
+

M IC R O P O W E R VOLUME 1, NUMBER 3

 A MAGAZINE FOR NASCOM USERS

 � �

 November, 1981 95 p

 NASCOM
 1 & 2
Invasion Earth (MC/G)
 (wi th incredible sound effects)

Our fast MC code SPACE INVADERS now has sound
effects which reall y show what can be achieved with a
programmable sound chip. The aliens fire six different
missile types – intelli gent homing, angled, direct, multiple
warhead, exploding and radio-jamming.
Other features are:- choice of 10 speeds and 4 levels of
difficulty; replace barriers if desired and advancing
attackers as eac h wave is destroyed. More addictive than
‘pot’ this game may ruin your life! £10.95
N.B. If you h ave an earlier version of the game, we wi ll
upd ate it for £3 – just return your original cassette.
SPECIAL OFFER – Deduct £5 if you o rder the Chip, Sound
Board, Demo Program & Invasion Earth together.

Jailbreak in Space (16K/MC/G)

In this exc iting arcade game(similar to Cosmic Guerrilla)
you d efend a top security jail , holding 3 alien prisoners,
against the onslaught of enemy space ships. They try to
dismantle your jail ‘ brick-by-brick ’ attacking from both
sides. Increasing points are awarded for aliens, brick-
carrying & prisoner-freeing aliens respectively. The level
of difficulty is extremely high, so do n ot buy this one
unless you are an experienced ‘arcadian’. High-score &
initials of high-scorer displayed. £8.95

Graphic Golf (16K/B/G)

Excellent us of Nascom graphics enhance this well
written golf program. Play the full 18 hole course, but
steer clear of the bun kers, trees and spectators. Penalty
points are incurred for hitting the ball out of boun ds.
Random generation of wind speed & direction brings
added variety. Select the right club (choice of 9 + driver)
and also the direction of your shot and the force of your
swing. Once on the green the screen is re-drawn to show
the hole, flag and p utting distance. Beat the PAR 72 £7.95

AY-3-8910 Programmable Sound Chip

YES – This IS the amazingly powerful “ Clang, Bang, Zap,
Tweet” sound & music generator, with three channels
which can be independently programmed for sound
output and amplitude. In addition it has an ‘envelope
controlled’ noise generator, ideal for creating explosions
and firing sound s. £6.45

Sound Chip Data Manual (60 pages)

This contains a full description of the architecture &
operation of the chip, detailed advice on the interfacing to
various microprocess ors, and comprehensive
explanations on the generation o f music and sound
effects. £2.25 (no vat)

Sound Chip Interfacing Board

The board has been designed to interface between the
Parallel Input/Output Port (PIO) of the Nascom and the
sound chip. It is supplied ready-built and just plugs
straight onto your PIO connector. Nascom 1 connectors
available on request. Sound g eneration is illustrated in
machine code & Basic, (chip not included) £13.50

Sound Chip Demo Program (MC)

A brief summary of the main registers is given, together
with a description of their functions. Thereafter, two
separate modes may be selected. Direct mode allows
values to be entered into the chip registers v ia the
keyboard, making experimentation simple, thus leading to
a rapid appreciation of the chip’s potential. The second
mode turns the keyboard into a 7 octave ‘piano’,
displaying the notes being played as well as the values
of the registers. £5.95

*** NASCOM 1 – Cott is Blandford cassette
 interface for N2 format, reliabili ty & fast load £14.90
- 8K RAM required unless otherwise stated
- Please state if Nascom TAPE Basic required.
ALL PROGRAMS SUPPLIED ON CASSETTE IN
CUTS/KANSAS CITY FORMAT

Please add 55p/order P & P + VAT @ 15%.
Large (15½p) Sae for FULL CATALOGUE.

PROGRAM POWER
5, Wensley Road
Leeds LS7 2LX.

MICROPOW ER Volume 1, No. 3 November, 1981

CONTENTS

Editorial Page 1
Letters to the Editor Page 2
Hands on . . . Part the Third Page 3
Reading TRS-80 Program Tapes Page 8
Auto Graphics Selection Page 20
Hangman Page 22
Nas-Sys Monitors Page 26
Club Page Page 32
Micro-Market Page 32

EDITORIAL

We asked for your comments on the order forms for issues 3 and 4, and we hope

to discuss some of the points raised in details in the next issue. However, the
answers did show what a wide range there is in the interests of Nascom Owners, and
in their levels of attainment. Many people said, in effect, don’t publish articles for
beginners, don’t print games programs, we want articles on advanced hardware and
software projects. But at least as many asked for simpler or more detailed
explanations of points which they felt were skipped over because the author
assumed they were too obvious to need expansion.

 We are grateful to all those who took the trouble to send in their comments,

and also for the letters and articles that we have received. You can be assured that
all are read carefully, and that wherever possible we shall act upon the ideas you
send in – so please don’t stop writing.

 Many of you asked for games programs, so we shall try to include more of

these, although this will annoy the purists. In this issue we have included a program
by D. G. Johnson, the author of ‘Graphic Golf’. Although it is a simple and well known
game, it demonstrates brilliant use of the Nascom 2 graphics set.

ERRATUM In the article ‘Modifications to Tiny Basic’ on page 15 the eighth line from
the bottom should read

 11DE Change to DF6421210C7E23666FC9

Page 1

LETTERS

Dear Sir,

I must congratulate Chris Blackmore on the clever software used by his
Monitor.Com article. Readers may like to know that Nas-Sys 3 can equally well be
adapted; however, the addresses at the top of page 13 need to be changed as
follows:-
 0800 - 00 00 00 0265 - 11 0A F8
 019B - 21 0A F8 0268 - 21 4A F8
 0236 - 11 0A F8 0254 - 11 CA FB
 023E - 11 BA FB

Key allocations need to be changed as well, as there are only two ‘spare’ keys
available.

If a disc is used, then keys D, F, J, L, Y, Z will probably be unused for there
oroginal purpose and several routines may be added, e.g., Handshake, Find,
Substitute, etc., as well as the extra routines in the article. At this stage I have
dedicated keys as follows:
 D - Dump to disc 0788 change to 3B 09
 F - Find bytes 078C change to 8F 0A*
 L - Load from Disc 0798 change to 06 0A
 Y - Return to CP/M 07B2 change to 15 09
* - Start address of my routine.

Incidentally, it may not be necessary to type in all of the Nas-Sys as described.
If your Nascom can be switched from Nas-Sys to CP/M (see my article in INMC80-3),
copy Nas-Sys or Zeap, or whatever into middle memory (4000 to 8000 somewhere)
and switch to CP/M. Load in DDT or ZSID and you should still find your program in
memory. It can be copied down as required using the M command. Alternatively, if
you have R.COM and W.COM (Tape to disc Read and Write routines available from
Nascom Dealers) you can transfer your programs that way.

Incidentally I use to think that ED was a pig. Now that I am more used to it I
think it is a donkey – a bt hard to drive, but quite capable. One misses the screen
editing, which is not even restored by SYS6, but the Macro commands are very
useful.

 C. Bowden, Stithians, Truro
P.S. I have almost got Zeap 2 (RAM Version) and Naspen VS converted to work with
V.D.U. RAM at £F800, but there are a few queer effects. Can anyone, without
infringing any copyrights, list the changes needed for 100% success.

Dear Sir

As I am at present working in Germany with the Forces I wonder if anybody else
out here has a Nascom; if so perhaps a mini Nascom Club could be started. If so
please contact me at the address below.

I have just acquired a Data Dynamics 390 printer, which appears to be normal
ASR33 teletype in fancy clothing. I have no circuit diagrams for this printer and do not
know how to interface it to my nascom. Can anyone help (Somebody must be using
an ASR33 with a Nascom).
 A. M. Morfee, Officers Mess
 RAF Wildenrath, BFPO 42

Page 2

HANDS-ON

by Viktor Part, the third

PRINT

Since most of us cut our programming teeth on the PRINT statement, there is
not much point in covering acres of paper in explanations and illustrations – however
for the benefit of those just beginning I will summarise the ground rules. [INPUT
“Enter SKILL LEVEL”; X$:IF X$= “ADVANCED” THEN GOTO(next section)]

The PRINT statement outputs to a terminal, usually the screen or a printer(or

both). It operates from the current position of the cursor. If used on its own, a
carriage return/line feed(CR/LF) is output, thus placing the cursor at the start of the
next line.

You can also print numbers [PRINT 5] , the answers to calculations [PRINT 5*6
(=30)], the value of variables [PRINT A (=10 where A=10)], string literals [PRINT
“Fred”], strings [PRINT X$ (Nascom-where X$ has been defined as “Nascom”), plus
a whole series of intrinsic functions which are listed in the manual. Useful examples
are:-

PRINT CHR$(X) – where X has any ASCII value from 0 to 255. For example,
CHR$(65) prints the letter A, CHR$(181) prints a small human figure, if your system
is equipped with the Nascom 2 graphics ROM.
PRINT FRE(0) – gives you the remaining memory space available for your BASIC
program.
PRINT SQR(X) – outputs the square-root of X.

In formatting text it is obviously important to know where the cursor will be
positioned after the computer has carried out a PRINT instruction. If a PRINT
statement is terminated with a colon, or if the line ends without a special terminator,
the next PRINT statement will begin at the start of the next line, the Nascom having
output a CR/LF. However, if you end the statement with a semi-colon, the next
PRINT statement will start at the next available space; e.g.

10 FOR A=1 to 5:PRINT A;:NEXT will give you:-

1 2 3 4 5

Note that a space is output in front of each number – if you PRINT a negative
number this space will be occupied by a minus sign.

A further modification, available within the PRINT statement itself, is the use of
commas to divide the output into zones. PRINT 1,2,3 puts 1 in position 0,2 in position
14 and 3 in position 28. If you not redefined WIDTH then the third zone is 20
characters wide. If a zone is completely filled or exceeded the instruction will still be
carried out but the cursor will then be moved to the start of the next free zone.

Page 3

In setting out text on the screen or for printing there are a number of other useful

functions in BASIC which you can use with the PRINT statement, viz.

SCREEN X,Y . . . places the cursor on the Xth position across and Yth line down.

PRINT TAB(I) . . . moves the cursor to the Ith horizontal tab position.

PRINT SPC(X) . . . moves the cursor X spaces along from the current position.

