
+

 M I C R O P O W E R VOLUME 1, NUMBER 4

 A MAGAZINE FOR NASCOM USERS

 � �

 December, 1981 95 p

 NASCOM
 1 & 2
Invasion Earth (MC/G)
 (wi th incredible sound effects)

Our fast MC code SPACE INVADERS now has sound
effects which reall y show what can be achieved with a
programmable sound chip. The aliens fire six different
missile types – intelli gent homing, angled, direct, multiple
warhead, exploding and radio-jamming.
Other features are:- choice of 10 speeds and 4 levels of
difficulty; replace barriers if desired and advancing
attackers as eac h wave is destroyed. More addictive than
‘pot’ this game may ruin your life! £10.95
N.B. If you h ave an earlier version of the game, we wi ll
upd ate it for £3 – just return your original cassette.
SPECIAL OFFER – Deduct £5 if you o rder the Chip, Sound
Board, Demo Program & Invasion Earth together.

Jailbreak in Space (16K/MC/G)

In this exc iting arcade game(similar to Cosmic Guerrilla)
you d efend a top security jail , holding 3 alien prisoners,
against the onslaught of enemy space ships. They try to
dismantle your jail ‘ brick-by-brick ’ attacking from both
sides. Increasing points are awarded for aliens, brick-
carrying & prisoner-freeing aliens respectively. The level
of difficulty is extremely high, so do n ot buy this one
unless you are an experienced ‘arcadian’. High-score &
initials of high-scorer displayed. £8.95

Graphic Golf (16K/B/G)

Excellent us of Nascom graphics enhance this well
written golf program. Play the full 18 hole course, but
steer clear of the bun kers, trees and spectators. Penalty
points are incurred for hitting the ball out of boun ds.
Random generation of wind speed & direction brings
added variety. Select the right club (choice of 9 + driver)
and also the direction of your shot and the force of your
swing. Once on the green the screen is re-drawn to show
the hole, flag and p utting distance. Beat the PAR 72 £7.95

AY-3-8910 Programmable Sound Chip

YES – This IS the amazingly powerful “ Clang, Bang, Zap,
Tweet” sound & music generator, with three channels
which can be independently programmed for sound
output and amplitude. In addition it has an ‘envelope
controlled’ noise generator, ideal for creating explosions
and firing sound s. £6.45

Sound Chip Data Manual (60 pages)

This contains a full description of the architecture &
operation of the chip, detailed advice on the interfacing to
various microprocess ors, and comprehensive
explanations on the generation o f music and sound
effects. £2.25 (no vat)

Sound Chip Interfacing Board

The board has been designed to interface between the
Parallel Input/Output Port (PIO) of the Nascom and the
sound chip. It is supplied ready-built and just plugs
straight onto your PIO connector. Nascom 1 connectors
available on request. Sound g eneration is illustrated in
machine code & Basic, (chip not included) £13.50

Sound Chip Demo Program (MC)

A brief summary of the main registers is given, together
with a description of their functions. Thereafter, two
separate modes may be selected. Direct mode allows
values to be entered into the chip registers v ia the
keyboard, making experimentation simple, thus leading to
a rapid appreciation of the chip’s potential. The second
mode turns the keyboard into a 7 octave ‘piano’,
displaying the notes being played as well as the values
of the registers. £5.95

*** NASCOM 1 – Cott is Blandford cassette
 interface for N2 format, reliabili ty & fast load £14.90
- 8K RAM required unless otherwise stated
- Please state if Nascom TAPE Basic required.
ALL PROGRAMS SUPPLIED ON CASSETTE IN
CUTS/KANSAS CITY FORMAT

Please add 55p/order P & P + VAT @ 15%.
Large (15½p) Sae for FULL CATALOGUE.

PROGRAM POWER
5, Wensley Road
Leeds LS7 2LX.

MICROPOW ER Volume 1, No. 4 December, 1981

CONTENTS

Editorial Page 1

Eprom Programmer / Reader / Checker Page 2

The Z800 Page 8

Xtal Basic Extra Page 11

Letters Page 17

Hands on . . . Part the Third Page 18

The Magic Hexagon Page 23

Nas-Sys Monitors Page 27

Towers of Hanoi Page 31

EDITORIAL

We must first apologise for the late appearance of this, the December issue of

Micropower. New Year’s Resolution – we must do better in 1982.

On the basis of the response from readers, and the amount of material we are

being sent by contributors, we have decided to produce six issues in 1982 at
approximately two-month intervals, the first issue to appear towards the end of
February.

The price of Micropower will remain the sa me – 95p per issue, so a year’s

subscription will be £5.70. This includes postage and packing, but only for the British
Isles. Please 65p per copy for Europe, £1.05 per copy for printed paper air mail to the
rest of the world.

As always, we are still looking for contributors. Write about your pet projects,

hardware or software – what they do, how they do it, how you would like to develop
them in future.

There was a time in 1981 when it looked as though Nascom would disappear

without trace. Now, with Lucas at the helm, 1982 should be the year when the
Nascom system at last ‘takes of’ and justifies the faith that its many supporters have
had in it.

FOR SALE Two 64K Ram boards Interface to Nascom Bus
Use 4116 (4 Mhz) with self refresh capability £65 each.
Telephone Brian, Monday – Thursday evenings, 0475 24904

Page 1

EPROM PROGRAMMER / CHECKER / READER

by C. Bowden

The equipment described in this article is the third EPROM programmer that the

author has built in the last couple of years. The first version, which was built about
two years ago, worked via the serial interface and was very slow and unreliable. It
took over an hour to ‘burn’ a 2708.

Version number 2, built about a year ago, worked through the Nascom PIO and

was much faster, taking only a couple of minutes for the same task. It was also much
more reliable, and the software included routines to copy EPROMS to RAM, and to
verify them against RAM. One disadvantage, however, was that it would only
program 2708 EPROMS, although the basic hardware was suitable for extension to
2K EPROMS, such as the 2716/2516.

The third version, described in this article will work with 2708, 2516 and 2716

EPROMS, and some of the routines can also be used with mask-programmed ROMS
which are pin-compatible with 2716s, such as the ROMS used in the NASCOM 2 for
Nas-Sys and Graphics. Two extra routines have been added, and the unit will now
carry out the following tasks:-

2708/2516/2716 EPROMs

 1) Check whether the EPROM is erased, and display a suitable message.
2) Program the EPROM from data in RAM, and display a progress count.

2708/2516/2716 EPROMs, and pin compatible ROMS

 3) Transfer the contents of the chip into RAM at a chosen address.

4) Compare the contents of the chip against RAM, and display errors.
5) Dump a copy of the chip contents to a printer on the serial port,

displaying memory locations and hex and ASCII data.

The program occupies about 2K bytes of memory space. No attempt has been

made to reduce this for the following reasons:-

 1) The program has been written so as to minimise the chance of
operator error, by offering single-key choices backed up by verification
of entry wherever possible. This requires a large number of messages
and prompts, which take up a lot of memory space.

2) Because of this, it would have been difficult to keep the size of the
program below 1K bytes; 2K seemed to be suitable, as the program
would then fit into a ‘self-programmed’ EPROM.

Page 2

 3) The program would not normally reside in memory (unless, as in the

 author’s case, on an EPROM board that can be paged in or out of the
 system, see INMC80 No. 4). Normally, it would be loaded from disc or
 tape.

The listing was written using the CP/M Editor ‘ED’ for assembly by Macro 80,
because program development is easier with these more powerful utilities. It should
be easy to alter it to suit ZEAP. The main changes required are:-

Leave out the colons after labels;
Remove the assembler directives END,.Z80,ASEG,.PHASE and .DEPHASE;
Substitute a suitable memory ORG address;
Substitute “ in place of ‘ in compare instructions.

If you have ‘ED’ or any other editor with MACRO find/substitute commands it

should be very easy to make the changes needed to the Source code. Otherwise,
there should be few problems. The PIO ports are defined for the I/O board (using
ports 14 and 15). These can be changed in the equates section of the listing.

SOFTWARE OPERATION

The program is written so that the user is reminded, by means of messages on
the screen, to take suitable precautions when handling chips. User input is in the
form of single key replies to prompts on the screen. All entries are echoed on the
screen and the user may change them. The various routines are listed in the form of
a ‘menu’.

When the program is executed, the title is placed on the left side of the top

(unscrolled) line of the screen, and warnings about chip handling appear for a couple
of seconds. The program then prompts the operator to press key ‘C’ when he is
ready to continue. Whilst waiting for a response, the program display a message
warning the operator to switch off when inserting or removing chips. When key C is
pressed a prompt asks for the type of EPROM to be handled – key A should be
pressed for 2708s, key B for 2516/2716s.

When this entry has been made, the user is asked to verify it by a ‘Y’ or ‘N’

response. If ‘N’ is entered the program repeats the request for the EPROM type,
while on receipt of ‘Y’ the type selected is displayed on the right hand side of the top
line, and remains there until changed. In addition the value stored in the program
workspace at the location ROMFLG is set to 04H for 1K EPROMs, or 08H for 2K
EPROMs.

