

COORDINATE LIFE

By P. Whittaker

 The program plays ‘Life’ on a 10000x1000 array, running under
Nas-Sys 1 or 3. Start by E1000. I shall give a brief description of the
program in the next issue of the magazine.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
10A0
10B0
10C0
10D0
10E0
10F0
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
11A0
11B0
11C0
11D0
11E0
11F0
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
12A0
12B0
12C0
12D0
12E0
12F0
1300
1310
1320

C3
3D
20
20
5A
3F
18
14
01
03
08
01
04
01
03
00
01
03
06
1A
FF
04
01
11
01
19
17
1A
1F
03
07
01
00
0A
0F
14
00
FF
03
02
00
04
00
E8
4E
28
2A
B8
13
02
FC

03
20
20
20
00
1A
46
51
02
03
15
10
10
05
00
01
04
08
00
05
FF
00
01
05
07
0E
10
14
21
00
03
05
03
02
02
02
02
00
1A
00
04
03
04
03
00
02
CD
12
CD
3E
C1

15
20
20
20
00
59
BC
15
03
02
08
0C
FF
00
FF
03
03
04
07
1B
FF
FF
0E
1F
0E
1F
18
1E
20
03
07
01
01
0A
0F
FF
00
05
00
02
01
05
00
64
FD
F6
34
C9
09
0F
C9

5A
20
3A
20
58
23
18
15
01
03
16
01
00
FF
00
01
04
08
01
02
FF
00
01
05
07
0F
10
20
FF
07
04
06
02
03
03
00
03
01
1A
01
04
00
05
00
46
30
11
21
13
CB
21

6F
20
58
51
01
19
4A
6A
04
03
09
0C
00
00
00
05
05
05
08
1B
FF
00
12
20
12
18
1A
18
00
04
FF
01
01
0A
0F
01
01
04
01
FF
02
05
00
0A
01
12
EC
00
C1
09
E2

6F
20
3D
00
00
48
03
15
00
12
16
02
00
02
00
01
04
FF
00
04
FF
00
02
06
08
0F
10
20
03
00
00
07
03
04
04
01
03
01
1B
00
FF
01
05
00
ED
E6
0B
04
0C
CB
0B

6D
20
20
02
50
E7
15
16
05
08
0B
02
01
00
01
08
07
00
08
1C
00
01
0D
0D
00
19
1E
19
00
04
01
00
08
0A
10
00
02
06
00
01
00
05
03
01
42
F0
CD
0E
20
09
06

20
3A
20
57
E6
16
11
63
00
12
FF
0E
00
03
00
02
06
01
01
03
02
00
02
06
08
0F
10
20
04
07
01
07
03
05
02
01
02
03
FF
01
01
02
06
00
38
1C
B8
C0
F0
CB
07

3D
50
20
01
15
4C
6A
15
06
09
00
02
02
01
02
00
04
00
09
1D
01
10
12
12
01
1A
20
1F
01
05
01
02
09
0B
10
01
02
03
FF
00
01
FF
00
3E
04
FD
12
C5
C9
09
36

20
6F
20
02
55
F1
15
00
00
12
0F
11
01
03
00
02
07
02
02
03
02
00
03
06
08
0F
10
20
02
01
02
08
02
00
03
01
03
03
FF
02
00
00
06
20
3C
23
2A
CD
06
30
20

31
70
20
41
69
16
12
AE
FF
0A
0B
0D
02
02
06
08
03
01
19
22
02
11
0D
1F
10
1E
21
20
01
05
00
01
09
0B
10
02
03
06
00
00
02
01
01
FD
C3
FD
CF
09
05
02
2C

20
3D
3A
00
19
47
63
16
01
13
00
00
02
00
00
03
07
01
02
03
02
00
03
06
08
0F
13
21
05
06
02
09
03
01
04
02
00
04
00
03
00
01
06
21
C5
23
34
13
AF
C6
10

3A
20
59
01
49
09
15
00
03
08
0B
03
02
02
07
00
04
04
19
22
03
12
11
20
11
1F
1A
18
02
06
02
01
09
0B
13
02
03
03
01
00
03
00
02
AE
12
0D
11
06
CB
F0
FB