POS(I) . . . reurns the current position of the cursor. This is useful where the cursor
might finish up in one of a number of different tab postions after following alternative
routes to reach the current program line. In order to obtain a satisfactory print layout
you could insert a line as follows:-

20 R=POS(I):IF R>25 THEN PRINT

Note (I) is only a dummy argument in this instruction, that is, because POS is a
function, not a command, it has the format of a function, but what you put within the
brackets is immaterial.

SPACE SAVING IN PRINT STATEMENTS

Since extra memory chips are so cheap these days saving space by shortening
Basic lines has few advantages. However, it is quite often annoying to find that you
are one or two characters in excess of 48 and therefore must have yet another line.
You will no doubt have discovered by now that in many situations it is not necessary
to use the second quotation mark when printing or defining strings. (e.g. [X$=”FRED]
is acceptable as a statement on its own or at the end of a multiple-statement line.)

Now consider the following lines:

20 V=99:X$=“15th”:Y$=“JAN”:Z$=“1981
30 PRINT“Amount”;V;TAB(25);“Period ”;X$;“ ”;Y$;“ ”;Z$

T12‘15th’ and ‘JAN’ require closing quotes but ‘1981 ‘ does not. Line 30 will not fit
onto one screen line, and could only be entered by using direct entry of the single-
byte reserved words from the keyboard, using the ‘GRAPHICS’ key. But several
characters can in fact be left out since the second quotation marks can double for the
statement separators. i.e.

30 PRINT “Amount”V;TAB(25)”Period ”X$“ ”Y$“ ”Z$

DEEK & DOKE

Like PEEK & POKE , DEEK & DOKE allow you direct access to the data held in

Page 4

memory, so that you can modify or read its contents. However, because PEEK &
POKE operate only on single bytes the highest value that you can POKE into a
memory is 255; similarly, PEEK(X) returns the value held in the single byte whose
address is X.

When using DEEK & DOKE two consecutive bytes are accessed. This means
that there are sixteen bits available for arithmetic, giving a theoretical maximum of
65535 (that is two to the sixteenth power, less one). When you DOKE a value to a
specific address, the least significant byte is stored at the next byte above. Why are
they stored in that order? Simply because that is the normal order in which the Z80
microprocessor stores sixteen-bit values. In order to cope with negative numbers the
most significant bit of the high order byte is used to indicate the sign; if this bit is set,
then the number is to be read as negative. The range of available values is thus -
32768 to + 32767.

Let’s try an example:-

Enter DOKE 3200,32767. If you now return to NAS-SYS and tabulate from 0C80, you
will find 0C80 contans FF (low-order byte with all bits set) and 0C81 contains 7F
(high-order byte having all bits except the most significant one set).

Now try DOKE 3200,-1:DOKE 3202,-2:DOKE 3204,-32767

The result should be as follows:-

0C80 (low byte) FF
0C81 (high byte) FF

Note computer holds this as 65536-1 i.e. (15x4096) + (15x256) + (15x16) + (15x1)

0C82 (low byte) FE
0C83 (high byte) FF

The computer has 65536-2, i.e. (15x4096) + (15x2 56) + (15x16) + (14x1)

0C84 (low byte) 01
0C85 (high byte) 80

The computer stores 65536-32767, i.e. (8 x 409 6) + (1 x1)

Why, though, do we have to bother with all this complicated nonsense? Let us
have a look at a few examples. Firstly, a series of DOKES is very useful for setting
up short machine code subroutines, which are to be called from a BASIC program.
Here the values DOKE’d have no meaning in the BASIC program – they are just the
decimal values which when converted to hexadecimal can be interpreted by the
computer as machine code instructions. The USR(0) routine (given in the manual) to
scan the keyboard for a key depression is a very good example of this.

Page 5

Secondly, POKE & DOKE are often used to change options in the monitor. You will
know that under NAS-SYS the command K1 gives you lower case as the standard
print output. This can be achieved from BASIC directly, or in the course of a program
by the statement POKE 3111,1. Similarly, if you want to turn on output to your printer
in the middle of a program, you can use the various DOKE instructions outlined in the
manual. N.B. Different values apply in NAS-SYS 3 from those in NAS-SYS 1.

A third use might be to store a value which is to be picked up later by a machine
code subroutine. The example which follows allows you to generate sounds from a
BASIC program by flipping Bit 5 of the keyboard port.

Sub-routine:
6000 DOKE 3200,23533: DOKE 3202,3330: DOKE 3204, 19437
6010 DOKE 3206,3328:DOKE3208,8254:DOKE3210,211
6020 DOKE 3212,30731:DOKE3214,8369:DOKE3216,-4613
6030 DOKE 3218,75:DOKE3220,-20723:DOKE3222,211
6040 DOKE 3224,30731:DOKE 3226,8369:DOKE 3228,7163
6050 DOKE 3230,-19590:DOKE 3232,-7648:DOKE 3234,201
6060 RETURN

Main routine:
1000 GOSUB 6000:DOKE 4100,3200 (Dec. Addr.of M/C routine)
1010 DOKE 3330,X (where X=no. of complete loops)
1020 FOR I=A TO B, STEP C (where different values of A,B & C
give different sounds)
1030 DOKE 3328,I:U=USR(0): NEXT I:

Memory location 3330 (0D02 hex) is DOKE’d with the value which will control the
length of the sounds generated, while 3328 (0D00 hex) is DOKE’d with the frequency
parameters.

Another use to which I have put these instructions was in the creation of an
array in a large program when I was short of memory. The original array was
something like A(8,8), i.e. 64 variables, requiring 6 bytes each. By using DOKE to put
values in memory and DEEK to retrieve them it was possible to use only two bytes
for each variable, e.g. if the start of the array is 3584, to put the value X into what
was previously A(I,J), you enter DOKE 3584+[16*(I-1)]+[2*(J-1)],X. The instruction is
a lot more cumbersome but there is still a significant saving in memory usage.

RANDOM NUMBERS

Random numbers are very useful in games programming, both in games of

chance like Pontoon or Fruit Machine and also in more complex programs like Star
Trek, where you wish to vary the results of selecting a particular option in the course
of the game.

The RND function does not, in fact, generate random numbers at all; it merely

starts with a pre-determined value and then produces new numbers according to a
formula. These values are always in the range 0 to 0.999999. If the argument used

Page 6

with the RND function is negative, a new sequence of numbers will be started. While
different negative numbers produce different sequences, any particular negative
number will always produce the the same sequence. If the argument is greater than
zero, the function returns the next number in the current sequence, while RND(0)
reproduces the previous number output in the current series.

To vary the start of a game you need a random start somewhere in the list, so
to speak, of the numbers being generated. One method would be as follows:

10 INPUT”Enter a no.”;N:IF N > 0 THEN N= -N 20 A = RND(N)

When the player enters a number he selects a new sequence for the game.

However, this allows players to cheat – they can affect the random sequence, and
hence the course of the game, by there initial selection. A better method is to use the
keyboard scan user routine referred to above (see the manual for the m/c code and
the decimal equivalents):

10 DOKE 4100, 3200:REM Tell BASIC where routine is located
20 PRINT “When you are ready, press any key”
30 A=RND(1):B=USR(0):IF B=0 THEN 30

Here, each time you start, the generation of numbers will stop at a different point due
to the varying time taken to react to the message.

Another helpful routine which uses the RND function is the generation of
integers within a given range e.g. a number between 1 and 12. Some BASICS
already have this as a built – in function. On the Nascom you need to adopt a formula
similar to the following:

10 A=INT((RND(1)*T)+B)

where T equals the top of the range and B equals the bottom. If we substitute 12 and
1 for T and B we get 12 x (no. between 0 and 0.999999) which should be less than
12. If we then add 1 and then reduce the answer to integer format the result in most
cases will be in range 1 to 12. However, due to the rounding system in the BASIC a
number larger than 0.999995 is treated as being equal to 1, and the computer will
then, in this instance produce answers in the range 2 to 13. So for a perfect program
you will need to test for data which is out of range.

Next issue will probably see the last look at various statements and functions

within BASIC. After that we can perhaps dissect a few programs or interesting parts
of programs, and in doing so cover various points not looked at so far.

HAPPY KEYBOARD BASHING !!

Page 7

READING TRS-80 PROGRAM TAPES

by Mike Fox

There is a great deal of software available for micro-computers, but it is
generally not possible to exchange programs between systems because the data
is stored on tape in different formats. This article describes a method for
reading and converting TRS-80 tapes for the Nascom. The project needs both
hardware and software, and is for TRS-80 Level 2 Basic (also Video Genie in the
U.K., P.M.C-80 in U.S.A, and System 80 in Australia and N.Z.), but it could be
modified for other machines.

The TRS-80 writes tapes at 500 Baud. An 80 microsecond clock pulse is sent

to the tape every 2 milliseconds. The data bits to be stored are represented by
inserting an extra 80 microsecond pulse between two clock pulses for a 1, and
leaving the gap empty for a 0. This of course is incompatible with the CUTS
standard used in the Nascom II. Therefore a small circuit consisting of one LM3900
(an IC containing four operational amplifiers) and a couple of dozen discrete
components is used to input the signal from the cassette via the Nascom
PIO. Figure 1 shows the circuit diagram of the interface, while a suggested
Vero layout is shown in figure 2. Make sure that pin 11 of the Nascom 2 PIO plug
is connected to 0 volts on pin 16.

COMPONENTS REQUIRED

Resistors Capacitors Semiconductors

R1 1 kohm
R2 150 kohm
R3 330 kohm
R4 560 kohm
R5 330 kohm
R6 1.8 megohm
R7 470 kohm
R8 680 kohm

R9 470 kohm
R10 470 kohm
R11 1 megohm
R12 1 megohm
R13 10 kohm
R14 10 ohms
R15 470 kohm
R16 470 kohm

C1 220 pf
C2 220 pf
C3 50 � F
C4 100 � F
C5 0.1 � F

LM3900 Quad.
 Op-Amp.
D1-D4 Small-
 signal
 silicon
 diode

SOFTWARE FOR MICROSOFT BASIC

The first part of the program reads the tape and loads it into the correct memory
location for Nascom 2 Basic. As the reading is done by software timing, the
delay values in the program will vary for machines running at 2 Mhz and 4Mhz. At
the start of the tape there is about 4 seconds of nulls (00), followed by a sync
character of A5 hex. When this character is detected the program starts to load the
data from the tape starting at address £10F6; as it is stored, the data is also
displayed on line one of the screen. The first four characters are SSSn, where n is
the program identification. These are not used, and the actual Basic program starts
at £10FA. The end of the program is indicated by three nulls, which cause a jump to
part two of the tape reading routine.