The ‘Menu’ for the five routines is then displayed, together with a list of the keys

needed to access the routines. Once a routine has been selected and verified, it is

Page 3

then immediately accessed as described below. At the end of each routine a suitable
message is output, either confirming the completion, or indicating that errors have
occurred. This message is held on the screen for approximately 2 seconds, and then
the program jumps back to the label ‘RESTRT’, and the user is asked if he wants to
carry on with the same type of chip. A response of ‘Y’ will take him back to the menu,
while ‘N’ will return him to the key ‘C’/warning mesage routine, followed by chip type
selection.

THE ROUTINES

E – CHECK FOR ERASED EPROM

This routine needs no further information from the user and it immediately reads

each byte in succession from the chip, checking that its value is 0FFH. If all the bytes
are FF, the routine ends with a message saying that the EPROM is erased. If any
byte is detected which is not FF, the routine terminates immediately and the
message “EPROM” not fully erased” appears. The operation of the routine is very
rapid.

The remaining four routines all need a four digit hexadecimal address in order

to continue. A subroutine is called when the program enters the chosen routine; this
subroutine prompts the operator to enter the required address. It checks the data as
it is entered, and only allows valid hexadecimal digits to be stored.

If an error is made during the entry of the four digits, the user must continue

until four entries have been made. He will then be given a chance to change the
whole entry. On exit from the subroutine, the addres will be in the HL register pair,
and also in the workspace at label STOR1.

The address entered will be used as the start of a 1K or 2K block of RAM in the

computers memory by the program, transfer and compare routines; for the ‘Dump’
routine, the normal operating address of the chip should be entered. This address will
be printed at the start of each line of data, incrementing by 10H for each line.

P – PROGRAM EPROM FROM DATA IN RAM

After obtaining the address to be used as the start of the data to be put in

EPROM and setting up the counters, etc., the routine tests the value at ROMFLG to
decide whether 1K or 2K chips are to be programmed. Depending on this value, it
selects the appropriate programming routine; two separate routines are required
because the programming requirements of the two types of chip are very different.
2708s need each address to be cycled a large number of times (100 – 1000) with a
programming pulse of between .1 and 1 millisecond., to produce a total ‘burn’ time of
100 milliseconds per address. 2516/2716 chips need only one cycle, with a

Page 4

programming pulse of 50 milliseconds per address. It takes about 2 minutes to
program either type.

While the programming is going on, a display is put on the screen to show that
something is happening. With 2708s the number of programming cycles left is
displayed (in hexadecimal). With 2K EPROMS a count is output every 100H (256
decimal), beginning with 00 at the beginning of the first block.

Note that ths software is written for a 4 Mhz clock and NO WAIT STATES. If

either are changed, then the value 0E0H in the B register (for the 2708 routine), or
1D00H in BC (2516/2716 routine) will have to be changed. Short delays are written
into the software to allow time for line stabilisation or chip ‘set-up’.

C – COMPARE CONTENTS OF EPROM WITH RAM

This routine will compare the EPROM and RAM, byte by byte. It may be used

to check for correct programming, or to find small discrepancies between EPROMs
and RAM that should be identical. If a mismatch is found the address of the byte in
RAM that did not correspond with the ‘EPROM’ will be printed on the screen, and a
message that the data did not match will be printed at the end of the routine. If the
EPROM and RAM match the routine will end with a suitable message.

T – TRANSFER DAT FROM EPROM TO RAM

This routine will quickly copy the contents of the chip into RAM, starting at the

RAM address entered. This data may then be disassembled, modified, relocated, or
used to make a back-up copy as desired. On completion of the routine a message is
displayed, as there is no other indication that the routine has run its course.

D – DUMP TO PRINTER

This routine was written with the ‘ IMP’ printer in mind, and so it interfaces

through the serial port. A handshake routine is included (using bit 7 of the keyboard
port), to avoid having to set up user routines. The program starts by requesting the
normal address of the EPROM. It prints this address, followed by sixteen bytes of
data and the ASCII characters correponding to this data (for characters 20H to 7BH;
all other characters are printed as ‘ .’). A new line is started, and the address is
updated, and the routine is continued until all the data in the EPROM has been
printed out.

The routine works by reading sixteen bytes from the chip into a workspace

buffer (label LINBUF in the source code, pointed to by the IY register). These bytes
are then printed, another sixteen bytes read in, and so on.

Page 5

THE HARDWARE

The author’s unit is built in two parts. A diecast box, 4.5” x 6.5” x 2”, is used as a

base and contains a small power supply that provides +5, +12, -5, -12 and +26 volts
(the -12 volt line is not needed by the programmer, but it is easy to include and
makes the power supply useful for other circuits). The electronics are built on a piece
of 0.1” matrix Veroboard, that sits on top of the box. Power could be taken from the
computer supply, as only a few milliamps are needed, but a 26 volt generator would
still be required. By providing a completely separate power suply the unit can be
made much more portable.

Two EPROM sockets are fitted to the unit; one is for 1K chips, the other for 2K

chips. To avoid the possibility of damage the sockets should be CLEARLY marked
with the chip type, and pin 1 should also be marked. The use of zero insertion force
sockets is strongly recommended, to prevent wear and tear on the chips and
sockets. Only one socket should be used at a time.

The Z80 PIO has a low drive capability, and buffering is desirable. Pin 20 of the

2708 (WE) rises to 12 volts during programming. Since this is well above TTL levels,
the use of a high voltage rated buffer is necessary. The 7406 is suitable, as it is rated
at 30 volts. Double buffering is used in the unit as this provides the required number
of signal inversions, low loading of the PIO, and the necessary voltage isolation.
Buffer IC1 is a CMOS 4049 hex inverter chip; IC2 is a 7406, backed by a couple of
BC108/9 transistors to make up the required number of inverters.

IC3 is a CMOS 4040 12 stage binary counter, capable of counting from 0000H

to 0FFFH (0 to 4095 decimal). In this unit a count of 03FFH is used for 2708s and a
count to 07FFH for 2K chips. The spare output might be used in the future to extend
the unit to 4K chips. Port A of the PIO is used for data, and port B for control.
Normally port A is set to input and port B to output, but during programming both
ports are output.

PORT B BIT ASSIGNMENT

BIT 0 Controls the 26 volt programming pulse through the high speed

 switch formed by TR1, TR2 and TR3.

BIT 1 Controls the WE/CS signal on pin 20 of the 2708 socket, and the

 OE signal on pin 20 of the 2516/2716 socket.

BIT 2 A pulse from this bit is used to increment the address counter.

BIT 3 A pulse from this bit is used to reset the address counter at the start

 and end of each routine.

BIT 4 Used to switch the PGM input on pin 18 of the 2516/2716 socket.

Page 6

BIT 5 When this bit is 0, it holds pin 20 of the 2708 at 5 volts, during
 normal READ operations. When set to 1, it allows pin 20 to pull up
 to 12 volts, for ‘Write Enable’.

The power supply is fitted with a multipole switch on the D.C. outputs. This

should be fited in ALL cases, and should be used to switch off the programmer when
changing chips. If the programmer is turned on/off with a mains switch when a chip is
being inserted or removed, the chip may be damaged, because the low voltage
supplies decay more quickly than the 26 volt line; this can result in a 26 volt pulse
being written into address 0 of the EPROM, possibly PERMANENTLY!

COMPONENTS FOR THE PROGRAMER.

 Transistors

 TR1, 2 BC 548
 TR3 BC558
 TR4, 5 BC109
Diodes
 4 x 1N4148
Integrated Circuits
 IC1 CMOS 4049
 IC2 TTL 7406
 IC3 CMOS 4040

Resistors
 4 x 10 Kohm
 1 x 33 Kohm
 1 x 180 Ohm
 1 x 47 Ohm
 1 x 1 Kohm
 6 x 4.7 Kohm
Capacitors

� � � � � � � � �

 � � � 	
 � �

COMPONENTS FOR POWER SUPPLY

 Transformer

 15 – 0 – 15 volts, 6VA
Diodes
 D1, 2 1N4002 or similar
 Z1 26V, 1 watt Zener
Resistors
 2 x 4.7 Kohm
 1 x 1 Kohm
 1 x 10 Kohm
 1 x 15 Kohm
Single pole mains switch
Five pole low voltage switch

Rectifier
 1 A Bridge, 50 PIV
Voltage Regulators
 78L12 (+12V, 100 mA)
 78L05 (+5V, 100mA)
 79L12 (-12V, 100mA)
 79L05 (-5V, 100mA)
Capacitors
 4 x 0.47 � �
 � � � � �
 � � � � � � � � � � � �
 � � � ! " # $ % & '

The full circuit diagrams of the programmer and power supply, a Veroboard

layout of the programmer, and the software for its operation will be given in the next
issue of the magazine.

* * * * * * * * * * * * * *

Page 7

THE ZILOG Z800

by Rory O’Farrell

Zilog have anounced the Z800, a replacement upgrade for the Z80.

Information on the new processor is scant, but in a brief press release Zilog claim
the following:-

Three to five times the performance of the Z80A with comparable speed
memory,
On chip internal clock; 12 18 & 25 Mhz,
Expanded instruction set that is binary compatible with all Z80 instructions,
Multiply and divide instructions,
On chip memory management and protection unit,
Direct addressing of half a megabyte of memory (524288 bytes),
Programmable bus timing (wait states selectable in software),
Multiplexed address/data bus (i.e., address and dasta lines share the same
pins) with Z80 bus signals for easy interfacing to Z80 family chips.