47
20
3D
53
34
17
13
00
02
13
01
0F
03
01
00
03
07
00
04
04
00
01
05
07
08
0F
13
21
01
02
03
FF
04
05
02
FF
01
04
00
03
00
02
FF
12
09
20
F4
06
09
77
11

65
20
20
01
1A
52
4A
01
01
0B
01
03
00
02
08
08
05
05
1A
23
03
00
0D
00
12
20
1E
19
02
06
01
00
0A
0B
13
00
03
04
01
03
04
00
10
A7
FE
E0
0B
CD
C5
23
D3

6E
20
20
01
4F
E3
15
00
02
14
0E
11
03
02
01
04
08
01
02
03
01
01
05
07
0E
10
14
21
06
05
04
02
01
06
03
01
02
05
02
04
00
03
27
FD
20
C9
CD
0B
30
10
34

Page 34

1330
1340
1350
1360
1370
1380
1390
13A0
13B0
13C0
13D0
13E0
13F0
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
14A0
14B0
14C0
14D0
14E0
14F0
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
15A0
15B0
15C0
15D0
15E0
15F0
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
16A0
16B0

2A
34
38
18
18
0D
3A
1A
D5
A7
3A
1A
20
17
F5
09
D5
A7
34
29
FE
FB
CB
C5
ED
39
77
77
F5
C3
34
51
34
62
06
34
CD
06
15
13
3C
32
EB
4D
15
10
C5
01
EC
21
23
3C
34
EB
06
4D
16

D1
36
06
03
F3
28
50
21
ED
ED
C8
29
1D
CB
31
EB
ED
ED
3D
EB
20
1E
0B
E5
44
09
D6
2B
29
26
3E
1A
22
13
3E
18
72
07
7D
21
DF
10
E9
CD
30
FD
34
23
2B
04
72
BE
A7
ED
2B
03
C3

34
FF
C0
21
21
03
1A
D1
5B
52
34
29
3A
10
11
3D
5B
52
28
E1
28
04
85
AF
3D
7E
80
10
09
14
C0
3E
CF
CD
01
17
13
FF
D6
E2
62
23
4F
18
1A
47
32
23
C5
00
23
38
ED
B8
2B
E1
9E

23
22
2D
DC
01
87
06
34
CF
CB
3D
EB
4E
17
0A
20
CD
D1
07
45
2B
CB
6F
47
5F
D6
6F
FC
42
EF
32
FF
34
E0
1E
3E
2A
10
02
09
00
23
16
16
E6
3A
C6
BE
D5
19
73
08
52
D1
A6
EB
15

A7
D1
A6
0B
0C
18
F0
23
34
FC
28
E1
1A
CB
08
F4
34
A7
CB
A7
21
03
7C
79
C1
80
AF
77
57
0C
50
21
21
12
04
FF
CD
FD
28
4E
38
BE
00
18
07
C7
34
30
EB
22
C3
7B
44
18
28
ED
1B

ED
34
2C
7E
CB
FA
77
23
2A
D1
07
4D
D6
10
06
C9
2A
EB
1C
ED
C5
3C
CE
0E
79
30
67
C3
19
00
1A
D3
03
CD
06
1E
34
E1
B4
16
05
23
42
B8
47
34
C3
FB
2A
D1
5D
23
4D
CA
01
B0
1B

52
E1
77
F6
66
4F
23
7E
53
A7
CB
ED
7E
17
00
7E
51
ED
CB
52
34
20
00
30
E6
21
29
F3
3E
AF
21
34
10
F3
00
05
09
DF
3D
5F
FF
20
2A
AF
0E
A1
A1
3C
D1
34
13
BE
03
23
EB
1B
1A

44
C9
C9
30
28
C9
10
A7
1A
EB
1C
52
28
CB
3E
A7
1A
52
1D
38
11
FB
67
21
07
3A
29
14
80
32
0B
77
11
12
CD
47
22
62
28
3E
10
FA
CD
32
03
B0
15
BE
34
EB
7A
28
19
7E
2A
ED
21

4D
21
36
3C
03
CD
FC
F2
3A
ED
CB
E1
16
10
0F
FA
3A
30
A7
04
D0
78
7E
C5
57
4F
29
6F
04
C5
00
22
CA
18
72
18
CD
CB
D1
50
F8
5E
34
C7
B9
32
CB
38
A7
ED
3D
1D
EB
E5
D1
53
7C