In this second section, the token values used in TRS-80 Basic are converted to

Page 8

Page 9

the values used by Nascom’s Basic (Tokens are the single byte codes used for
reserved words, e.g., PRIN is stored as £9E in the Nascom, as £B2 in the TRS-
80). Any token which cannot be converted is changed to a REM, and its memory
location, line number (in decimal) and TRS-80 value are displayed on the screen.
The first two bytes of each line point to the start address of the next line. As the
TRS-80 Basic starts at £42E9 and Nascom 2 Basic at £10FA, £31EF must be
subtracted from the value read from the tape. Finally location £10F9 is set to zero,
and the address of the end of the Basic program is stored at £10D6, 10D8 and
£10DA. The conversion routine then returns to the monitor.

To use the program, first enter Nascom Basic with a cold start by command
J, then exit by entering MONITOR or by pressing RESET. Next load the tape
reading/conversion program, with the correct delay values for your clock speed.
Run the program by entering E0C80, connect your cassette recorder to the input
port via the given circuit, and start the TRS-80 program tape. After loading is
completed and control has returned to Nas-Sys, re-enter Basic with a warm start.
The TRS-80 program can now be listed, and may even run.

There are several factors which can prevent the Basic program running. Some

of the commands used in TRS-80 Basic are not available in the Nascom Basic,
and the program may have to be modified to carry out these instructions in some
other way. From the listed program and the table of token values given at the end
of this article it should be possible to find out what the program is doing. Two
useful articles are "Whose Basic Does What", BYTE, January 1981, page 318, and
"TRS-80 Program Recovery", INTERFACE AGE, December 1980, page 100. "The
Basic Handbook", by David A. Lien, published in the U.S.A. by Compusoft, is an
invaluable book.

Peek and poke addresses may also vary. In particular, the TRS-80 screen

consists of 16 lines of 64 characters, and is located from £3C00 to £3FFF. The
decimal values of the screen locations run from 15360 at the top left, 15423 top
right, to 16320 bottom left, 16383 bottom right. Remember that the Nascom top
line is not scrolled, and that it is located in memory after the bottom line.

You will find that the volume and tone settings of the cassette recorder are

very critical. If nothing appears on the screen, re-run the program with £008E set
to 00 to stop sync checking, and £0C80 set to 00 to prevent the program ending
on reading the first null characters, (the program will have to be terminated by
pressing the RESET button, and the second part of the program, token
conversion, will not have been executed.) Adjust the volume and tone settings
until a display appears. Probably the display will not make sense, because the
characters will be out of sync. Replace the original values at £0C8E and £0CC0,
and try again.

 If you load a program and find that when you LIST it starts correctly but
then produces rubbish, the line address pointers have probably been misread. Try
adjusting the volume or tone slightly and reloading.

Page 10

It is possible to have a Basic cassette tape from a TRS-80 disc system,

where the starting address is £6A46. The result will be that only the first line will LIST
correctly, and the rest will be rubbish. Replace the subtraction values at £0D16 with
£4C and at £0D1B with £59.

Don’t forget to use the correct delay settings for your clock speed. For operation
at 2Mhz the values required are: £0CC8=£26, £0CDA=£3C, £0CE1= £1D. At 4
Mhz the corresponding values are £53, £81, and £3D. The clock frequency of a
standard TRS-80 is 1.7 Mhz, so the programs should run more quickly on a Nascom.

 The conversion program halts when the screen has filled with tokens that can
not be converted. You should make a note of the details, and then press any key to
continue

USING THE PROGRAM WITH CRYSTAL BASIC

The table of equivalent tokens at the end of the article can be used to modify the

program so that it will read and convert TRS-80 programs for Crystal Basic.
Replace the Nascom tokens in the table starting at £0DD9 with the equivalent
Crystal Basic token. You will also have to change the addresses at £0C86, £0C87
and at £0D12, £0D13 to suit the start of text in your version of Crystal Basic; for
example, if the program text starts at £2D00, £0C87, £0C87 must be changed to
£FC2C and £0D12, £0D13 to £002D. As the first four bytes from the tape overwrite
the last four bytes of the interpreter, these will have to be restored before running
the program. The line pointer offsets at £0D16 and £0D1B must be also be
changed; for text starting at £2D00 the values should be £E9 and £15 respectively.
The end of program address should be stored at £0C87, £0C88. The program
should then be listable after a warm start.

READING MACHINE CODE TAPES

The second listing is a routine to read TRS-80 machine code programs. Such a

program is first read into a block of memory starting at £1000. The routine then
scans the loaded program, testing the checksums and removing the loading
addresses, checksum bytes, sync bytes etc. If a checksum error is detected the
start address of the block containing it is displayed; try to reload the program at a
slightly different volume or tone setting. If all the checksum are correct the
routine displays the executions address and returns to Nas-Sys.

You can now use Nas-Dis to disassemble the program. Of course, you will
still have a lot of work to do to produce a running program. All calls to the
monitor will have to be identified and replaced by their Nascom equivalent. The
screen addresses and format will have to be modified. Any program using pixels will
have to be changed to take account of the different codes used on the two
machines (add £40 to the TRS-80 character and change bits 1,2,3,4 to 2,4,1,3).

Page 11

 0010 ; PROGRAM TO READ TRS-80 LEVEL 2
 0020 ; BASIC PROGRAM TAPES INTO NASCOM
 0030 ; AND THEN CONVERT TO RUN UNDER
 0040 ; NASCOM MICROSOFT BASIC
 0050 ;
 0060 ; BY MIKE FOX
 0070 ; AUCKLAND, NEW ZEALAND
 0080 ;
 0090 ; 14th JULY, 1981
 0100 ;
0C80 0110 ORG £0C80
0C80 0E00 0120 LD C, 0 ; RESET COUNTER
0C82 210A08 0130 LD HL, £080A ; VDU LINE 1
0C85 11F610 0140 LD DE, £10F6 ; BASIC START
0C88 CDC50C 0150 NSYSC CALL SUB ; GET A BIT
0C8B FEA5 0160 CP £A5 ; SYNC BYTE A5?
0C8D 20F9 0170 JR, NZ, NSYSC ; IF NOT, LOOP
0C8F CDC50C 0180 NEXT CALL SUB ; NOW GET 8 BITS
0C92 CDC50C 0190 CALL SUB
0C95 CDC50C 0200 CALL SUB
0C98 CDC50C 0210 CALL SUB
0C9B CDC50C 0220 CALL SUB
0C9E CDC50C 0230 CALL SUB
0CA1 CDC50C 0240 CALL SUB
0CA4 CDC50C 0250 CALL SUB
0CA7 77 0260 LD (HL), A ; LOAD TO SCREEN
0CA8 12 0270 LD (DE) A ; LOAD TO MEMORY
0CA9 7D 0280 LD A, L
0CAA FE39 0290 CP £39 ; END OF LINE?
0CAC 2803 0300 JR Z, EOL
0CAE 2C 0310 INC L ; CONTINUE ON THIS LINE
0CAF 1802 0320 JR INLINE
0CB1 2E0A 0330 EOL LD L, 10 ; BACK TO LINE START
0CB3 1A 0340 INLINE LD A (DE) ; RECALL BYTE
0CB4 13 0350 INC DE
0CB5 FE00 0360 CP 0 ; IS IT ZERO?
0CB7 2008 0370 JR NZ, NOZERO ; CHECK FOR END
0CB9 0C 0380 INC C ; INCREMENT COUNTER
0CBA 79 0390 LD A, C
0CBB FE03 0400 CP 3 ; 3 IN A ROW?
0CBD 2004 0410 JR NZ, NOTEND
0CBF 184F 0420 JR TOKEN ; TO TOKEN PROGRAM
0CC1 0E00 0430 NOZERO LD C, 0 ; RESET COUNTER
0CC3 18CA 0440 NOTEND JR NEXT ; LOPP FOR NEXT BYTE
 0450 ;
 0460 ; SUBROUTINE TO GET A BIT
 0470 ;
0CC5 C5 0480 SUB PUSH BC
0CC6 F5 0490 PUSH AF
 0500 ; ***
0CC7 0653 0510 LD B, £53 ; 4 Mhz, £26 FOR 2 Mhz
 0520 ; ***
0CC9 10FE 0530 LP1 DJNZ LP1 ; DELAY LOOP
0CCB DB04 0540 LP1A IN A, (04) ; READ PORT A0
0CCD EEFF 0550 XOR £FF ; INVERT IT
0CCF 1F 0560 RRA ; ROTATE TO CARRY

Page 12

0CD0 30F9 0570 JR NC, LP1A ; LOOP IF NO CLOCK
0CD2 DB04 0580 IN A, (04) ; JUST CHECKING
0CD4 EEFF 0590 XOR £FF
0CD6 1F 0600 RRA
0CD7 30F2 0610 JR NC, LP1A ; TRANSIENT, LOOK AGAIN
 0620 ; **
0CD9 0681 0630 LD B, £81 ; USE £3C FOR 2 Mhz
 0640 ; **
0CDB 10FE 0650 LP2 DJNZ LP2 ; DELAY AND WAIT
0CDD 00 0660 NOP ; BEFORE LOOKING
0CDE 00 0670 NOP FOR DATA PULSE
0CDF 00 0680
 0690 ; ***
0CE0 063D 0700 LD B, £3D ; USE £1D FOR 2 mHZ
 0710 ; ***
0CE2 00 0720 LP3 NOP ; IN SEARCH WINDOW
0CE3 DB04 0730 IN A, (04) ; READ PORT
0CE5 EEFF 0740 XOR £FF ; INVERT IT
0CE7 1F 0750 RRA ; ROTATE TO CARRY
0CE8 3804 0760 JR C, GOT ; PULSE FOUND – CHECK
0CEA 10F6 0770 DJNZ LP3 ; NO PULSE, LOOK AGAIN
0CEC 181C 0780 JR NOGOT ; WINDOW EXPIRED
0CEE DB04 0790 GOT IN A, (4) ; CHECK AGAIN
0CF0 EEFF 0800 XOR £FF
0CF2 1F 0810 RRA ; ROTATE TO CARRY
0CF3 3804 0820 JR C, GOTONE ; DEFINATELY A 1
0CF5 10EB 0830 DJNZ LP3 ; TRANSIENT – TRY AGAIN
0CF7 1811 0840 JR NOGOT ; STILL IN WINDOW?
0CF9 F1 0850 GOTONE POP AF ; RETORE REGS
0CFA 00 0860 END NOP ; TO END WINDOW
0CFB 00 0870 NOP ; USING NOP AS DELAY
0CFC 00 0880 NOP
0CFD 00 0890 NOP
0CFE 00 0900 NOP
0CFF 00 0910 NOP
0D00 00 0920 NOP
0D01 00 0930 NOP
0D02 10F6 0940 DJNZ END ; STILL IN WINDOW?
0D04 C1 0950 POP BC ; END – RESTORE REGS
0D05 07 0960 RLCA ; SHIFT ACCUMULATOR
0D06 CB87 0970 RES 0, A ; ZERO AND
0D08 3C 0980 INC A ; SET BIT 0 TO 1
0D09 C9 0990 RET ; RETURN
0D0A F1 1000 NOGOT POP AF ; NO DATA PULSE
0D0B C1 1010 POP BC ; RESTORE REGS.
0D0C 07 1020 RLCA
0D0D CB87 1030 RES 0, A ; SET BIT 0 TO 0
0D0F C9 1040 RET ; RETURN
 1050 ;
 1060 ; PROGRAM TO COMVERT TOKENS FROM TRS-80
 1070 ; TO NASCOM. ALSO SETS UP POINTERS AND
 1080 ; CORRECT LINE ADDRESS CODES BY SUB-
 1090 ; TRACTING £31EF (OR £594C FOR DISC)
 1100 ;
0D10 E5 1110 TOKEN PUSH HL
0D11 21FA10 1120 LD HL, £10FA THROW AWAY SSSn