It is claimed that the instruction set is more powerful than that of the Z80, and
that it incorporates many of the features of the Z8000. The chip can be used with
any of the Z80 or Z8 peripheral chips.

The register structure seems to be very close to that of the Z80. There are two

sets of registers, each comprising an accumulator, a flag register, and six general
purpose registers. Transfer of data between these duplicate sets is accomplished by
the use of ‘exchange’ instructions. Zilog claim that the result is a faster response to
interrupts, and easy implementation of context switching for multi-user processing.
In addition there are the interrupt and refresh registers, and two 16 bit index
registers. Two implied stack pointers are available: the system stack pointer (which
we know and love?) and a user stack pointer. The CPU mode of operation will
determine which of these pointers is used. The user stack pointer will facilitate the
writing of very efficient high-level language compilers and interpreters.

The allowable data types are bits, BCD digits (nibbles, 4 bits), bytes (8 bits),

words (16 bits), and byte strings up to 64 Kbytes long. The standard Z80 instruction
set is extended with 8 and 16 bit multiply and divide, and the SET and TEST
instruction. In addition, there is a fourth interrupt mode, which provides more
flexibility in handling interrupts and traps. The new CPU has a comprehensive
trapping structure, allowing for single stepping, system calls, and privileged
instruction traps.

The chip offers programmable bus timing. It can insert, under software control,

wait states into both memory and I/O transactions. The on-chip clock can also be
programmed – an example is quoted of running 6 Mhz memory from the internal 12

Page 8

Mhz clock. The clock can be controlled from an external crystal, or from an internal
oscillator, and is available to the rest of the system. Refresh is provided by the chip;
software can select the interval between successive refreshes, or even suspend it
entirely!

The on-chip memory management unit provides for a flexible memory
structure, by allowing dynamic page relocation, as well as write protect features. The
16 address lines output by the CPU are transformed into 19 bit physical addresses.
This large cache of memory will facilitate multiple users (as for example, in schools),
or foreground/background processing (playing Adventure and monitoring the nuclear
power plant at the same time!).

Delivery of the new CPU is not expected until the first quarter of 1983, and a

price has not yet been quoted. It should be stressed that the chip will not be pin-for-
pin compatible with the Z80. however, it should not be impossible to make a very
compact interface board, although until detailed pinouts and bus timings are
published this can only be a dream. If the promise is kept of full software compatibility
with the Z80, and three to five times the throughput with the same speed memory,
then this will be quite some chip!

A /D B O A R D F O R N A S C O M £ 1 35 + V A T

Fast Ana logue to D ig ita l convers ion on the N A SC O M
* 8 B it reso lu tion * Sam p le and ho ld
* 8 inpu t channe ls * O vervo ltage p ro tection
* 30 m icrosecond convers ion * Fu ll flag /in terrupt con tro l
* P ro totyp ing a rea * Bu ilt and tested

EPROM PROGRAM M ER £63 + VAT

* P rogram s 2708 /2716 – 3 ra il * Ze ro inse rtion fo rce socke t
 2508 /2758 – 1 ra il
 2516 /2716 – 1 ra il
 2532 /2732 – 1 ra il * Bu ilt and tested

GRAPHICS BOARD FOR NASCOM £55 + VAT

Ve ry h igh reso lu tion graph ics on your N ASC O M
* 384 x 256 b it m apped d isp lay * G raph ics so ftware supp lied
* M ixed text and g raph ics * Fu ll so ftware con tro l
* 4M hz N ASC O M requ ired * Bu ilt and tested

DUNCAN LANGUAGE FOR NASCOM £12 + VAT

* D U N C AN is a fast rea l tim e in terp rete r / con tro l language for N ASC O M
and was fea tu red in “PR AC TIC AL C O M PU TIN G ” M a y 81 .

6 LALEHAM AVENUE, MILL HILL, LONDON, NW7 3HL. Tel. 01-959 0106

Page 9

Page 10

XTAL BASIC XTRA

by David Elliot

For all you Nascom buffs with Xtal Basic 2.2, here follows a series of articles
which show you how to get the best out of this Basic’s ‘expandability’ – it facility for
the addition of extra machine code routines. By the time you have added a few
custom-built commands, your Microsoft pals will be green with envy. Just to whet
your appetite, here are some of the additional commands used with Xtal Basic on my
own system, which is a 32K Nascom 1 to which I have added 256 programmable
characters (which can be used as high-res graphics):

 DOKE
SWAP
AOFF
SOUND
GXOR

DEEK
SETBIT
SET
TUNE
GOR

RAD
RESBIT
RESET
INIT
SCREEN

DEG
BIT
DRAW
GCLEAR
PON

CLS
AUTO
MOVE
SHOW
POFF

Many of these commands are designed to work with the programmable graphics

board, and make games programming much simpler.

LOADER PROGRAM

The Xtal Basic handbook explains how to insert the additional command name
into the command table, and the vector to the machine code routine into the vector
table, but just to make things even easier, here is a machine code loader program
which executes from 4E00H.

Xtal Basic is first read in, and then the loader program itself is loaded and

executed. It first asks for the name of the command; if no name is entered the loader
accepts the following machine code as a subroutine, rather than as an extra
command. When a name is entered it is it is automatically added to the end of the
command table and the vector is set to beginning of the machine code routine.

When the machine code is being entered the loader automatically prints the

address at the beginning of the line and then waits for the code to be typed in. To
allow for code relocation, the loader has a command ‘+’, which takes the following
16-bit number and adds the start of the command to it before placing it in memory.

There is limited amount of error-checking to test the numbers entered for the

correct number of digits. If an error is detected, the cursor is positioned at the error,
which can then be changed, using the Nas-Sys screen editing.

Page 11

When the machine code routine is complete a full stop is entered. The loader
then asks if another command is to be entered. If the response is ‘Y’, the program
continues, adding the next command immediately after the last. Otherwise it changes
the Basic Text Pointer (at 1283H) to the start of the next 256-byte page. In Xtal Basic
the text must start on a page boundary.

 0090

0100
0110
0120
0130

;
; ***
; ** COMMAND LOADER BY D. ELLIOT **
; ***
;

4E00
4E00
4E01

EF
0C

0140
0150
0160

LOADR

ORG £4E00
RST 40
DEFB 12

; EXECUTION ADDRESS
; PRINT STRING
; CLEAR STRING

4E02 456E7465 0170 DEFM“ENTER COMMAND/FUNCTION NAME”
4E1E
4E20
4E22
4E23
4E25
4E27
4E2A
4E2C
4E2D
4E2F
4E31
4E32
4E34
4E36
4E37
4E39
4E3A
4E3C
4E3D
4E3E
4E3F
4E40
4E42
4E44
4E45
4E47
4E49
4E4A
4E4C
4E4D
4E4E
4E51
4E52
4E56
4E57
4E58
4E59

0D00
DF63
1A
FE20
2832
21800E
0EFF
7E
CB7F
2805
0C
FE80
2803
23
18F3
1A
CBFF
77
23
13
1A
FE20
2803
77
18F6
3680
59
1600
EB
29
11800F
19
ED5B8312
73
23
72
EF

0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540

LOOP

NEXT

ADDNAM

ADD1

ADD80

NCOM

DEFB 13,0
SCAL INLIN
LD A, (DE)
CP "
JR Z,NOTCOM
LD HL, NAMES
LD C,-1
LD A (HL)
BIT 7,A
JR Z,NEXT
INC C
CP £80
JR Z,ADDNAM
INC HL
JR LOOP
LD A (DE)
SET 7,A
LD (HL),A
INC HL
INC DE
LD A,(DE)
CP "
JR Z,ADD80
LD (HL),A
JR ADD1
LD (HL), £80
LD E,C
LD D,0
EX DE,HL
ADD HL,HL
LD DE,VECT
ADD HL,DE
LD DE,(TEXT)
LD (HL),E
INC HL
LD (HL),D
RST 40

CRLF, END OF STRING
; INPUT LINE
; GET 1ST CHARACTER
; NAME ENTERED?
; JUMP IF NOT
; SET POINTER
; RESET COUNTER
; GET NEXT BYTE
; START OF WORD?
; IF NOT, TRY NEXT
; INCREMENT COUNTER
; END OF TABLE?
; ADD TO TABLE
; INCREMENT POINTER
; NEXT CHARACTER
; GET NEXT BYTE
; SET BIT 7
; SAVE 1ST CHAR.
; INCR. POINTERS

; GET CHARACTER
; END OF NAME?
; IF SO, INSERT £80
; SAVE CHARACTER
; CONTINUE
; ADD DELIMITER
; CALCULATE ADDRESS
; OF VECTOR

; START OF TABLE

; SET VECTOR
; AT END OF BASIC

; PRINT STRING

4E5A 456E7465 0550 DEFM /ENTER MACHINE CODE./
4E6D 0D00 0560 DEFB 13,0 ; CRLF, STRING END

Page 12

4E6F
4E73
4E75
4E76
4E7A
4E7B
4E7D
4E7F
4E81
4E84
4E88
4E8A
4E8B
4E8D
4E8F
4E90
4E92
4E94
4E96
4E97
4E99
4E9B

FD2A8312
FDE5
E1
ED4B8312
B7
ED42
DF66
DF63
CDBB4E
FD2A8312
FD09
1A
FE20
2003
13
18F8
FE2E
284D
B7
28DA
FE2B
2014

0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780

IN3

IN0

IN1

COMND

LD IY, (TEXT)
PUSH IY
POP HL
LD BC, (TEXT)
OR A
SBC HL, BC
SCAL TBCD3
SCAL INLIN
CALL NUM16
LD IY, (TEXT)
ADDIY, BC
LD A, (DE)
CP "
JR NZ COMND
INC DE
JR IN1
CP ".
JR Z, END
OR A
JR Z, IN3
CP "+
JR NZ, IN2

; ZERO POINTER
; CALCULATE ADDRESS

; BASE ADDRESS
; RESET CARRY FLAG
; SUB. BASE ADD.
; PRINT ADDRESS
; INPUT LINE
; GET ADD. IN BC
; CALCULATE PROPER
;ADDRESS
; GET CHARACTER
; A SPACE?
; IF NOT, JUMP
; TRY NEXT
; CHARACTER
; END OF PROGRAM

; END OF LINE?
; GET NEXT LINE
; RELATIVE NUMBER?
; IF NOT, 8 BIT NO.

