0, INTRODUCTION

I. GETTING STARTED WITH XBASIC
1, Firat steps = BDirect & Program mode
Z. Numbers and Strings
3. Variables.
4. Arrays
%. Expreasions

II. THE S5¥STEM EDITOR & SYSTEM COMMANDS

1. Socreen Control Codes

2. The Screen Editer

3. The Line Editor

4, System Commands:
MON, NEW, DEL, AUTO, LOAD, SAVE, VERIFY
CLEAR, RUN, CHAIN, LIST, HOLD, MGE, RENUM

5. Chaining and 'Semi-Chaining' Programs

III. COMMANDS, STATEMENTS AND FUNCTIONS
1. Commands/Statements
2. Disc Handling Commands:
DIR, ERA, REN, LOCK, UNLOCK
3. Standard Functions
4. Standard String Functions
5. User-Defined Functions

Iv. INPUT/CUTPUT FACILITIES
1. Devices and I/0 assignment:
PRINTE, INPUTE
2. Direct I/0 Port access
3. Special Commands affecting I/0:
SEP, FMT, IOM, 3SPEED, NULL, WIDTH, ZONE

V. XBASIC FILE MANAGEMENT SYSTEM
1, General
2, File Naming Conventions
3. The File Deagriptor
4. Sequential and Random Access Methods
5. File-Handlirg Commands:
DRIVE, QPEN, CREATE, CLOSE,
AFPEND, PRINTEL, INPUTE, INCHS$
6. File-Handling Exarmples

VI, ERROR MESSAGES
1. List of Error Messages
2. Error handling within BASIC;
ON ERR GOTO/GOSUB, ON EOF GOTO/GOSIR,
QFF ERR, CFF EOF, ERR, ERR$, ERL
3. Error Message Constructilon/Extension

VII. MACHINE-OODE LINKAGE
1. MC—code related Commands/Functions:
CALL, POKE, PEEX, DOKE, DEEK, PTR, HEX$
2, Loading and Saving MC—code Files

O Chi =L

10
10

HHWEE

ad
L]

U7

50
52

VIII. COMMAND/FUNCTION EXTENSTCH

1. Program storage 53

2. Reserved Word Construction HY

3. The Auxiliary Tables 55

4, Commands and Runctions 55

5. How to enter extra Reserved Words 55
APPENDICES

Appx. A, Index of Reserved Words and Error Messages 58
Appx. B. The Hardware Configuration, including: 61
MEMORY MAP, SCRATCH-PAD addresses
I/0 Device aazignments, Graphins,
incompatibilities with other versions, etc

Appx. C. Useful Subroutines in XBASIU &5
Appx. D. Examples of Extra Cormands and Functions 76
Appx. E, Translator for Nascom ROM and tape Basic 81

]
-
i

0. INTRCDUCTION

Mascom Extended Basic (XBASIC) is an interpreter written in Z80 machine code
which has been developed by Crystal Reaearch, It iz based on experience
gained with earlier versions of Xtal BASIC and MNascom ROM BASIC. Extended
BASIC is significantly larger than both the earlier Xtal BASIC and Naacom ROM
BASIC, but includes many new features, and exlsting features have been

extended.

For those with some experience of machine-code programming, the ability teo
greate user—defined reserved words must be one of the most outatanding
features of this BASIC. By writing appropriate sub-rcutines and by inserting
your own defined words in an auxiliary reserved word table, you will be able
to expand this interpreter to give the type of BASIC most suited to your own
needs. We believe that, for the time being at least {and we have not heard of
any eguivalent in over two years), this feature is unique to BaSIU's from
Crystal, and it makes it potentially cne of the most powerful BASIC's ever
avallable.

Extended BASIC i3 deaigned to allow the incorpoarticn of dise handling ocom-
manda, as well as handling cassette tape, and the file handling system has
been deaigned with a view o dealing with both. Although we use the terms
disc’ and ‘cassette tape' throughout the manual, it is as well to remember
that some forms of tape, such as the "stringy fleppy' or 'floppy tape' are
theoretically capable of random- access, and may hold sgparate 'file
directeries', i.e, to all intents and purposes they behave aa disc drivea. We
therefore include all such devices under the broad term 'disc drives', to
distinguish from the seguential-only 'cassette tape’® drives.

Nascom Extended BASIC 1s available in three forms - tape cassette, NAS-DOS
and CP/M, The differences invoive only the media and the provision of
appropriate dise acceas commands.

LOADING EXTENDED BASIC ON NASCOM MICROCCHMPUTERS (TAPE VERSION)

——— —— sl ——

XBASIC will run on any of the Nascom computers, as long as one of the NAS-3Y3
monitors is being used. It is supplied on tape in CUTS format, to lead at
1200 baud.

To load XBASIC, type R and then press the <ENTER> key. Next, press the PLAY
button on the cassette recorder. The program should be observed to load block
by block until, after about two minutes, loading should be complete, XBASIC
occupies the area 1000K to B0FFH (about 12 1/4 K).

To run, type in E1000 and press the <ENTER> key. This is the initialising, or
"COLD', entry to XBASIC. A 'WARM! entry is also allowed frém the moniter into
XBASIC by typing E1003 <ENTER>. This preservea any current BASIC program and
variablea, This entry point should not, however, be used urniless XBASIC has
already been previcusly entered by a COLD start. .

— g A e mr———— - .

B

NOTATION

In order to simplify the wse and wunderstanding of this manual and, in
particular, the command and function desecriptions, we have adopted a3 notation
that explaina the syntax requirements of each commana/function. This corsists
of a single letter, which may or may not ne followed by a number, enclosed
thus: < > If a2 command/functicn name has to be followed by an expression,
this notation will ahow the type of expression that is allowed:

J An expreszion, which must evaluate to a number in the range 0 to Z55.
If it 4is nat an integer, the decimal part of the number will he

chopped of'f, the integer part only being uaed.