Page 13

0D14 7E 1130 NEXTL LD A, (HL) ; LOW BYTE OF POINTER
0D15 D6EF 1140 SUB £EF ; SUBTRACT £EF
0D17 77 1150 LD (HL), A ; RE-WRITE
0D18 23 1160 INC HL
0D19 7E 1170 LD A, (HL) ; HICH BYTE OF POINTER
0D1A DE31 1180 SBC A, SUBTRACT £31
0D1C 77 1190 LD (HL), A ; RE-WRITE
0D1D 23 1200 INC HL
0D1E 5E 1210 LD E, (HL) ; SAVE LINE NUMBER
0D1F 23 1220 INC HL
0D20 56 1230 LD D, (HL) ; SAVE LINE N UMBER
0D21 23 1240 LOOP INC HL
0D22 7E 1250 LD A, (HL) ; GET BYTE OF BASIC
0D23 D600 1260 SUB 0
0D25 2805 1270 JR Z, CHECKE ; IF EOL, CHECK FOR
PROG. END
0D27 FC480D 1280 CALL M, SUBT ; IF GREATER THEN £80
 1290 ; TRANSLATE TOKEN
0D2A 18F5 1300 JR LOOPO;LOOP AGAIN
0D2C 23 1310 CHECKE INC HL
0D2D 23 1320 INC HL
0D2E 7E 1330 LD A, (HL) ; LOAD BYTE
0D2F D600 1340 SUB 0
0D31 2803 1350 JR Z ENDT ; IF ZERO, PROG. END
0D33 2B 1360 DEC HL
0D34 18DE 1370 JR NEXTL ; NOT ZERO, CONTINUE
0D36 23 1380 ENDT INC HL
0D37 22D610 1390 LD (£10D6), HL ; SAVE END ADDRESS
A 0D3A 22D810 1400 LD (£10D8), HL
0D3D 22DA10 1410 LD (£10DA), HL
0D40 21F910 1420 LD HL, £10F9 RESTORE ZERO @ £10F9
0D43 3600 1430 LD (HL), 0
0D45 E1 1440 POP HL
0D46 DF5B 1450 SCAL MRET ; RETURN TO NAS-SYS
 1460 ;
 1470 ;
 1480 ; SUBROUTINE TO CONVERT TOKENS
 1490 ;
0D48 E5 1500 SUBT PUSH HL
0D49 21D90D 1510 LD HL, TABLE ; LOAD TBLE ADDRESS
0D4C F5 1520 AGAIN PUSH AF ; SAVE DATA BYTE
0D4D 7E 1530 LD A, (HL) ; LOAD BYTE FROM TABLE
0D4E D600 1540 SUB 0
0D50 280D 1550 JR Z, NOTM ; END OF TABLE?
0D52 F1 1560 POP AF ; NO, SO RESTORE DATA
0D53 BE 1570 CP (HL) ; COMPARE WITH TABLE
0D54 2804 1580 JR Z EQUAL ; EQUAL?
0D56 23 1590 INC HL ; NO – GO TO NEXT
0D57 23 1600 INC HL
0D58 18F2 1610 JR AGAIN ; GO AROUND AGAIN
0D5A 23 1620 EQUAL INC HL ; MATCH FOUND
0D5B 7E 1630 LD A, (HL) ; GET NEW TOKEN
0D5C E1 1640 POP HL ; RESTORE BASIC ADDRESS
0D5D 77 1650 LD (HL), A ; STORE NEW TOKEN
0D5E C9 1660 RET ; RETURN
 1670 ;

Page 14

 1680 ; NO MATCH, SO CONVERT TO REM AND DISPLAY
 1690 ;ADDRESS, LINE NUMBER (DECIMAL) AND CODE
 1700 ;
0D5F F1 1710 NOTM POP AF
0D60 E1 1720 POP HL ; DISPLAY ON SCREEN
0D61 E5 1730 PUSH HL ; DETAILS OF EACH
0D62 DF66 1740 SCAL £66 ; DISPLAY HL IN HEX
0D64 62 1750 LD H, D
0D65 6B 1760 LD H, E
0D66 CD890D 1770 CALL HEXDEC ; CONVERT HEX. TO DEC.
0D69 DF69 1780 SCAL £69 ; OUTPUT ONE SPACE
0D6B E1 1810 POP HL
0D6C 7E 1820 LD A, (HL)
0D6D DF68 1830 SCAL £68 ; PRINT ACC. IN HEX
0D6F DF7E 1840 SCAL £7E ; OUTPUT TWO SPACES
0D71 DF69 1850 SCAL £69 ; OUTPUT ONE SPACE
0D73 3E8E 1890 LD A, £8E ; LOAD CODE FOR REM
0D75 773 1900 LD (HL), A ; REWRITE AS REM
0D76 3A2A0C 1910 LD A, (£0C2A) ; SCREEN FULL?
0D79 FE0B 1920 CP £0B ; CURSOR POSITION
0D7B 200B 1930 JR NZ, NOTFUL ; PASS UNLESS
0D7D 3A290C 1940 LD A, (C29) ; NEXT OUTPUT SCROLLS
0D80 FEAA 1950 CP £AA
0D82 2004 1960 JR NZ, NOTFUL
0D84 CF 1970 RST 8 ; WAIT FOR KEY PRESS
0D85 3E0C 1980 LD A, £0C ; CLEAR SCREEN CODE
0D87 F7 1990 RST £30 ; NAS-SYS OUTPUT
0D88 C9 2000 NOTFUL RET ; RETURN
 2010 ;
 2020 ; SUBROUTINE TO CONVERT HEX LINE NUMBER
 2030 ; TO DECIMAL (NUMBER IN HL REGS.)
 2040 ;
0D89 0E04 2050 HEXDEC LD C, A ; MAX. LEADING SPACES
0D8B 0600 2060 LD B, 0
0D8D D5 2070 PUSH DE
0D8E 110A00 2080 LD DE, 10
0D91 D5 2090 PUSH DE
0D92 C5 2100 PUSH BC
0D93 CDBC0D 2110 DODIV CALL DIVIDE ; DIVIDE SUB ROUTINE
0D96 78 2120 LD A, B
0D97 B1 2130 OR C ; IF ZERO, FINISHED
0D98 CAA30D 2140 JP Z, DIVEND
0D9B E3 2150 EX (SP), HL ; ANOTHER DIV LOOP
0D9C 2D 2160 DEC L
0D9D E5 2170 PUSH HL
0D9E 60 2180 LD H, B ; PUT VALUE IN HL
0D9F 69 2190 LD L, C
0DA0 C3930D 2200 JP DODIV
0DA3 C1 2210 DIVEND POP BC
0DA4 0D 2220 LEADSP DEC C ; DEC. LEADING SPACES
0DA5 79 2230 LD A, C
0DA6 B7 2240 OR A ; CHECK SPACES LEFT
0DA7 FAB00D 2250 JP M, DONESP ; IF MINUS, DONE
0DAA 3E20 2260 LD A, £20 ; ASCII SPACE CODE
0DAC F7 2270 RST £30 OUPUT ROUTINE
0DAD C3A40D 2280 JP LEADSP

Page 15

0DB0 5D 2290 DONESP LD E, L ; FIRST DIGIT
0DB1 7B 2300 OUTPUT LD A, E ; LOAD EACH DIGIT
0DB2 FE0A 2310 CP £0A ; COMPARE WITH TEN
0DB4 D1 2320 POP DE ; FOLLOWING DIGIT
0DB5 C8 2330 RET Z RETURN TO MAIN PROG.
0DB6 C630 2340 ADD A, £30 ; DECIMAL TO ASCII
0DB8 F7 2350 RST £30 ; OUTPUT DIGIT
0DB9 C3B10D 2360 JP OUTPUT
 2370 ; DIVIDE SUBROUTINE
0DBC E5 2380 DIVIDE PUSH HL ; DIVIDE HL BY DE
0DBD 6C 2390 LD L, H ; PUTTING RESULT N BC
0DBE 2600 2400 LD H, 0 ; AND REMAINDER IN HL
0DC0 CDC70D 2410 CALL DIVLOP
0DC3 41 2420 LD B, C
0DC4 7D 2430 LD A, L
0DC5 E1 2440 POP HL
0DC6 67 2450 LD H, A
0DC7 0EFF 2460 DIVLOP LD C, £FF
0DC9 0C 2470 DIVADD INC C
0DCA CDD20D 2480 CALL DIVSUB
0DCD D2C90D 2490 JP NC, DIVADD
0DD0 19 2500 ADD HL, DE ; ADD TEN IF CARRY
0DD1 C9 2510 RET
0DD2 7D 2520 DIVSUB LD A, L ; LEAST SIG. BYTE
0DD3 93 2530 SUB E ; SUBTRACT TEN
0DD4 6F 2540 LD L, A
0DD5 7C 2550 LD A, H ; MOST SIG. BYTE
0DD6 9A 2560 SBC A, D ; SUB 0 PLUS CARRY
0DD7 67 2570 LD H, A
0DD8 C9 2580 RET
 2590 ;
 2600 ; CONVERSION TABLE TRS-80 THEN NASCOM
 2610 ;
0DD9 2620 TABLE EQU £0DD9
 2630 ;
 2640 ; HEX DUMP OF TABLE