 0785
0790
0800
0805

;
; IF YES, THEN INPUT A 16 BIT NUMBER
; AND ADD OFFSET TO PROPER ADDRESS
;

4E9D
4EA0
4EA1
4EA4
4EA5
4ECC
4ECD
4ECF
4ED1
4ED5
4ED8
4EDA
4EDC
4EDD
4EE1
4EE3

2A8312
13
CDBB4E
09
FD7500
C9
DF64
380C
ED4B210C
3A200C
FE02
2001
C9
ED53290C
189C
EF

0810
0820
0830
0840
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

CHK

NUM8

ERROR

END

LD HL, (TEXT)
INC DE
CALL NUM16
ADD HL, BC
JR NZ, ERROR
RET
SCAL NUM
JR C, ERROR
LD BC (NUMV)
LD A, (NUMN)
CP 2
JR NZ, ERROR
RET
LD (CURSR), DE
JR IN0
RST 40

; GET BASE ADD.
; START OF NUMBER
; OFFSET IN BC
; CALCULATE ADDRESS
; IF NOT, ERROR
; RETURN
; GET 8 BIT NUMBER
; ERROR DETECTED
; GET NUMBER
; CORRECT LENGTH?
; TWO CHARACTERS
; IF NOT, ERROR
; RETURN
; POSITION CURSOR
; RE-INPUT LINE
; PRINT STRING

4EE4 416E6F74 1130 DEFM “ANOTHER COMMAND (Y/N)”
4EFB
4EFD
4EFF
4F01
4F03
4F04
4F08
4F0B
4F0D
4F0F
4F10
4F12
4F13
4F14

1100
DF7B
FE59
2008
F7
FD228312
C3004E
FE4E
20EE
F7
FDE5
E1
7D
B7

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

END0

END1

DEFB CUL, 0
SCAL BLINK
CP "Y
JR NZ, END1
RST CRT
LD (TEXT), IY
JP LOADR
CP "N
JR NZ, END0
RST CRT
PUSH IY
POP HL
LD A, L
OR A

; GET ANSWER
; IS IT ‘YES’

; PRINT IT
; RESET POINTER
; AND CONTINUE
; ANSWER NO?
; INPUT AGAIN
; PRINT N
; TRANSFER TO HL

; IS IT ON A PAGE
; BOUNDARY?

Page 13

4F15
4F17
4F18
4F1A
4F1D

2803
24
2E00
228312
DF5B

1280
1290
1300
1310
1320

OK

JR Z, OK
INC H
LD L,0
LD (TEXT), HL
SCAL MRET

; IF SO, END
; ADD 256 TO END
; ZERO LOW BYTE
; STORE POINTER
; RETURN TO MONITOR

- - - - - - - - - - - - - - - -

The first example of an added command is a routine which provides automatic line

numbering. The listing of this routine is followed by a demonstration of the entry of the
corresponding machine code using the loader program.

3000

 0090
0100
0110
0120
0125
0130
0135
0140
0145

;
; **
; ** AUTO LINE NUMBER BY D. ELLIOT **
; **
;
 ORG £3000
;
; ROUTINES IN CRYSTAL BASIC 2.2
;

3000
3000
3000
3000

2BF5
2781
1761
154C

0150
0160
0170
0180

OVEC
PRTHL
INNUM
TSTCOM

EQU £2BF5
EQU £2781
EQU £1761
EQU £154C

; OUTPUT VECTOR+1
; PRINT HL IN DEC.
; GET NUMBER
; SKIP COMMA

 0185
0190
0200
0210
0215

;
; MODIFIED OUTPUT ROUTINE WHICH CHECKS
; FOR A NEW LINE, AND THEN OUTPUTS THE
; NEXT LINE NUMBER
;

3000
3002
3004
3005
3008
300B
300E
3011
3012
3015
3016
3017
301A
301B
301C
301D
3020
3023
3026
3029

FE5D
2064
F7
222E30
213030
22F52B
2A2A30
EB
2A2C30
D5
E5
CD8127
E1
D1
19
222C30
210030
22F52B
2A2E30
C9

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410

AOUT CP £5D
JR NZ, COUT
RST CRT
LD (BUFFR), HL
LD HL, NOUT
LD (OVEC), HL
LD HL, (INC)
EX DE, HL
LD HL, (LAST)
PUSH DE
PUSH HL
CALL PRTHL
POP HL
POP DE
ADD HL, DE
LD (LAST), HL
LD HL, AOUT
LD (OVEC), HL
LD HL (BUFF)
RET

; NEW LINE?
; IF NOT, PRINT
; PRINT CHARACTER
; SAVE POINTER
; CHANGE OUT. VECTOR

; GET INCREMENT
; INTO DE, AND LAST
; LINE NO. IN HL

; HL TO SCREEN
; AND TO BUFFER

; CALC. NEXT NO.
; AND STORE ITVN
; RESET VECTOR

; RESTORE POINTER
; RETURN

 0415
0420
0425

;
; VARIABLE STORAGE
;

302A 0002 0430 INC DEFS 2 ; INCREMENT

Page 14

302C
302E

0002
0002

0440
0450

LAST
BUFF

DEFS 2
DEFS 2

; LAST NUMBER
; NEXT CHAR. ADD.

 0455
0460
0470
0475

;
; PRINT CHARACTER ON SCREEN AND
; INTO BASIC INPUT BUFFER
;

3030
3031
3034
3035
3036
3039
303A
303B

E5
2A2E30
77
23
222E30
E1
F7
C9

0480
0490
0500
0510
0520
0530
0540
0550

NOUT PUSH HL
LD HL, (BUFF)
LD (HL), A
INC HL
LD (BUFF), HL
POP HL
RST CRT
RET

; GET LAST ADDRESS
; SAVE CHARACTER
; INCREMENT ADDRESS
; SAVE ADDRESS

 0555
0560
0565

;
; AUTO COMMAND
;

303C
303F
3043
3045
3048
304B
304F
3052
3055
3059

110030
ED53F52B
3EC3
32F42B
CD6117
ED532C30
CD4C15
CD6117
ED532A30
C9

0570
0580
0590
0600
0610
0620
0630
0640
0650
0660

AUTO LD DE, AOUT
LD (OVEC), DE
LD A, £C3
LD (OVEC-1),A
CALL INNUM
LD (LAST), DE
CALL TSTCOM
CALL INNUM
LD (INC), DE
RET

; CHANGE VECTOR

; SET UP JUMP

GET START NUMBER

; SKIP COMMA
; GET INCREMENT

 0665
0670
0675

;
; AOFF COMMAND
;

305A
305B
305E
3061
3062
3064
3067

E5
216830
22F52B
E1
3EC3
32F42B
C9

0670
0680
0690
0700
0710
0720
0730

AOFF PUSH HL
LD HL, COUT
LD (OVEC), HL
POP HL
LD A, £C3
LD (OVEC-1),A
RET

; RESTORE OUTPUT
; VECTOR TO NORMAL

; SET UP JUMP

 0735
0740
0745

;
; CRT OUTPUT ROUTINE
;

3068
3069

F7
C9

0750
0760

COUT RST CRT
RET

The AUTO command format is AUTO xxxx, yyyy, where xxxx is the starting line number, and

yyyy is the increment.

The automatic line numbering routines are entered using the loader program as follows:-

ENTER COMMAND/FUNCTION NAME.

ENTER MACHINE CODE

0000 FE 5D 20 64 F7 22 +002E 21 +0030 22 F5 2B 2A +002A
0011 EB 2A +002C D5 E5 CD 81 27 E1 D1 19 22 +002C

Page 15

0020 21 +0000 22 F5 2B 2A +002E C9 FF FF FF FF FF FF
0030 E5 2A +002E 77 23 22 +002E E1 F7 C9 .

ANOTHER COMMAND (Y/N)?

ENTER COMMAND/FUNCTION NAME

AUTO

ENTER MACHINE CODE

0000 11 +FFC4 ED 53 F5 2B 3E C3 32 F4 2B CD 61 17 ED
0010 53 +FFF0 CD 4C 15 CD 61 17 ED 53 +FFEE C9 .

ANOTHER COMMAND (Y/N)?