19
E8
39
77
87
E0
0D
A4
C8
52
1D
38
06
4F
0E
AB
C8
04
18
E1
FF
1F
B3
34
CB
1A
29
AF
07
34
22
D1
0B
57
13
06
34
76
3D
32
18
23
19
34
30
C7
F8
08
ED
B8
18
30
21
2B
34
D1
10

EB
0B
2D
FE
87
12
20
13
34
30
A7
3B
00
21
30
13
34
E1
F6
C3
79
38
77
ED
18
3C
01
67
10
32
53
34
01
3E
2A
3E
16
28
28
81
F1
7E
EB
CF
02
34
21
79
52
D1
01
EC
02
2B
EB
34
D6

ED
7E
18
3A
87
21
F7
57
29
04
18
3A
50
F5
ED
57
29
C3
E5
A6
3D
06
E1
42
CB
28
04
29
FD
C6
1A
21
30
FF
CF
01
0C
15
B5
15
71
FE
2A
FE
0E
18
D2
23
44
C1
23
2B
00
E6
E3
C3
61

B0
3D
EE
C0
21
F5
3E
23
3D
E1
F6
50
58
29
B0
23
3D
26
2A
13
19
CB
C3
D6
19
31
2A
29
B6
34
21
88
00
1E
34
1E
D5
3E
18
7E
32
03
CF
11
0C
DD
34
BE
4D
23
23
D5
19
80
EB
48
D8

E5
77
21
36
C8
31
7F
5E
20
C3
E5
1A
17
ED
0E
5E
20
14
51
3A
D6
0B
26
10
CB
32
09
29
77
3C
18
13
ED
02
09
03
CD
0A
C5
72
79
38
34
38
3E
E6
78
28
03
70
BE
EB
22
54
ED
13
28

21
FE
E8
30
34
0E
32
23
FC
A4
2A
FE
CB
B0
10
23
FC
3A
1A
50
03
CB
14
30
39
4F
06
29
C1
32
00
22
B0
47
22
06
88
32
CD
57
10
03
09
FB
80
0F
3D
28
19
23
30
2A
D1
5D
52
CD
0B

D3
30
0B
2D
4E
03
4F
E5
EB
13
53
20
10
21
EB
E5
EB
C8
29
1A
30
0B
19
FA
CB
1A
0F
01
E1
C8
22
CD
CD
18
CF
00
13
81
88
06
21
57
44
FE
07
32
18
30
EB
71
FB
D1
34
28
44
B4
FE

Page 35

16C0
16D0
16E0
16F0
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
17A0
17B0
17C0
17D0
17E0
17F0
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
18A0
18B0
18C0
18D0
18E0
18F0
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
19A0
19B0
19C0
19D0
19E0
19F0
1A00
1A10
1A20
1A30
1A40

1B
00
4D
0B
53
34
C9
CB
05
03
06
28
2A
4E
28
C3
34
C3
4D
CD
DF
C6
34
30
21
49
01
BE
01
83
03
71
CB
5E
E1
E6
CD
34
E1
ED
09
25
FF
57
A1
DD
19
ED
21
A7
E7
44
A1
C3
57
52
C8

D0
23
CD
CD
51
21
34
34
1C
1C
FD
61
C9
01
11
9B
2B
2B
EB
8B
62
34
0F
01
4F
45
20
2B
20
CA
C3
22
7F
23
18
7F
34
2A
18
52
E5
20
90
CA
15
66
11
52
54
ED
19
4D
15
A1
C3
C3
34

47
4E
18
F3
1A
00
21
0B
DD
23
23
47
34
7E
30
17
CB
17
23
13
CB
C2
30
23
18
53
0C
20
0B
8C
5A
C9
28
E5
DC
57
19
CF
C3
EB
D5
E2
30
13
FE
05
06
44
1A
52
10
DD
21
15
A1
A1
3D

7E
23
16
12
22
00
CB
1E
23
23
FD
FD
23
B8
15
FD
7E
2A
11
CD
66
09
01
0F
11
20
78
0A
78
17
18
34
0A
C5
CD
23
EB
34
2A
26
C5
C3
FD
1A
0A
DD
00
4D
23
EB
DF
E5
CD
21
15
15
28