0DD9 80 80 81 81 82 9D 83 9C 84 99 87 82 88 83 89 84

0DE9 8A 85 8B 86 8C 87 8D 88 8E 89 8F 8A 90 8B 91 8C

0DF9 92 8D 93 8E 94 8F A0 90 A1 91 B0 94 B1 95 B2 9E

0E09 B3 9F B4 A0 B8 A1 B9 A2 BA A3 BB A4 BC A5 BD A6

0E19 BE A7 C1 B9 C6 C7 CA A9 CB AA CC AB CD AC CE AD

0E29 CF AE D0 AF D1 B0 D2 B1 D3 B2 D4 B3 D5 B4 D6 B5

0E39 D7 B6 D8 B7 D9 B8 DA BA DB BB DC BC DD BD DE BE

0E49 DF BF E0 C0 E1 C1 E2 C2 E3 C3 E4 C4 E5 C5 F3 C8

0E59 F4 C9 F5 CA F6 CB F7 CC F8 CD F9 CE FA CF 00 00

Page 16

0C80 3E CF D3 06 D3 06 EF 0C 00 21 0A 08 11 00 10 CD

0C90 B8 0C FE A5 20 F9 CD AF 0C FE 55 20 F2 CD AF 0C

0CA0 77 2C FE 3C 20 F7 2C CD AF 0C 77 12 13 18 F8 CD

0CB0 B2 0C CD B5 0C CD B8 0C C5 F5 06 53 10 FE DB 04

0CC0 EE FF 1F 30 F9 DB 04 EE FF 1F 30 F2 06 81 10 FE

0CD0 00 00 00 06 3D 00 DB 04 EE FF 1F 38 08 10 F6 F1

0CE0 C1 07 CB 87 C9 DB 04 EE FF 1F 38 04 10 E7 18 EF

0CF0 F1 00 00 00 00 00 00 00 00 10 F6 C1 07 CB C7 C9

0D00 21 02 10 56 2D 5E D5 2D 2B 54 5D 23 4E 06 00 23

0D10 7E 23 E5 66 6F E5 DD E1 DD 09 41 0E 00 DF 66 00

0D20 EF 20 00 E1 D5 23 13 7E 12 81 4F 10 F8 23 7E B9

0D30 28 24 EF 0D 43 68 65 63 6B 73 75 6D 20 65 72 72

0D40 6F 72 20 69 6E 20 00 EB E3 23 DF 66 00 DF 6A 00

0D50 2B E3 EB CF 00 00 23 7E FE 3C 20 03 F1 18 AC FE

0D60 78 28 16 EF 0D 4E 6F 20 23 33 43 20 61 74 20 00

0D70 DF 66 00 DF 6A 00 DF 5B 00 EF 0D 0D 47 4F 4F 44

0D80 20 52 45 41 44 0D 50 72 6F 67 72 61 6D 20 72 75

0D90 6E 73 20 66 72 6F 6D 20 00 F1 E3 DF 66 00 EF 74

0DA0 6F 20 00 DD E5 E1 DF 66 00 E1 EF 2E 0D 53 74 61

0DB0 72 74 20 61 64 64 72 65 73 73 20 00 23 7E 23 66

0DC0 6F DF 66 00 EF 2E 0D 00 DF 5B 00 00 00 00 00 00

READING MACHINE CODE TAPES

Enter E 0C80 and start the tape. The routine displays the name of the program
on the tapefollowed by a ‘prompt’, >. As each byte is received from the tape it is
displayed on the screen (as in a Nascom tape read). When no further data is
received turn off the recorder and press RESET. All the data on the tape, including
the block lengths, addresses, and sync bytes, is now in memory from £1000
upwards. Enter E 0D00; if the program has loaded correctly, i.e., if all the
checksums are correct, the routine will list the address where the program should be
located and the ‘start’ address. If there are any checksum errors, the addresses of
these blocks are listed – try reading the tape again.

Please note (i) The routine does not transfer the program
 to its correct address
 (ii) The data blocks are 128 characters long.

Page 17

TOKEN VALUES FOR TRS-80, MICROSOFT, AND CRYSTAL BASIC

COMMAND TRS NAS XTL COMMAND TRS NAS XTL COMMAND TRS NAS XTL

END
FOR
RESET
SET
CLS
CMD
RANDOM
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
REM
STOP
ELSE
TRON
TROFF
DEF STR
DEF INT
DEF SNG
DEF DBL
LINE
EDIT
ERROR
RESUME
OUT
ON
OPEN
FIELD
GET
PUT
CLOSE
LOAD
MERGE
NAME
KILL

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA

80
81
9D
9C
99

82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91

80
81

82
83
85
86
87
88
89
8A
8B
8C
8D
8E
90
91

8F

92
93

LSET
RSET
SAVE
SYSTEM
LPRINT
DEF
POKE
PRINT
CONT
LIST
LLIST
DELETE
AUTO
CLEAR
CLOAD
CSAVE
NEW
TAB(
TO
FN
USING
VARPTR
USR
ERL
ERR
STRING$
INSTR
POINT
TIME$
MEM
INKEY$
THEN
NOT
STEP
+
-
*
/
^
AND
OR
>
=

AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5

94
95
9E
9F
A0

A1
A2
A3
A4
A5
A6
A7

B9

C7

A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4

96
97
98
99
9A

9B
9C
9D
9E
A1
A2
A3

A5
A6
A7
A8
A9
AB
AC
AA
AD
AE
AF
B0

<
SGN
INT
ABS
FRE
INP
POS
SQR
RND
LOG
EXP
COS
SIN
TAN
ATN
PEEK
CVI
CVS
CVD
EOF
LOC
LOF
MKI$
MKS$
MKD$
CINT
CSNG
CDBL
FIX
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$

D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

B5
B6
B7
B8
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5

C8
C9
CA
CB
CC
CD
CE
CF

B1
B2
B3
B4

B6
B7
B8
B9
BA
B8
BC
BD
BE
BF
C0

C1
C2
C3
C4
C5
C6
C7
C8

NOTE: PRINT @ will convert correctly, but it is not in the Nascom Microsoft. The
Crystal Basic PRINT @ is followed by the column and row of the printing position
(similar format to the SCREEN command), but the TRS-80 PRINT @ uses a single
number to express the screen position; the top left of the screen is 0, top right 64,
bottom left 960, bottom right 1023. Similarly, there may be variations in the operation
of other commands in the three Basics.

Page 18

A /D B O A R D F O R N A S C O M £ 1 35 + V A T

Fast Ana logue to D ig ita l convers ion on the N A SC O M
* 8 B it reso lu tion * Sam p le and ho ld
* 8 inpu t channe ls * O vervo ltage p ro tection
* 30 m icrosecond convers ion * Fu ll flag /in terrupt con tro l
* P ro totyp ing a rea * Bu ilt and tested

EPROM PROGRAM M ER £63 + VAT

* P rogram s 2708 /2716 – 3 ra il * Ze ro inse rtion fo rce socke t
 2508 /2758 – 1 ra il
 2516 /2716 – 1 ra il
 2532 /2732 – 1 ra il * Bu ilt and tested

GRAPHICS BOARD FOR NASCOM £55 + VAT

Ve ry h igh reso lu tion graph ics on your N ASC O M
* 384 x 256 b it m apped d isp lay * G raph ics so ftware supp lied
* M ixed text and g raph ics * Fu ll so ftware con tro l
* 4M hz N ASC O M requ ired * Bu ilt and tested

DUNCAN LANGUAGE FOR NASCOM £12 + VAT

* D uncan is a fast rea l tim e in te rpre ter / con tro l language fo r N ASC O M and
was fea tu red in “PR AC TIC AL C O M PU TIN G ” M a y 81 .

6 LALEHAM AVENUE, MILL HILL, LONDON, NW7 3HL. Tel. 01-959 0106

Page 19

AUTO GRAPHICS SELECTION ON A NASCOM

Most Nascom-2s are equipped with the graphics ROM, and many Nascom-1s

have some form of graphics capability, either by means of the sadly-departed
Econographics kit or a locally-produced or commercial system. Often there is need
to switch between two sets of graphics if you use special characters - for
example, to display the pieces for a chess program such as Sargon.

This can be done by switching the CE lines of the chips on and off with

mechanical keys, or, even worse, by using one line from the PIO as a latch to enable
the required ROM; this ties up the PIO needlessly.

The simple circuit described here uses one of the two spare output lines -

from port 0, the keyboard port. The spare lines are bits 2 and 5 of this port. The
status of the port is reflected at £0C00. By modifying £0C00 to set the selected bit to
1 the corresponding line is set high without affecting the other lines, and it stays that
way until set back to zero by a program command, or until the RESET button is
pressed. lf a program uses the special graphics ROM, you merely have to include
the following machine code routine at the start of the programs :-

3E 04 LD A, 4 ; BIT 2 - USE LD A, 32 FOR BIT 5
32 00 0C LD (£0C00), A ; CHANGE TO 2ND GRAPHICS ROM

and at the end of the programs:-

AF XOR A ; SET A TO ZERO
32 00 0C LD (£0C00), A ; RESTORE STANDARD GRAPHICS

CONSTRUCTION

 Make up a "piggy-back" board, using a small piece of Veroboard or a

small PCB, with one 24-pin wirewrap socket, one normal 24-pin socket, and one 14-
pin socket. Cut pin 18 off the wirewrap socket, leaving about 1/4 inch for
wiring. Connect pins 1 — 17 and 19 — 24 -from the wirewrap to the normal 24-pin
socket. The 14 pin socket is wired as shown in figure 1, and the 74LS00 is plugged
in. The standard graphics chip is placed in the normal socket, and the alternative
ROM in the wirewrap socket. The board is then inserted into the socket vacated
by the graphics chip on the main board, using the extended leads of the wirewrap
socket as a plug. Connect a wire from the keyboard socket (pin 13 for bit 2 on a
Nascom 1, pin 8 on a Nascom 2) to the input of the 7400 flip-flop as shown.