ENTER COMMAND/FUNCTION NAME

AOFF

ENTER MACHINE CODE

0000 E5 21 +000E 22 F5 2B E1 3E C3 32 F4 2B C9 F7 C9.

ANOTHER COMMAND (Y/N)?

No name is entered for the first section of machine code, as this code is a series
of subroutines used in the AUTO command. Addresses entered under the ‘+’ option
are measured relative to the start of the current section of code being entered. Thus
any references to subroutines which precede the current section will be negative. For
example, in the second section of code, the AUTO command, there are three
references to the subroutines in the first section which are all entered as negative
hexadecimal numbers (FFC4, FFF0, FFEE).

The six bytes of workspace used by the AUTO routines can be entered as any six

8 bit values – in the example above they are entered as six FF’s.

.

Page 16

LETTERS

Dear Sir,

Further to Mr. Bowden’s letter in issue 3, I must also add my congratulations to
Chris Blakmore for his excellent MONITOR.COM, which I call N3.COM allowing me
to type N3 and be in Nas-Sys. I cannot help him to convert the RAM ver sion of
Zeap 2 to run with the moved video RAM, but I can help anyone who wants to run
the EPROM version. The bytes to be changed are:-

 D5D4

DBFD
DE06

D62D
DC06
DE16

D83C
DC12
DE26

D844
DC68
DE59

DB1F
DCA5
DE95

DB7D
DCAE
DECD

DBE3
DCB8

DBF4
DDC8

If the modifications suggested in INMC7 have been carried out, it will be

necessary to change the byte at DFBA. Each of the addresses at these bytes will be
found to be in the range 08 – 0B; F0 should be added. If it is required to run the
EPROM version in RAM for test purposes, the byte at DF52 should be changed to
00.

In order to run D-BUG and Nas-Dis with the revised video RAM, it is only
necessary to change the bytes at C01A, C0B3 and C118.

 J. T. Nestor, East Kilbride

Dear Ed,
After reading the article on TRS-80 tapes in issue 3, I thought the following

might be of interest.
It is possible to read UK101 tapes directly and very simply. Providing the tape

has been recorded at 300 or 1200 Baud (most will be at 300), go into mode X from
Nas-Sys, initialise Basic with the J command, and then play the tape without
entering any commands. The program listing will be printed onto the screen and
into memory with the original Basic line numbers. On completion, the program can
be modified to run on the Nascom with usually not too much effort!
 R. M. Dowling, Welling

Dear Sir,

I recently bought a V&T Superdeck recorder, which came with a demo tape but
no instructions. As the company has closed down, is there anyone who can tell me
how to connect the Superdeck to my Nascom 2. The twelve connections are marked
C, S, R, W, E, D and G, Common, Tx and Rx Clock, and Tx and Rx Data. I’d be
grateful for any help.

 M. Harrison, 8, Langleys Gardens,
 Prestwich, Manchester

FOR SALE RAM A card with 8K £45 o.n.o.
 RAM B card with 16K £70 o.n.o.
 Both in full working order. C. Bowden
Tel. 0209 860 480 (Evenings) 0209 712 780 (daytime)

Page 17

HANDS ON

by Viktor

The End of the Beginning (or vice versa?)

READ,DATA & RESTORE

This group of instructions can be extremely useful in certain programming
situations, for instance, where a large number of values are to be assigned to
variables before the main body of the program can be run. For example, in a program
to play music you might want to hold the frequencies of, say, 85 notes in an array.
After dimensioning the array, by the command DIM A(84), the values could be
assigned as follows:

20 A(0)=123:A(1)=125:A(2)=128.A(84)=222

It is much simpler, however, to put the values in DATA statements and then READ
them all into the array in one go:

10 DATA 123, 125, 128
20 DATA 216,220,222
30 FOR J=0 TO 84: READ A(J): NEXT

Note that because the array contains a member A(0), you can always dimension it to
one less than the number of array members needed

When a BASIC program is run, the interpreter looks right through the program

and notes the position of all items included in the DATA statements. The DATA
statement pointer is then set to the beginning of the list. As each READ statement is
executed, the pointer is moved onto the next item. If at any time you want the
program to start at the beginning of the list, you just use the command RESTORE.
You may also want to READ from various positions down the list. As long as this
coincides with a line number you can use RESTORE X (where X is the relevant line
number)

A very good example of this was in the Hangman program in the last issue of

Micropower, where the author needed first to refer to Numeric data string at line 8000
and then to String data starting at line 9000.

It is possible but not advisable to mix numeric and string items in DATA

statements e.g.

10 DATA “Fred”,5,“Jim”,7,8,“Harry”
20 READ A$,X,B$,Y,Z,C$

However, if you make an error and try to read one type of data into the other type of
variable you will get a ‘SYN’ error – and serves you right !!

Page 18

Program lines similar to the following have been included in many simple

computer-based learning tests.

10 READ A$, B$
20 PRINT “What is the capital of”;A$
30 INPUT C$
40 IF C$=B$ THEN PRINT “Correct”: GOTO 10
50 PRINT “Hard Luck –Try again”:GOTO 20
60 DATA SCOTLAND, EDINBURGH, EIRE, DUBLIN
70 DATA FRANCE, PARIS, WEST GERMANY, BONN

Obviously one would enlarge on the program, with random or sequential

testing, some system of marking results and suitable messages to ‘humanise’ the
exercise.

It is self-evident that the basic formula using READ, DATA & RESTORE can be

adopted in all such programs.

SET, RESET, POINT

As everyone will know by now, the basic Nascom screen has 16 lines of 48

characters – i.e. 768 screen locations into which you can PRINT or POKE any of the
character set. The commands SET, RESET & POINT give you control of a much
higher number of smaller areas on the screen. In effect, each character space is
divided into 6 (2 horizontal x 3 vertical), and each ‘pixel’ as they are called, can then
be turned on or off by SET and RESET. This gives and effective screen resolution of
96 x 48; computer manufacturers have been known to refer to this as ‘high resolution
graphics), but this term should really be reserved for the much higher resolution
obtainable with bit-mapped graphics or with a programmable character generator.

As an illustration, we can randomly set all the pixels thus:

10 CLS
20 REM * SET X TO A RANDOM NO. BETWEEN 0 AND 47
30 X=INT(RND(1)*47) 40 REM* SET Y IN RANGE 0 – 95
50 Y=INT(RND(1)*95)
60 SET(X,Y) : GOTO 20

Eventually the screen would be composed entirely of ‘set’ pixels. Now we can use
RESET in a similar fashion. First remove the ‘GOTO 20’ in line 60 and then enter:

70 REM* NOW DO A RANDOM RESET
80 X=INT(RND(1)*47)
90 Y=INT(RND(1)*95)
100 RESET (X,Y) : GOTO 20

The pixels will now be randomly reset. To complete the program we could use
POINT to test whether certain pixels had been set, and if so start at the beginning
again. Remove the ‘GOTO 20’ in line 100 and then enter:

Page 19

110 REM* TEST A BLOCK OF PIXELS 40 X 30
120 FOR S=15 TO 75 STEP 15
130 FOR T=15 TO 45 STEP 15
140 IF POINT (S,T)=1 THEN 10
150 NEXT T,S
160 GOTO 20

PRINTING CHARACTERS FROM THE KEYBOARD

In the manual there is an appendix headed ‘Single Character Input of Reserved

Words’. From the list you will see that when typing in a program you can use various
combinations of keys to obtain single characters (often referred to as ‘Tokens’) which
the computer interprets as instructions. For example:-

 ? = PRINT CTRL/GRA/H =GOTO.

This does save time and space when keying in a long program, but also

causes a lot of headaches when editing. When the program is listed the tokens are
expanded to the full reserved words; consequently lines may exceed 48 characters,
and when you try to edit them you loose charactrers from the end. It is all too easy to
‘crash’. In Direct Mode, however, they are always useful. E.g. GRA/Space = LIST.

You might also make use of this facility when designing graphics shapes for

use in a program. It is worthwhile marking the chart supplied in the manual with the
key designations. For instance, the first two lines (32 chars.) are obtained by
depressing the graphics and control keys plus @, A-Z, [, \,], ^ and _.

Let us look at what happens when we press the graphics and control keys. The

former sets Bit 7, while the latter flips Bit 6. E.g. The @ character (shift@) is 40 in
hex or 01000000 in binary, the bits being numbered 7 to 0 from left to right. Setting
Bit 7 gives 1100 0000, or C0 in hexadecimal, and flipping Bit 6 gives 1000 0000 or 80
hex. Thus character 80 hex can be typed with CTRL/GRA/shift@. Similarly, 8F in
hexadecimal is obtained with CTRL/GRA/O.

Character FF illustrates the effect of flipping Bit 6 from off to on. The ? has a

hex value of 3F (0011 1111). CTRL/? gives 7FH (01111111) , and GRA/CTRL/?
gives 0FFH (11111111)

You can always try out various key combinations by typing them directly into a

Basic line, and then expanding them by LISTing the ‘program’. For example, type in a
line number and then hold the Graphics key down while you enter A,B, C, D, E, F.
Now press ‘Return’ and LIST the line. You will find that the interpreter expands it to:-

Page 20

10 COSSINTANATNPEEKDEEK

As a final point on this topic, I thought it would be interesting to take a look at
the way the BASIC stores reserved words. First enter the command NEW, and then
type in the following line:

10 PRINT“MIKE”:END:SCREEN 15,12

Now reset and tabulate from 10FA hex. You will find the following code:

 10FA

1102

110A

10 11 0A 00 9E 22 4D 49

4B 45 3A 80 3A 97 20 31

31 35 2C 31 32 00 00 00

The first two bytes, 10 11, store the address of the start of the next line, the
next two bytes, 0A 00, hold the line number, and then come the bytes which
represent the data stored in the line. The first data byte, 9EH, represents the
reserved word PRINT; as a line is entered the text is scanned, and if the Basic
recognises a reserved word it is replaced by a hexadecimal number in which bit 7 is
set. This speeds up programs, because the interpreter can more quickly recognise a
reserved word and access the necessary machine code routines.