23
42
E1
21
53
D9
34
00
DD
03
23
4E
70
28
47
7E
28
C9
D3
62
C2
17
2B
30
5E
4F
DD
78
FD
E6
CB
E1
FE
2A
23
5E
E1
A7
CF
0A
CD
9E
80
FE
D2
6E
19
03
E5
DD
C3
D1
34
55
21
3A
F7

3C
E5
18
0B
1A
FD
71
DD
23
FD
18
01
23
15
FD
01
04
34
34
13
A1
3A
0F
01
09
55
BE
BE
BE
0F
7A
03
FF
CD
13
23
18
ED
34
D5
18
15
3C
52
A1
04
7E
21
DD
E5
A1
62
ED
1A
00
C8
32

20
2A
E3
00
C3
46
23
7E
03
7E
13
FD
71
30
4E
B9
2B
ED
ED
D9
15
C5
30
2B
01
54
00
20
00
FE
28
D9
CA
34
7E
E5
DF
42
11
2E
16
C5
E1
CA
15
11
FE
CD
E1
E1
15
6B
B0
22
00
34
C8

FB
CD
3E
11
9E
00
70
00
7E
00
7B
23
22
04
01
38
22
5B
B0
11
3A
34
01
22
09
21
20
05
20
03
F6
23
9E
29
CB
2A
47
19
05
0A
C1
E5
C1
24
3C
D3
FF
34
DD
19
2A
09
C3
0C
22
3C
34

10
34
20
18
15
FD
21
B8
B8
B8
A7
FD
C9
47
C3
EC
C9
D1
EB
E4
C6
32
23
CF
00
AF
05
23
05
28
E5
D9
15
A7
7F
CF
23
44
00
3E
D1
21
C9
1A
47
34
C2
EB
66
11
D1
D5
03
0C
0C
FE
F6

F9
19
21
00
DD
4E
D3
20
20
20
20
23
34
23
B9
78
34
34
36
0B
34
C6
22
34
ED
57
DD
23
FD
0E
2A
C3
47
ED
28
34
4E
4D
ED
FF
E1
CB
CF
FE
21
A7
A1
ED
05
06
34
11
15
21
0C
06
30

7E
EB
3C
3E
21
01
34
0B
09
0C
0F
ED
03
4E
17
07
3C
A7
FF
CD
A7
34
CD
CD
B0
08
23
1C
23
FE
C9
9E
23
52
1C
EB
23
D1
52
CD
13
34
FE
53
54
ED
15
B0
DD
00
11
F5
21
F5
3E
38
32

FE
2A
00
C0
D3
0B
E5
DD
23
FD
FD
43
E1
2B
23
D2
28
ED
22
B8
CA
3A
34
E0
CF
1E
DD
CB
FD
04
34
18
4E
EB
FE
A7
E5
D5
44
56
2D
47
43
28
1A
52
10
C3
6E
19
CC
29
00
29
52
09
D1

FF
CF
11
32
34
2A
FD
7E
7E
7E
7E
CB
DD
FD
7E
58
06
52
D1
12
09
C7
2A
12
C3
00
23
FB
23
28
23
CD
23
CD
FF
ED
D5
CD
4D
19
20
ED
CA
41
23
EB
DF
9E
04
7E
34
ED
00
22
32
C3
0B

C8
34
60
50
FD
D1
E5
01
2B
01
00
34
46
7E
B9
18
E1
28
34
21
17
34
CF
C3
03
79
1C
79
1C
06
0B
23
7E
18
CA
52
ED
18
2A
FE
EA
5F
0A
D6
E5
DD
DD
15
11
FE
A7
52
22
0E
2B
9E
18

5F
09
00
1A
21
34
ED
B9
B9
B9
FE
E5
00
00
38
2A
DD
61
E1
08
3D
2A
34
09
15
DD
79
FD
08
7A
70
13
57
16
9E
ED
5B
16
CD
14
D1
86
1A
30
DD
E5
E5
06
D3
FF
ED
D1
59
0C
0C
15
ED

16
44
18
ED
D3
22
4B
20
20
20
FF
0B
DD
B8
EA
C9
E1
44
E1
0C
32
CD
0F
17
44
BE
23
BE
82
53
23
7E
23
C1
15
5B
CD
D1
34
30
03
CE
FE
DA
E1
E1
D1
0A
34
C2
52
D2
1A
DF
DF
3A
44

Page 36