 The circuit is shown for 2716-compatible chips, but the principle applies

to almost any ROMs or EPROMs - just be sure that you wire the outputs from the
flip-flops to the correct pin on the I.C.s you use. The 2716 chip can be ‘selected’
by voltages applied to pins 18 and 20. Pin 20 is the chip select line (CS), while pin
18 is Power down/Program line. If EITHER line is taken to +5 volts the data lines of

Page 20

the switch to a high-impedance state. In the case of a 2708, only pin 20 can be used
to select the chip.

The circuit can be used to switch between two sets of graphics held in a single
4K EPROM – a 2532. Only one 24-pin socket is required, and the output from the
flip-flop is again connected to pin 18 of this socket – but in this case this is the top
address line, switching between the two sets of 2K graphics data in the ROM. If the
standard Nascom-2 graphics data is stored in the bottom 2K of the chip, pin 18
should be connected to pin 8 of the 74LS00.

COMPONENTS REQUIRED

 1 wirewrap 24-pin socket
 1 standard 24-pin socket
 1 14-pin socket
 1 10 kohm resistor
 Veroboard

Page 21

10 REM * HANGMAN * (C) D.G.Johnson 1981
20 REM ~~~~~~~~~~
30 REM SET UP M/C CODE AND PUT UP TITLE
40 REM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
42 CLEAR 500:DIM M$(4):Z$=CHR$(0)
44 DATA27085,14336,-13564,6399,18178,10927,-817
9,233
50 DATA 31711, 1080, -53,536,-20665,3370,-5664,0
52 IF PEEK(1)=0 THEN RESTORE 50
60 DOKE 4100,3340:FOR I=3340 to 3354 STEP 2
70 READ J:DOKE I,J:NEXT
80 CLS:F=0:A$= “* HANGMAN *”:FOR I=1 TO 11
90 POKE 3036+I, ASC(MID$(A$,I,1)):NEXT
100 REM SEARCH FULL LIST AND CHOOSE WORD
110 REM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
130 RESTORE 9000:W=-1
140 READ A$:W=W+1:IF A$ <> “.” THEN 140
150 RESTORE 9000
160 I=0 TO INT(RND(1)*W):READ A$:NEXT
162 FOR J=1 TO LEN(Z$)
164 IF I=ASC(MID$(Z$,J,1)) THEN F=1
166 NEXT: IF F THEN F=0:GOTO 150
168 Z$=Z$+CHR$(I)
170 B$= “”:C$= “”: G$= “”: G=0: H=0: L=LEN(A$)
180 FOR I=1 TO L:B$=B$+ “_”:NEXT
190 S=48-2*L:IF S>28 THEN S=28
200 REM START
210 REM ~~~~~
220 X=S:Y=5:GOSUB 900:PRINT “Your guess”
230 X=S:Y=3:GOSUB 900
240 FOR I=1 TO L
250 PRINT MID$(B$,I,1); “ ”;
260 NEXT
270 IF B$<>A$ THEN 350
280 M$(1)=“Well done! You win!”
290 M$(2)=“ ”
292 IF RND(1)>.2 THEN 300
294 M$(1)=“O.K. Smartie! But I”
296 M$(2)=“will still hang you!”
298 H=1:GOSUB1000:H=2:GOSUB1000:H=9:GOSUB1000
300 M$(3)=“If you would like”
310 M$(4)=“another game press y”
312 GOSUB 920
320 C=USR(0):IF C<0 THEN 320
330 IF CHR$(C)=“Y” THEN 80
340 CLS:X=20:Y=7:GOSUB 900
342 PRINT “Goodbye!”:END
350 G=G+1
360 X=S:Y=6:GOSUB 900
362 PRINT “No. ”;G;“ please.”
370 X=27+G:Y=9:GOSUB 900
380 C=USR(0): IF C<0 THEN 350
390 C$=CHR$(C): PRINT C$
400 FOR I=1 TO 4
410 M$(I)=“ ”
420 NEXT
430 GOSUB 920
440 FOR I=1 TO LEN(G$)
450 IF MID$(G$,I,1)=C$ THEN F=1
460 NEXT: IF F THEN F=0:GOTO 680
462 G$=G$+C$

Page 22

470 FOR I=1 TO L
480 IF MID$(A$,I,1)<>C$ THEN 510
490 B$=LEFT$(B$,I-1)+C$+RIGHT$(B$,L-I)
500 F=1
510 NEXT
520 IF F THEN F=0:GOTO 630:REM Good guess
530 M$(1)=“ * WRONG * ”
532 M$(2)=“ ”
534 M$(3)=“ ”
536 M$(4)=“ ”
540 IF G<10ORG=11ORG=12 THEN 562
550 M$(3)=“This looks dangerous”
560 M$(4)=“You’ll be hung soon!”
562 GOSUB 920
570 GOSUB 1000: REM Next step in hanging
580 IF F THEN F=0:GOTO 600: REM If hung
590 GOTO 230: REM Loop back for next guess
600 M$(1)=“You lose! The word”
610 M$(2)=”was “+A$
620 GOTO 300: REM Another game?
630 M$(1)=“ * SUCCESS * ”
640 M$(2)=“ ”
650 M$(3)=“ ”
660 M$(4)=“ ”
662 GOSUB 920
670 GOTO 230: REM Loop back for next guess
680 M$(1)=“You have already made”
690 M$(2)=“that guess. ”
700 M$(3)=“I do not allow such”
710 M$(4)=“duplication. ”
712 GOSUB 920
720 GOTO 570:REM Back to wrong guess loop
900 SCREEN 1,1:PRINT CHR$(23):SCREEN X,Y
910 RETURN
920 FOR I=1 TO 4
930 J=LEN(M$(I))
932 IF J>20 THEN PRINT “Message too long”:STOP
940 IF J<20 THEN M$(I)=M$(I)+“ ”:GOTO 930
950 X=28:Y=11+I:GOSUB 900
960 PRINT M$(I);
970 NEXT
980 RETURN
1000 H=H+1:IF H=10 THEN F=1
1010 IF H>1 THEN 1110
1020 FOR I=1 TO 15:SCREEN 1,I
1030 PRINT CHR$(255);:NEXT
1040 FOR I=2 TO 16:SCREEN I,1
1050 PRINT CHR$(219):NEXT
1060 FOR I=2 TO 16
1070 SET(I,18-I):NEXT
1100 RETURN
1110 IF H>2 THEN 1190
1120 FOR I=12 TO 15
1130 SCREEN 6,I:PRINT CHR$(128);
1140 SCREEN 26,I:PRINT CHR$(128);:NEXT
1150 SCREEN 8,12:FOR I=1 TO 17
1160 PRINT CHR$(129);:NEXT
1170 POKE 2768,255:POKE 2786,255
1180 POKE 2832,133:POKE 2850,132
1182 RETURN
1190 RESTORE 8000

Page 23

1200 FOR I=1 TO 4*H+4
1210 READ J,K:POKE J,K:NEXT
1220 IF F=0 THEN 1400
1230 SCREEN 8,12:PRINT CHR$(23):SCREEN 8,12
1240 PRINT SPC(17)
1320 RESTORE 8000
1330 FOR J=1 TO 44:READ K,L:POKE K,32:NEXT
1340 POKE 2137,148
1350 RESTORE 8000
1360 FOR J=1 TO 44:READ K,L:POKE K+64,L:NEXT
1370 POKE2264,185:POKE2266,185:POKE2329,0
1380 POKE2839,157:POKE2840,157
1390 POKE2842,157:POKE2843,157
1400 RETURN
8000 DATA 2137,153,2136,139,2138,138
8002 DATA 2713,148
8010 DATA 2199,131,2203,130,2263,130
8020 DATA 2267,131,2328,157,2329,086
8030 DATA 2330,157,2198,144,2200,111
8040 DATA 2202,111,2204,145,2265,095
8050 DATA 2327,131,2331,130,2390,131
8060 DATA 2396,130,2453,131,2461,130
8070 DATA 2455,148,2459,148,2460,130
8080 DATA 2454,131,2523,148,2519,148
8090 DATA 2517,079,2525,079,2583,148
8100 DATA 2587,148,2585,148,2647,148
8110 DATA 2649,148,2651,148,2710,144
8120 DATA 2711,147,2715,146
8130 DATA 2716,145,2392,094,2548,094
8140 DATA 2520,094,2586,094
9000 DATA AIREDALE , AUTONOMY , BEFUDDLED
9002 DATA BOARDINGHOUSE , CAMARADERIE, CAMBER
9004 DATA FREQUENCY, PROBATION, KNIGHTHOOD
9010 DATA WATERMELON, BREADFRUIT, SATSUMA
9020 DATA HAMMER, CHISEL, SCREWDRIVER, PLIERS
9030 DATA BRADAWL, PLANE, WORKBENCH
9040 DATA ASPIDISTRA , CLEMATIS, MARIGOLD
9050 DATA NASTURTIUM, NARCISSUS, DAFFODIL
9060 DATA JACKET, TROUSERS, RAINCOAT, SOCKS
9070 DATA CUMMERBUND, CRAVAT, JUMPER, CARDIGAN
9080 DATA TROMBONE, PIANOFORTE, BASSOON, TUBA
9090 DATA CELLO, TRUMPET, CYMBAL, GUITAR
9100 DATA CONSTANTINOPLE , COINCIDENCE
9110 DATA CIRCUMLOCUTION, PARAPSYCHOLOGY
9120 DATA CRUMBLE , CHEQUEBOOK , CASSETTE, ENVELOPE
9130 DATA COMPUTER , ELECTRICITY, CEILING, RADIATOR
9140 DATA PRINTING, SPECIALITY, FLOWERPOT
9150 DATA ESTRANGE, ZEPHYR, ZEALOUS, XYLOPHONE
9160 DATA YASHMAK, WISECRACK , WINDSHIELD, ZIP
9170 DATA WHEREWITHAL, VIBRATION, VESTIBULE
9180 DATA VERMICELLI, TRUCULENT, CHROMATIC
9190 DATA SYNONYM, SYNCHRONIZE, SCYTHE
9200 DATA PIN, SIT, SET, RACKET , RACECOURSE
9210 DATA QUOTATION, QUICKSILVER, QUARTERMASTER
9220 DATA PULP, PUFFBALL, PROXIMITY, PSYCHOTIC
9230 DATA ILLUSTRATION, PRAGMATISM, POSTMAN
9240 DATA POLYGON, ARCHITECTURE, ORTHODOX
9250 DATA ONYX , OMNIBUS , NONCONFORMIST, TRY
9290 DATA MURMUR, MYOPIC , MEADOWSWEET, MAYOR
9999 DATA .