PRINT is followed by the ASCII codes for “MIKE” (22 4D 49 4B 22) and the
separating colon (3A). Two more reserved words then appear, END (represented by
80H) and SCREEN (97H).

The end of the line is marked in the store by a zero, which is followed by a

pointer to the start of the next line, a line number, more data, and so on. At the end
of the program the zero marking the end of the line is followed by two further zeros in
place of the line pointer.

You will notice that although there is no ‘space’ character (20H) after the line

number bytes, the LIST command always inserts a single space to improve legibility.
No matter how many spaces you put between the line number and the start of the
text when you enter the program, the interpreter always removes them - and then
puts one back when listing. This makes it difficult to use ‘pretty printing’ – that is,
formatting of the text by use of different indentations to make the underlying structure
of the program obvious at a glance. You can always indent a line by inserting a colon
before the required spaces. For example:-

10 : PRINT “THIS IS AN INDENTED LINE”

* - * - * - * - * - * - *

Page 21

THE MAGIC HEXAGON

Why not solve it the easy way!

By G. P. Robert

The magic hexagon puzzle consists of arranging the numbers 1 to 19 in a

hexagonal pattern (see below) in such a way that each row in any direction adds up
to 38.

A B C

D E F G

H I J K L

M N O P

Q R S

Unlike magic squares, which can be easily constructed if you know the trick,

the solution to the Hexagon does not appear to possess any discernable regular
pattern. The number of possible arrangements is a formidable
121,645,100,408,832,000. However, since any arrangement can be rotated six times
through 60 degrees, and each of these positions has a mirror image, the actual
number of distinctly different arrangements is reduced to a mere
10,137,091,700,736,000!

Inspection of the hexagon reveals one or two relationships which might help in

reducing the prodigous task of finding solutions. For example, since the sum of the
lines (A+B+C)+(D+E+F+G)+(H+I+J+K+L)=3x38 and (A+D+H)+(C+G+L)=2x38, then
it follows that the remaining triangle of numbers (B+E+F+I+J+K) must equal 38.
Addition to this triangle of the line (M+N+O+P) gives the large central triangle
(B+E+F+I+J+K+M+N+O+P)=2x38. Within this larger triangle the lines (B+E+I+M) and
(B+F+K+P) together equal 2x38. B, which occurs in both lines, must therefore equal
the small residual triangle (J+N+O). Similar relationships will, of course, exist in each
of the 12 possible orientations of the Hexagon.

Use can be made of some of these relationships to shorten the search for a

solution by trial and error. The listed program, which will run on a Nascom 1 or 2
under Nas-Sys, and could be adapted to run on any Z80 based microcomputer,
systematically fills the hexagon from available numbers stored in a table at the
bottom of the screen. At each position where a check can be carried out, an
appropriate line or triangle of numbers is added up. If the total is 38 the program
proceeds to the next position. If not, then a number is selected and the test is
repeated. If the end of the table is reached without a satisfactory number being found
the program retreats to the previous position and the search is continued.

Page 23

For convenience in programming and display, the numbers 1 to 19 are

represented by the letters A to S. At the start of the search, and when a solution has
been found, the program pauses to allow the position to be noted down. Any key
depression will cause the search to be resumed. The program terminates when there
are no further possible arrangements.

The first solution will be found in just over four minutes, and the second in

another two and a half minutes (at 4 Mhz). Further solutions will require considerably
more patience, but those interested enough may wish to run the program
exhaustively in order to uncover all the possible arrangements and discover if there
exists more than one unique solution.

PROGRAM LISTING

0C80
0C82
0C83
0C86
0C89
0C8C
0C8E
0C90
0C93
0C95
0C97
0C9A
0C9B
0C9C
0C9D
0C9F
0CA1
0CA3
0CA6
0CA7
0CA9
0CAA
0CAC
0CAF
0CB1
0CB4
0CB5
0CB7
0CB9
0CBA
0CBB
0CBD
0CBE
0CC0
0CC1
0CC2
0CC5

3E 0C
F7
01 11 00
11 1A 08
21 A9 0D
ED B0
3E 3F
CD 28 0D
3E 41
06 13
21 99 0B
77
3C
23
10 FB
DF 7B
3E 20
CD 28 0D
03
3E 14
B9
28 4D
CD 15 0D
3E 40
21 98 0B
3CONXTNUM
FE 54
28 44
23
BE
20 F7
12
36 20
F5
E5
21 5B 0D
09

TABLE

FORWRD

LD A, 0CH
RST ROUT
LD BC, 11H
LD DE 081AH
LD HL, TITLE
LDIR
LD A, 3FH
CALL HEXGON
LD A, 41H
LD B, 13H
LD HL, 0B99H
LD (HL), A
INC A
INC HL
DJNZ TABLE
SCAL BLINK
LD A, 20H
CALL HEXGON
INC BC
LD A, 14H
CP C
JR Z, SOLN
CALL HEXLOC
LD A, 40H
LF HL, 0B98H
INC A
CP “T
JR Z, REPLAC
INC HL
CP (HL)
JR NZ, NXTNUM
LD (DE) A
LD (HL), 20H
PUSH AF
PUSH HL
LD HL, CHKLST
ADD HL, BC

Page 24

0CC6
0CC7
0CC8
0CC9
0CCA
0CCC
0CCD
0CCE
0CCF
0CD1
0CD2
0CD5
0CD6
0CD7
0CD8
0CD9
0CDA
0CDB
0CDD
0CDE
0CDF
0CE2
0CE3
0CE4
0CE5
0CE7
0CE8
0CE9
0CEB
0CEC
0CED
0CEE
0CF0
0CF2
0CF3
0CF4
0CF6
0CF7
0CF9
0CFB
0CFD
0CFE
0D01
0D02
0D04
0D05
0D06
0D07
0D08
0D0A
0D0D
0D0E
0D11
0D12
0D14
0D15
0D16
0D19

C5
4E
AF
B9
20 05
C1
E1
F1
18 D5
D5
21 6F 0D
09
46
AF
57
C5
23
06 00
4E
D5
CD 15 0D
1A
D1
82
D6 40
57
C1
10 EE
D1
C1
E1
FE 26
28 04
F1
77
18 BE
F1
18 AD
DF 7B
18 08
1A
CD 20 0D
77
3E 20
12
0B
AF
B9
28 0A
CD 15 0D
1A
CD 20 0D
77
18 A0
76
E5
21 33 0D
09

SUMCHK

ADD

RETURN

SOLN

REPLAC

GOBACK

END
HEXLOC

PUSH BC
LD C (HL)
XOR A
 CP C
JR NZ, SUMCHK
POP BC
POP HL
POP AF
JR FORWARD
PUSH DE
LD HL, SUMLST
ADD HL, BC
LD B, (HL)
XOR A
LD D, A
PUSH BC
INC HL
LD B, 0
LD C, (HL)
PUSH DE
CALL HEXLOC
LD A, (DE)
POP DE
ADD A, D
SUB A, 40H
LD D, A
POP BC
DJNZ ADD
POP DE
POP BC
POP HL
CP 26H
JR Z, RETURN
POP AF
LD (HL), A
JR NXTNUM
POP AF
JR NXTNUM
SCAL BLINK
JR GOBACK
LD A, (DE)
CALL TABLOC
LD (HL), A
LD A, 20H
LD (DE), A
DEC BC
XOR A
CP C
JR Z, END
CALL HEXLOC
LD A, (DE)
CALL TABLOC
LD (HL), A
JR NXTNUM
HALT
PUSH HL
LD HL, HEXLST-2
ADD HL, BC

Page 25

0D1A
0D1B
0D1C
0D1D
0D1E
0D1F
0D20
0D21
0D24
0D25
0D26
0D27
0D28
0D2A
0D2D
0D2E
0D2F
0D30
0D31
0D32
0D34
0D35

0D5B

0D6F

0DA9

0DB9

09
5E
23
56
E1
C9
C5
21 58 0B
4F
09
C1
C9
06 13
21 35 0D
5E
23
56
23
12
10 F9
C9
DE 08 E2 08
E6 08 5C 09
60 09 64 09
68 09 DA 09
DE 09 E2 09
E6 09 EA 09
5C 0A 60 0A
64 0A 68 0A
DE 0A E2 0A
E6 0A
00 00 00 01
00 00 00 05
0A 00 00 0E
15 19 1E 25
2C 31 35 00
00 03 01 02
03 04 04 05
06 07 03 01
04 08 06 02
05 06 09 0A
0B 03 03 07
0C 04 02 05
09 0D 06 04
05 06 09 0A
0E 06 05 06
07 0A 0B 0F
04 02 06 0B
10 03 08 0D
11 04 04 09
0E 12
54 48 45 20
4D 41 47 49
43 20 48 45
58 41 47 4F
4E