Page 24

Page 25

NAS-SYS MONITORS

by J.Haigh

LOAD L

ln Nas-Sys 1 this command is used to load data from a paper tape reader.
The data must have been stored on the tape in the format used by the standard
Nas-Sys 1 tabulate commands i.e., the address of the first data byte, eight data
bytes, checksum, all represented in hexadecimal and separated by spaces; the
line is terminated by a carriage return. As the tape is read the data is displayed on
the screen; when the end of the line is reached (detected by the carriage return)
the data is read into the workspace by the same routine which reads the arguments
supplied with commands. Thus the loading address is read into ARG1 (£0C0C,
£0C0D), the eight data bytes into ARG2 - ARG9 (£0C0E to £0C1D), and the
checksum into ARG10 (£0C1E, £0C1F). The routine then totals the values stored
in ARG1 - ARG9 and compares the result with the checksum. If the values are
identical the eight data bytes are copied from the workspace to the appropriate
memory location, the cursor is reset to the beginning of the line, and the next block
is read in, overwriting the last line. lf a checksum error is detected, or if invalid
characters are detected by the routine which reads the data into the workspace, the
faulty line is scrolled up the screen and the routine proceeds to the next block.

Data can be written to a paper tape punch in the correct format by routing the

output of the Tabulate command to the serial port by means of the External (X)
command. However, in Nas-Sys 3 the Load command has been dropped; the
address stored in the subroutine table for command L (at £0798) is £0366, the Error
subroutine. Because the Nas-Sys 3 tabulate command is not restricted to the -
format of a Load command it has been made more versatile in the line lengths it can
produce, and also no longer gives a checksum byte.

MODIFY Mxxxx

This permits direct insertion of data into memory from the keyboard. When the

command is entered the address xxxx is displayed, followed by the byte currently
at that address, the cursor is moved left three spaces after the routine which
displays the data byte; since this routine outputs the two digits which represent
this byte in hexadecimal followed by a space, this places the cursor on the first
character of the byte. Data can now be typed in hexadecimal format, successive
bytes being separated by one or more spaces. When the newline key is pressed the
monitor interprets the current line; the first number on the line is taken as the
address at which data storage is to start. If the first group of characters on the line
is not a valid hexadecimal number, that is, does not consist only of the ASCII
characters 0 - 9 and A - F representing a hexadecimal number between 0 and
FFFF the word ‘Error’ is printed, and the routine restarts at the last valid address.

Page 26

If a valid address is obtained subsequent hexadecimal numbers on the line are

entered into memory until the end of the line is reached (detected by means of the
nulls with which the screen margins are filled) or until a non-valid entry is found. lf
all the numbers are valid the modify routine continues on the next line, displaying
the updated address and the byte at that address, when further data can be entered.

Although the data to be entered is in bytes, the routine which evaluates the

successive groups of characters is designed to handle sixteen-bit values, but only
the least significant eight bits are put into memory, thus FA, 1FA and 37FA will all
go into memory as FA. lf the number exceeds FFFF an error message will be
generated and the routine will reset to the address at the start of the line, but
data will have been entered into memory up to and including the first invalid
entry.

lf a character is encountered which does not lie in the ranges 0 - 9 or A - F

the above error process will normally occur, but here are four exceptions to this.
A full stop terminates the Modify command and returns control to the monitor.
An oblique stroke changes the address to be modified to the hexadecimal number
following the stroke; an error message is produced if the characters following the
stroke are not in the ‘hexadecimal’ set, but if no number is entered the address
changes to zero, A colon causes the routine to backstep one address.
Because the Modify routine leaves the current line when it encounters one of
the above three characters, either to return to monitor or to start a new line, you
cannot use more than one character per line; you cannot, for example, backstep
three spaces be entering 0C90 ::: N/L; only the first will be effective and address
0C8F will be displayed.

The fourth ‘special’ character is the comma; this causes the ASCII code of the

following character to be entered into memory. In this case you can enter as many
codes as will fit on the line, and you can mix them freely with the usual
hexadecimal codes. For example

 EF,H,E,L,L,O 00

will be entered as

 EF 48 45 4C 4C 4F 00

Note that you do not need to enter spaces to separate the bytes in addition to a
comma.

NORMAL N

This command resets the addresses of the output and input tables, stored at
£0C73 and £0C75, so that output is routed only to the CRT and input is accepted
only from the keyboard and serial input port. The U command changes these
addresses so that input and output first calls user routines previously specified at
£0C7B and £0C78. Thus once the address of a printer routine, for example, has

Page 27

been stored at £0C78 - £0C79, commands U and N can be used from the keyboard,
and DF 55 and DF 4E can be used within programs, to turn the printer on and off.

OUTPUT 0 xx yy

 This routine sends data yy to port xx. The port number, xx, is placed on the
bottom eight address lines, A0 - A7, and this is decoded to determine which
input/output device is activated. The data to be sent, yy, is placed on the data bus,
and the activated device receives it. The main use of the output command is to
communicate with external devices via the PIO chip, so perhaps a few words on the
operation of this device would not be out of place here.

 The MK3881 PIO chip used on the Nascom is a programmable input/output chip
which the main processor sees as four ports; of these, two ports each provide
eight lines, which can be programmed to be input, output or bidirectional, for external
communication, while the remaining two ports are used to control the operation of
the chip. On the basic Nascom port A is addressed as port 4, and it is controlled by
port 6; port B is addressed as port 5 and its control port is port 7.

 A convenient way to study the operation of the PIO chip is to use the 0 and Q
commands to write to and read from the PIO, while monitoring the state of the lines
with a logic probe, or with the Bits and P.C.s port probe.

PREGS

 In the Nas-Sys 1 monitor command P merely produces an error message; in
Nas-Sys 3 the command prints out the contents of the procesors main registers,
previously stored in the workspace from £0C61 to £0C6C, together with the
current contents of the I, IX and IY registers. Virtually the same code is used to
display the registers in Nas-Sys 1, although the format of the display is slightly
different (see the S command), but it is not written as a subroutine, so it cannot be
accessed from the keyboard or from user programs.

QUERY Q xx

 Q xx obtains data from port xx and displays it on the screen in
hexadecimal format. To be able to obtain data via the PIO chip you will have to
program the chip by writing to the appropriate control port using the 0 command.

READ R xxxx (y)

 The Read command loads data from a cassette tape written in the format used
by the standard Write command. After turning on the tape LED the routine sets
the input/output table addresses to their ‘normal’ values, saving the addresses that
were at £0C73, £0C75 on the stack, so that they can be restored

Page 28

at the end of the Read routine. This means that the Read routine can be called from
any program, even if it uses special tables for input/output routines.

 The routine then scans the keyboard and the serial input to find either the four
consecutive FF’s which mark the start of each block of tape data, or the four
‘escapes’ from the keyboard which will abort the Read routine. When the block
start is found the next four bytes, which indicate the loading address, the block
length and the block number, are loaded into HL and DE. They are then displayed
on the screen by routine 6C, which simultaneously adds the four bytes
together, returning with the value in the C register. The next byte received from
the tape is compared with this checksum in C, and if the values are not identical a
qestion mark is printed on the screen and subsequent data is ignored until the next
‘start of block’ marker is found.

 If the checksum for the block header is correct Nas-Sys 3 checks to see if
an argument has been entered with the Read command. If it has, this argument
is added to the loading address, so that the data can be loaded to a different
address from that specified in the write command. In Nas-Sys 1 this facility is not
available.

 The data is now read from the tape; if the command letter entered is R (i.e., we
are doing a Read) the data is loaded into memory; if not (for example, if we are
using the Verify command) data is not stored. In either case the bytes are
summed into register C as they are received from tape. When a number of bytes
equal to the block length specified in the header has been received, the total in C
is compared with the next byte - the data checksum. If the two are not identical, a
question mark is printed; however, the faulty data bytes or bytes which caused the
checksum error have been loaded into memory.

 lf the checksum test is passed a full stop is printed and the routine then
checks to see if the block just loaded was the last block. If not, the routine looks for
the next ‘start of block’ marker. When the last block is detected the
input/output addresses are reset and the routine terminates by jumping to the
subroutine which flips the tape LED.

 The Read routine has two faults. Firstly, it loads faulty data; if you are trying to
load a tape which is producing a lot of read errors you cannot load a program
correctly by reading the tape repeatedly, even if you have several copies of the
same program on the tape, because blocks which have loaded correctly are
corrupted by faulty reads in subsequent passes. Of course, you can overcome
this by copying the program to a different location and then recopying blocks
which initially read incorrectly as error-free reads are obtained. However, this is a
fiddly task, and in any case you can’t use this method if the program is longer
than half the available memory. A second fault is that blocks can be missed entirely
without an error message being produced if one of the FF’s in the ‘start of block’
marker is misread.

 In order to overcome these faults I use a slightly different Read routine,
which puts the tape data into a buffer and only transfers it to the correct memory
location if the checksum tests are passed. But where can you locate the

Page 29

buffer? Wherever you put it, sooner or later you will want to load a program to
that location. The only solution seems to be to use the screen RAM for temporary
storage. The program therefore starts by clearing the screen; as it uses the margins
as well as the ‘visible’ screen RAM, it also clears the screen at the end of the routine
to restore the zeroes which the delineate the margins. A tally is kept on the
screen of blocks which have been read correctly, and when all the blocks have
been obtained the routine stops.

 The revised Read incorporates the ‘load offset’ of Nas-Sys 3. A second
argument can be used to force transfer of data from the buffer to memory, even
when the checksum is wrong. This ensures that if you only have one copy of a
program, and a persistent error on the tape, you don' t loose the whole block.

 Because bad data is not written to memory, it is not necessary to use a separate
verify command. To verify a tape you have just recorded you merely read it back
with the R command - if the recording was faulty it will not corrupt the stored
program. Therefore the routine does not test the value stored at ARGX (£0C2B),
which is how the standard Nas-Sys routine distinguishes between Read and
Verify. Consequently unless you change the address for the V command this will
also read a tape into memory.

EF0C00 READ DEFB £EF £0C 00 ; CLEAR SCREEN
DF5F SCAL ZMFLP ; TURN ON TAPE LED
DF77 SCAL ZNNOM ; RESET OUTPUT TABLE ADDRESS
E5 PUSH HL ; SAVE OLD ADDRESS ON STACK
DF78 SCAL ZNNIM ; RESET INPUT TABLE ADDRESS
E5 PUSH HL ; SAVE OLD ADDRESS ON STACK
0604 R1 LD B, 4 ; LOOK FOR 4 CHARS.
CF R2 RST RIN ; GET CHARACTER
3C JR NZ, R1;T44; IF NOT, KEEP LOOKING
10FA DJNZ R2 ; HAVE WE GOT 4 YET?
CF RST RIN ; NOW GET HEADER BYTES
6F LD L, A ; FIRST BYTE INTO L REG.
CF RST RIN ; SECOND BYTE
67 LD H, A ; INTO L REGISTER
CF RST RIN ; THIRD BYTE
5F LD E, A ; INTO E REGISTER
CF RST RIN ; FOURTH BYTE
57 LD D, A ; INTO D REGISTER
EF1B00 DEFB £EF £1B 00 ; PUT CURSOR BACK TO START
4F LD C, A ; SET C TO ZERO
DF6C SCAL ZTX1 ; PRINT HL, DE: GET CHECKSUM
CF RST RIN ; GET NEXT BYTE
B9 CP C ; COMPARE WITH CHECKSUM
20E6 JR NZ, R1 ; IF WRONG, START AGAIN
48 LD C, B ; SET C TO ZERO
43 LD B, E ; PUT BLOCK LENGTH INTO B
E5 PUSH HL ; SAVE HL
21000A LD HL, £0A00 ; SET HL TO BUFFER START
CF R3 RST RIN ; GET DATA BYTES
77 LD (HL) A ; PUT INTO BUFFER
23 INC HL ; INCREMENT BUFFER ADDRESS
81 ADD A, C ; CHECKSUM CALCULATION
4F LD C, A ; SAVE IN C

Page 30

10F9 DJNZ R3 ; KEEP GOING TO END OF BLOCK
CF RST RIN ; GET NEXT BYTE
B9 CP C ; IS CHECKSUM CORRECT?
E1 POP HL ; RECOVER HL
3A0B0C LD A (£0C0B) ; LOAD NUMBER OF ARGUMENTS
2804 JR Z, R4 ; IF CHECKSUM O.K., JUMP
FE02 CP 2 ; SECOND ARGUMENT ENTERED?
20CD JR NZ, R1 ; IF NOT, DON’T COPY
4B R4 LD C, E ; PUT BLOCK LENGTH INTO C
0D DEC C ; IF C = 0 THE B MUST BE SET
03 INC BC ; TO 1 FOR COPY ROUTINE
A7 AND A ; ANY ARGUMENTS TO COMMAND?
7A LD A, D ; SAVE BLOCK NUMBER IN A
2805 JR Z, R5 ; NO ARGS., SKIP OFFSET
ED5B0C0C LD DE (£0C0C) ; GET FIRST ARGUMENT
19 ADD HL, DE ; ADD OFFSET TO HL
11000A R5 LD DE, £0A00 ; SET DE TO BUFFER
EB EX DE, HL ; EXCHANGE REGISTERS AND COPY
EDB0 LDIR ; FROM SCREEN TO LOAD ADDRESS
6F LD L, A ; RECOVER BLOCK NO. FROM A
2609 LD H, 9 ; POSITION FOR BLOCK TALLY
74 LD (HL), H ; MARK POSITION
68 LD L, B ; SET L TO ZERO
7C LD A, H ; PUT TALLY CHARACTER IN A
BE R6 CP (HL) ; IS TALLY CORRECT?
23 INC HL ; SCAN TALLY
2002 JR NZ, R7 ; IF NOT, SKIP
10FA DJNZ R6 ; CHECK ALL 256
BE R7 CP (HL) ; NOW CHECK IF END OF TALLIES
23 INC HL ; KEEP SCANNING
28AB JR Z, R1 ; IF NOT END, KEEP READING
10FA DJNZ R7 ; SCAN ALL 256
E1 POP HL ; RECOVER ORIGINAL INPUT
TABLE
22750C LD (£0C75), HL ; RESTORE AT £0C75
EF0C00 DEFB £EF £0C 00 ; CLEAR SCREEN
DF5F SCAL ZMFLP ; TURN OFF TAPE LED
C3 3C 07 JP £073C ; RESTORE OUTPUT TABLE

 No assembly addresses are given in the above listing, because the program is
essentially relocatable. It will fit in the space used by the standard read routine in
either Nas-Sys 1 (£065E to £06CE) or Nas-Sys 3 (£065E to £06CB). The jump
address with which the program ends should be £0741 for Nas-Sys 1 and £073C for
Nas-Sys 3.

* - * - * - * - * - * - * - * - *

Page 31

NEWS FROM THE CLUBS

First a small success - as a result of a letter in the first issue of Micropower a

new User Group has been formed the Nascom - Thames Valley User Group.
Regular meetings in the Slough/Staines/Windsor area are planned, and the group
hope to publish a newsletter. Further details can be obtained by contacting, after
7.30 p.m., Pat Dubock, STAINES 50341, Mike Rothery, WINDSOR 56106, or Ken
Ford, STAINES 59662.

 The Computer section of the Cornish Radio Amateur Club meets on the
third Monday of each month in the S.W.E.B. Social Club, Pool, Redruth. The
average attendance is 20 - 30, with a Nascom contingent of 10 - 15. The November
meeting will present "Flowcharting"; in December the topic will be "Machine Code
Continued " .

 York Computer Club meets every Monday at the Holgate W.M.C., New
Lane, Acomb (Near the Carriage Works). Any new Nascom-owning members
would be very welcome, as the Nascom users are outnumbered by owners of
plastic boxes from Japan, U.S.A., and Cambridge. Ring Rupert Brown on York
(0904) 792023, evenings only, or drop in to the Club (bar prices are well subsidised!).

 The Merseyside Nascom Group still meets on the first WEDNESDAY of
each month, in spite of a note to the contrary in one of the glossies. The next
meeting will be the Christmas Beanfeast, and it is hoped that representatives from
Lucas will be present. Meetings are held in the Mona pub, near Pierhead.

MICRO=M ARKET
Small non-commercial advertisements, £2 per ad.

FOR SALE RAM A card with 8K; £45 o.n.o. RAM B card with 16K; £75 o.n.o. Both
in full working order.
C. Bowden, Tel. 0209 860 480 evenings.

FOR SALE NASCOM IMP PRINTER, ANY SENSIBLE OFFER. NASCOM VERO
FRAME, £12. NASCOM KEYBOARD COVER, £2.
Malcolm Connah, Tel. 01-500-1000, Ext. 109, Office hours.

FOR SALE NASCOM 1 plus buffer board, £95. NAS-SYS 3, £9. ZEAP on
EPROMS, £25 (I’m buying a NASCOM 2).
Paul Thompson Tel. 041 339 8855 ext. 7120 (days)
 041 332 3841 (evenings)

LICON SW ITCHES with blank caps to update Nascom 1
keyboard, £2.15 each, or £19.50 for 10 (including V.A.T.). Please add 35p P&P
per order. See Micropower, Issue 2 for connections.

CHIATRONIX LTD., 22, St. Michaels Avenue, Houghton Regis, Dunstable,
Beds., LU5 5DN. Tel. 0582 61697.

Page 32

 NASCOM
 1 & 2
Nasprint 80

Nasprint 80 is a 2K program which greatly extends and
simplifies the operation of Nas-Pen. New functions
supp lied by Nasprint 80 includes:

Pagination
Output a page number of each page
Output a title on each page
Centre title
Text formatting with embedded control codes. e.g.
Change line length; change line spacing; change
margins; centre li ne between margins; new page; output
control codes to printer.

The program contains a parallel printer routine for a
Centronics type interface, specifically designed for the
Epsom MX-80, but the program can be used with any
printer, parallel or serial, as the output is routed through
an address in RAM.

The program also facilitates the operation of a printer
with Zeap, Nas-Dis, De-bug , Nas-Sys & ROM Basic; the
software/firmware being u sed is selected fro a menu and
Nasprint 80 then changes the necessary addresses to
produ ce a hard copy output.

The program is supplied in 2x2708’s for fitt ing 2716’s in
the RAM A card. £14.95

New Fase (16K/MC/G)

New version of the space invaders type with each new
fleet of invaders having a different shape & kind o f
motion.Missiles fired at you come straight down or
diagon all y left to right & vice versa.

Destroy one ‘ fase’ & move onto the next. The fuel level is
shown graphicall y and you can refuel i f you ob literate
four fleets. Your score is shown at the end of a game and
the top ten scorers are ranked. Once again the difficulty
level has been set very high. £7.95

Starship Command (16K/B/G)

The ‘ real-time’ Space Adventure for ‘ thinking’
campaigners!

You command the sole fighting ship of a small league of
planets who are pledged to resist the opp ress ion o f the
powerful Terran Federation.

The 3-dimensional planetary system is divided into 729
sectors (9x9x9), your viewscreen revealing neighbou ring
sectors 5 wide by 3 high b y 3 deep. It can be rotated to
look up & down as well as N,S,E & W.

You will encounter friendly, neutral & hostil e planets and,
of course, enemy interceptors. Your long term objective
is to raise the morale of the system’s inhabitants so as to
bring forth a spon taneous rebell ion against the
Federation. This can be achieved progressively by
winning in combat and converting n eutral planets. The
oppo site occurs if you flee from a fight, upset neutral
planets or just skulk!

Machine-code sub-routines ensure the clashes with the
enemy are exciting. There are six levels of skill and many
other features. Full i nstructions are given in a separate
program. £9.95

Moon Raider (MC/G)

The ‘Scramble’ game you h ave been waiting for!! Blast
the asteroids, enemy missiles & ramships out of the sky
as you sk im over the moun tains on the moon’s surface.
Bomb the fuel dumps and enemy defences. Higher points
scored for hits closer to the groun d. Maximise your total
score on restricted supplies of fuel. If you survive the first
part of the game you enter the ‘ tunn el’, wi th rocky
projections above & below you! Four sk ill levels,
excellent graphics & excrutiating sound via the keyboard
port. £8.95

*** NASCOM 1 – Cott is Blandford cassette
 interface for N2 format, reliabili ty & fast load £14.90
- 8K RAM required unless otherwise stated
- Please state if Nascom TAPE Basic required.
ALL PROGRAMS SUPPLIED ON CASSETTE IN
CUTS/KANSAS CITY FORMAT

Please add 55p/order P & P + VAT @ 15%.
Large (15½p) Sae for FULL CATALOGUE.

PROGRAM POWER
5, Wensley Road
Leeds LS7 2LX. +