TABLOC

HEXGON

LOOP

HEXLST

CHKLST

SUMLST

TITLE

ADD HL, BC
LD E, (HL)
INC HL
LD D, (HL)
POP HL
RET
PUSH BC
LD HL, 0B58H
LD C, A
ADD HL, BC
POP BC
RET
LD B, 13H
LD HL, HEXLST
LD E, (HL)
INC HL
LD D, (HL)
INC HL
LD (DE), A
DJNZ LOOP
RET

DEFM /THE MAGIC HEXAGON/

 --

Page 26

THE NAS-SYS MONITORS

By J. Haigh

SINGLE STEP S xxxx

The Single Step command initially uses part of the machine code used by the
Execute command, described in article 2. It enters the Execute routine at the point at
which it throws away the return address by POPing it into AF; it thus misses out the
section which sets the workspace byte CONFLG (£0C26) to -1, and this remains at
zero. Continuing with the Execute machine code routine, the Single Step command
saves the specified start address in the monitor workspace, loads registers BC, DE,
HL, AF and SP from the register save area in the workspace, and pushes the start
address onto the top of the stack. The AF registers are then saved while bit 3 of port
0 is set; this activates a TTL circuit which sends a non-maskable interrupt to the
processor after four M1 cycles. The AF registers are recovered, and this is followed
by a return-from NMI instruction (RETN, ED 45), which, because the start address
was pushed on the top of the stack, causes the program to start executing at this
address. Three M1 cycles have now occurred (one each time a byte is fetched from
memory), so as soon as the next instruction is started the NMI line is activated, and
the processor is interrupted at the end of this instruction.

This causes the processor to jump to the NMI handling routine. Here bit 3 of port

0 is reset, and the value stored at CONFLG is tested. If the value is not zero the
program must have arrived at this point from an Execute command, and the routine
continues as described in the second article. If CONFLG is zero the top 10 bytes of
the user stack, which contain the value of the program counter register for the next
instruction of the program being single-stepped (pushed on the stack as the return
address by the NMI) and the AF, HL, DE and BC registers, are copied to the register
save area in the monitor workspace. The contents of these registers, together with
the user stack pointer, the interrupt register and the index registers IX and IY, are
then printed on the screen.

In Nas-Sys 1 the routine which prints the registers is part of the NMI/Breakpoint

handling routine, but in Nas-Sys3 it is written as a separate subroutine which can be
accessed by command P or called from other programs. The format of the register
print out is also different in the two monitors. In Nas-Sys 1 only the registers are
printed out, in the order:-

 SP PC AF HL DE BC I IX IY

followed by a string of letters indicating which of the bits in the flag register are set. In
Nas-Sys 3 the display of each of the first six register pairs is followed by the sixteen
bit value held in the memory location to which the register pair points. Thus if the H

Page 27

register contains £10, the L register contains £00, and memory locations £1000 and
£1001 contain £22 and £33 respectively, they will appear in the register display as

1000 3322

Note that the memory bytes are printed in the order (1001), (1000). This is in line with
the order in which the registers themselves are displayed, because if the contents of
HL were stored at address £1000 by the instruction.

LD (£1000), HL 22 00 10

register L would be stored at £1000, register H at £1001.

After the registers have been displayed, the program returns to the monitor at the
routine PARSE, where it waits for a further command input. If you enter command E or
S without specifying an address, the execute routine will pick up the address stored in
the workspace at £0C69, which is the value of PC saved last time around. This means
that execution or single-stepping can be continued from the point where the program
operation was suspended by a breakpoint or by the last single step. Once you have
carried out one single step you do not need to re-enter the S command – just pressing
the Newline key will produce another single step if the last command entered was S.
This is particularly useful with Nas-Sys 3, which has a repeat-key routine; just holding
Newline down will cause the program to single-step at a rate which can be controlled
by the value stored at £0C30,£0C31

TABULATE T xxxx yyyy zz

This command prints out the hexadecimal values of the machine code stored between
addresses xxxx and yyyy. The starting address (in hex) and first printed, and this is
followed by eight bytes of data. A new line is then started, the updated address is
printed, followed by further data bytes, and so on. The process continues until zz lines
have been printed, when it pauses until a key is pressed. The routine terminates when
the updated address reaches yyyy, or if ‘escape’ (SHIFT/NEWLINE) is pressed during
a pause. Nas-Sys 1 calculates the ‘checksum’ of the address and data bytes on a line,
and outputs this checksum. The checksum cannot be seen in the tabulation because
the cursor is backspaced over the two hex digits of the checksum. If you send the
tabulated data to a printer which does not backspace, the checksum will be printed.
The checksum is quite useful for the direct entry of machine code as it makes it easier
to spot errors. You can make your Nascom print the checksum on the screen by
routing the output through a short program which suppresses the backspaces, or, if
you have access to an EPROM programmer, by removing them from the monitor.

The Nas-Sys 3 tabulate command does not evaluate the checksum, but it has
extra facilities for formatting the displayed data. The number of bytes of data output

Page 28

per line can be controlled by a fourth argument; if this argument is nn, there will be
8+nn bytes per line. In addition to the hexadecimal data, Nas-Sys 3 outputs the
ASCII or Graphics codes of the data (codes in the ranges £00 - £1F, £7F - £9F, and
£FF are output as “.”). A fifth argument, hhll, may be entered to suppress either the
hexadecimal (if hh is not zero) or ASCII (if ll is not zero) part of the listing.

If you wish to edit a tabulated listing you must quit the Tabulate command by
typing ‘Escape’, and then enter M to get into the Modify routine. You will now be able
to move the cursor with the control keys and edit the tabulation. If you are using Nas-
Sys 3 it is best to suppress ASCII part of the listing. As this will interfere with the
modify command, either by producing error messages or, if the ASCII section
contains a full stop, by terminating the modify routine.

USER INPUT/OUTPUT U

Input and output is accessed via pointers to tables which list the routines to be

called. With the pointers, which are stored in the workspace at £0C73 (output) and
£0C75 (input), set to normal values, as on power-up or after a RESET or N
command, input scans the keyboard and serial port while output is sent to the
screen. The U command resets the pointers so that routines provided by the user are
called before the input or output is performed. The user routines can reside anywhere
in memory; the start address of the input routine must be stored in the workspace at
£0C7B, that of the output routine at £0C78. These locations normally contain the
address of a return instruction in the monitor, so that using the U command without
providing the addresses of your routines has no effect.

Although the I/O procedure also uses the remaining routines in the tables, if for
any reason you do not wish these routines to be called (for example, you may wish to
suppress the screen output), you merely have to set the carry flag in the user routine;
the remaining routines will then be skipped. This can have unfortunate consequences
– if a printer routine carries out tests which leave the carry flag set for certain
characters, these characters will not appear on the screen.

VERIFY V

The address stored in the command table for the VERIFY command is the same
as that for the READ command. The two commands use the same code, except that
as each data byte is obtained the value stored at location £0C2B, which contains the
last command letter entered,is tested to see if it an R. If it is not, the data bytes are
not stored in memory, and faulty data cannot corrupt data already in store. If you are
calling the READ routine from a program you must store an R at £0C2B or data will
not be loaded.

Page 29

WRITE W xxxx yyyy

The write routine first switches on the cassette LED; it then waits for

approximately one second, which allows the cassette recorder speed to stabilise if
you are using the LED signal to control your recorder. The output table pointer is then
reset to its normal value, so that output is sent only to screen. This ensures that a
user routine will not interfere with the operation of the write routine. The address
stored at £0C73 is saved on the stack, and restored at the end of the write routine.

After 256 nulls have been output to the serial port the data is output in blocks of
256 bytes, preceded by a null and four ‘FF’s, a header which gives the start address
of the block, the length and number of the block, and a checksum for the header
data. The start address and the length and number of the block are printed on the
screen, but all other bytes are output only to the serial port; output through this port is
by direct call to the serial routine, and does not use the output table and its pointer.
The block of data is then output, followed by ten nulls. The purpose of all these nulls
is to ensure that if several bytes of data are missed when the tape is read, the start of
the next block header, marked by four ‘FF’s, will not be missed. If there were no nulls
the READ routine would continue until it detected the correct number of bytes,
accepting one or more of the ‘FF’s, and it would then miss the following block and
only start reading again when the next block start was detected.

When all the data has been written the routine jumps to the end of the READ
routine, using the same code to reset the output pointer. If you wish to make several
copies of the same data, which is always advisable, you do not need to re-enter the
arguments – just enter W and the previous arguments, which are still at 0C0C and
0C0E, will be used again. If you are too lazy to do even this, a simple modification to
the WRITE routine will make it unnecessary. Instead of jumping to the end of READ,
first execute the following code:-

 21 10 0C
35
C2 XX XX
C3 YY YY

LD HL, £0C10
DEC (HL)
JP NZ, REWRT
JP RDEND

; Point HL to ARG3
; Decrement ARG3
; Continue if non-zero
; Jump to end of READ

For Nas-Sys 1 the address XXXX is £04EF; for Nas-Sys 3 it is £502. Address
YYYY is the end of the READ routine, where the table pointer is reset. If you use the
modified READ routine given in the last article, you will find that there is room for
extra WRITE code at the end, and the final jump can be a relative one. Incidentally,
there is a misprint in the listing on page 30 of the last issue; from line 32 it should
read:-

CF R2
3C
20FA

RST RIN
INC A
JR NZ, R1

; GET CHARACTER
; IS IT FF?
; IF NOT, KEEP LOOKING

- - - - - - - - - - - - -

Page 30

10 R I N G S O F H A N O I
20 B Y S . H E A D , J U N E 1 9 8 1
30 REM
40 CLEAR 500: DIM A(12,2), TR(2,1)
50 REM
60 REM **. Print out rules
70 CLS: GOSUB 800: PRINT
80 PRINT “The object of the game is to move”
90 PRINT “the rings from pile A to pile B or C
100 PRINT: PRINT “Only the top ring ”;
110 PRINT “can be moved.”
120 PRINT:PRINT “Larger rings cannot be ”;
130 PRINT “put over smaller rings.
140 PRINT:PRINT:PRINT “PRESS ENTER WHEN READY.”;
150 INPUT IN$
180 REM
190 REM**. Initialise
200 CLS
210 FOR I = 0 TO 10
220 A(I,0) = 1:A(I,1) = 0:A(I,2) = 0
230 NEXT I
240 TR(0,0) = 1:TR(0,1) = 1
250 TR(1,0) = 11:TR(1,1) = 10
260 TR(2,0) = 11:TR(2,1) = 10:MC = 0
270 GOSUB 600
280 GOSUB 800
290 SCREEN 6,15
300 PRINT “PILE A”, “PILE B”, “PILE C”;
310 REM
320 REM ** Input move
400 GOSUB 920: SCREEN 2,2: PRINT “MOVE FROM ”;
410 INPUT N$ 420 GOSUB 1300:TF = IN:IF TF < 0 THEN 400
430 IF A(10,TF) <> 0 THEN 470
440 SCREEN 1,1
450 PRINT “NO RINGS ON THAT STICK CHUM”
460 GOTO 400
470 GOSUB 920:SCREEN 2,2:PRINT “TO PILE”;
480 INPUT IN$
490 GOSUB 1300:TT = IN:IF TT < 0 THEN GOTO 470
500 GOSUB 1000
510 GOTO 400
580 REM
590 REM ** Initialise graphics
600 CLS: IT = 0: IP = 14:GOSUB 630
610 IT = 1:IP = 42: GOSUB 630
620 IT = 2:IP = 70: GOSUB 630: GOSUB 800
630 FOR I = 0 TO 32
640 FOR J = 0 TO A(I/3,IT)
650 SET (J + IP, I+9)
660 SET (IP –J, I+9)
670 NEXT J
680 NEXT I:RETURN
780 REM
790 REM ** Print title
800 TL$ = “TOWERS OF HANOI MOVE ”+STR$(MC)
810 FOR I = 1 TO LEN(TL$)
820 POKE 3029+I,ASC(MID$(TL$,I,1))
830 NEXT I
840 RETURN

Page 31

880 REM
890 REM ** Clear line subroutine
900 SCREEN 1,1:GOSUB 930
910 SCREEN 3,1:GOSUB 930
920 SCREEN 2,2:GOSUB 930:RETURN
930 FOR I = 1 TO 4: PRINT “ ”;:NEXT I
940 RETURN
945 REM
950 REM ** . . . Move a ring subroutine . . .
1000 IF TR(TT,1) = 0 THEN 1030
1010 IF TR(TF,1) > TR(TT,1) THEN 1150
1020 IF TF = TT THEN 1130
1030 MC = MC+1: GOSUB 800
1040 A(TR(TT,0)-1,TT) = A(TR(TF,0),TF)
1050 A(TR(TF,0),TF) = 0
1060 TR(TT,1) = TR(TF,1)
1070 TR(TT,0) = TR(TT,0) -1
1080 TR(TF,0) = TR(TF,0) + 1
1090 TR(TF,1) = A(TR(TF,0),TF)
1100 IF A(10,0) + A(10,1) = 0 THEN 1180
1110 IF A(10,0) + A(10,2) = 0 THEN 1180
1120 GOSUB 1400:RETURN
1130 SCREEN1,1:PRINT “DON’T BE SILLY”:RETURN
1150 SCREEN1,1:PRINT “YOU CANNOT PUT LARGER”;
1160 PRINT “ RINGS OVER SMALLER ONES!”:RETURN
1180 PRINT “CONGRATULATIONS, YOU HAVE DONE IT”
1190 PRINT “ OPTIMUM 1023 ”;
1200 PRINT “YOU RATING IS ”;102300/MC;“%”
1210 PRINT “ DO YOU WANT ANOTHER GO (Y/N)?”;
1220 INPUT IN$
1230 IF LEFT$(IN$,1) = “N” THEN END
1240 IF LEFT$(IN$,1) = “Y” THEN GOTO 40
1250 GOTO 1220
1260 REM
1270 REM ** Convert key to number
1300 IF IN$ = “A” THEN IN=0:RETURN
1310 IF IN$ = “B” THEN IN=1:RETURN
1320 IF IN$ = “C” THEN IN=2:RETURN
1330 IN = -1000:RETURN
1340 REM
1350 REM ** . . . Move ring graphic sub . . .
1400 ZZ = TF:GOSUB 1420: ZZ = TT
1420 IF ZZ = 0 THEN IX = 14
1430 IF ZZ = 1 THEN IX = 42
1440 IF ZZ = 2 THEN IX = 70
1450 FOR JX = TR(ZZ,0)*3 TO TR(ZZ,0)*3+2
1460 FOR J = 1 TO A(TR(TT,0),TT)
1470 IF ZZ = TT THEN 1510
1480 RESET (J + IX,JX+6)
1490 RESET (IX-J,JX+6)
1500 GOTO 1530
1510 SET(J+IX,JX+9)
1520 SET(IX-J,JX+9)
1530 NEXT J
1540 NEXT JX
1550 GOTO 900

Page 32

 NASCOM
 1 & 2
Nasprint 80

Nasprint 80 is a 2K program which greatly extends and
simplifies the operation of Nas-Pen. New functions
supp lied by Nasprint 80 includes:

Pagination
Output a page number of each page
Output a title on each page
Centre title
Text formatting with embedded control codes. e.g.
Change line length; change line spacing; change
margins; centre li ne between margins; new page; output
control codes to printer.

The program contains a parallel printer routine for a
Centronics type interface, specifically designed for the
Epsom MX-80, but the program can be used with any
printer, parallel or serial, as the output is routed through
an address in RAM.

The program also facilitates the operation of a printer
with Zeap, Nas-Dis, De-bug , Nas-Sys & ROM Basic; the
software/firmware being u sed is selected fro a menu and
Nasprint 80 then changes the necessary addresses to
produ ce a hard copy output.

The program is supplied in 2x2708’s for fitt ing 2716’s in
the RAM A card. £14.95

New Fase (16K/MC/G)

New version of the space invaders type with each new
fleet of invaders having a different shape & kind o f
motion.Missiles fired at you come straight down or
diagon all y left to right & vice versa.

Destroy one ‘ fase’ & move onto the next. The fuel level is
shown graphicall y and you can refuel i f you ob literate
four fleets. Your score is shown at the end of a game and
the top ten scorers are ranked. Once again the difficulty
level has been set very high. £7.95

Starship Command (16K/B/G)

The ‘ real-time’ Space Adventure for ‘ thinking’
campaigners!

You command the sole fighting ship of a small league of
planets who are pledged to resist the opp ress ion o f the
powerful Terran Federation.

The 3-dimensional planetary system is divided into 729
sectors (9x9x9), your viewscreen revealing neighbou ring
sectors 5 wide by 3 high b y 3 deep. It can be rotated to
look up & down as well as N,S,E & W.

You will encounter friendly, neutral & hostil e planets and,
of course, enemy interceptors. Your long term objective
is to raise the morale of the system’s inhabitants so as to
bring forth a spon taneous rebell ion against the
Federation. This can be achieved progressively by
winning in combat and converting n eutral planets. The
oppo site occurs if you flee from a fight, upset neutral
planets or just skulk!

Machine-code sub-routines ensure the clashes with the
enemy are exciting. There are six levels of skill and many
other features. Full i nstructions are given in a separate
program. £9.95

Moon Raider (MC/G)

The ‘Scramble’ game you h ave been waiting for!! Blast
the asteroids, enemy missiles & ramships out of the sky
as you sk im over the moun tains on the moon’s surface.
Bomb the fuel dumps and enemy defences. Higher points
scored for hits closer to the groun d. Maximise your total
score on restricted supplies of fuel. If you survive the first
part of the game you enter the ‘ tunn el’, wi th rocky
projections above & below you! Four sk ill levels,
excellent graphics & excrutiating sound via the keyboard
port. £8.95

*** NASCOM 1 – Cott is Blandford cassette
 interface for N2 format, reliabili ty & fast load £14.90
- 8K RAM required unless otherwise stated
- Please state if Nascom TAPE Basic required.
ALL PROGRAMS SUPPLIED ON CASSETTE IN
CUTS/KANSAS CITY FORMAT

Please add 55p/order P & P + VAT @ 15%.
Large (15½p) Sae for FULL CATALOGUE.

PROGRAM POWER
5, Wensley Road
Leeds LS7 2LX. +