I An expression, which must evaluate to a number in the range -£5535 to
+65535, Again, only the integer part is actually used. In some cases,
the range is restricted to ¢ to %535, or even O to 32767 (e.g, Array
elements), but mention is made only when thosze cases apply.

L A line number, in the range 0 to 0%53%, This must be a number only,
and s0 may not be givetr a3 & variable. .

=

ANy numeric expressicon.

E Any expression, whether numerdic or string.

3 Any atring expression,

F A string expression, which must evaluate to give a legal file name
{as defined in Chapter V.2).

U A numerie variable, which may not be an array element.

¥ A& variable name, which may be of numeric or string type, and may be
an array element,

3y A string variable name, which may not be a string array alement.

X A complete Xral BASTC statement,

Examples:

1. In thapter III.4 we find the LEFT$ function described thua: LEFTH{KS ,<J0>)

Thiz meana that LEFT$ must have two arguments separated by a comma, and
enclosed within parentheses., The first argument must be a legal string
expreasicn, and the second argument must be a number in the range 0 to 255
{reasonatle, sinece we carmot have strings longer than 255 pharac- ters).

e.g. LEFT$("NAME "+X$,7) is legal.

2. In Chapter IIT.1, the ON..GOTO command is shown:
ON <J> GOTO <L1> <L2>, .., <Lln>

This mears that CN must be followed by a number in the range O to 255
followed by the word GOTO followed by one cr more line numbers <L1> to <lnl,
Each of these line numbera (if more than one) must be separated by a comma.

e.g. ON X GOTO 100G, 2000, 3000 will simply drop to the next line if X is 0 or
greater than 3, otherwise a GOTO will be executed to one of lines 1000, 2000
or 3000 according to the wvalue of X being 1, 2 or 3 respectively.

I. GETTING STARTER WITH XBASIC

1. RUKNNING UP XBASIC

Having loaded XBASIC from your tape or disc, you should be rewarded with the
'sign-on' message, i.e:

Hagcom Enharnced BASIC Rev xx
(CI11982 ¥ral

Slze: yyyyy

(8 14

where xx represents the sub-veraion for your machine, and yyyyy the memory
size avallable for storage of BASIC program and variables, The (k prompt
shows that XBASIC available and is not running a program, but is waiting for
a command to be typed ln at the keyboard. Virtually any of the commands or
statements listed in the following chapters may be typed i1n and executed,
along with a number of special commands glven in Chapter II, known as
'SYSTEM' commands. For example, we may use the machine as a caleculator:

L]

Example:
PRINT ATN{1,%4 Yot type this line

3.1415% Computer prints the result of 4 times the arc-
tangent of 1 \

This is known as DIRECT execution mode, aince commands are executed DIRECTLly
they are Cyped.

Alternatively, commands and statements may be entered without being executed,
by typing a line nurmber in front of it, A sequence of one or more lines
entered in this way forms a PROGHAM, which may be executed by means of the
RUN commang {(see below). Thia is known PROGRAM mode.

Line numbers may range between 1 and 65535, and may be followed by one or
more commands. Efach line so entered 1s automatically placed in order, with
line 1 at the front. Line numbers may be selected arbitrarily by the user,
but it is recommended that reasonable gaps be left (say, 10) between lines,
80 that extra lines may be inserted if these are later found to be necessary,
in the development of a program. The program may begin with any line number,
tut the first line to be interpreted will always be the lowest line number
entered,

A line may be deleted by entering its number followed by <ENTER», with no
other information.

Several commands may be entered on a single line by separating them with
colons:

*

Example:

10 PRINT 2%13 : PRINT 546 You type these

RUN lines -

26 Computer responds with the answers

11

Separation in this mammer allows several commands to be entered in DIRE(CT
mode as well as in a program.

2. NUMBERS AND STRINGS

There are two types of quantity allowed in XBASIC - numbers and strings.
Numbersa may alsc inelude fleating-point numbers, integers, and hexadecimals.

2.1 Humbera

These can be whole numbers (integera) or floating-peint numbers (reals). A
number is stored internally as four bytes, cne of which represents a signed
exponent, while the other three represent a signed mantissa. This gives an
exponent range from -33 to 38, with a seven-digit signed mantissa. Although
the full seven digits are available for internal talculation, they are
rounded off to six flgures when output, the seventh figure belng known as a
‘guard' digit. When accuracy is at a premium, the seventh digit should always
be used, if kncwn, since Xtal BASIC can make use of it, even though only aix
significant figures are displayed.

ixample:
The PI function actually uses 3.141593, even though it displays &s
3.14139 (to show this, try PRINT PI-3).

Leading and trailing zerces are suppressed on output, so that integers are
actually printed as such without long rows of zeroes,

Examples:
3 3.1159 314159 0314159 3,M1SQE.08 -3. 14159E-37

These are all possible forms in which numbers may be output. The last two,

for those not familiar with them, are in SCIENTIFIC notation, a form only
uged when the output is too large or too small to be conveniently printed in
arly other way. Numbers may be INPUT in this form, if required.

2.2 Integers

XBASIC supports 16-bit integers, $.e, whole numbers in the range -32768 to
+32767. Integers outside that range may only be stored in ordinary numeric
variables (see next section, on variables), but integera in this range may be
stored internally in two bytes instead of four {for simplicity of designh of
the interpreter, we actually satore integers in four bytes for =imple
variables, and two bytes per element within arrays, where the greatest
savings may be made). '

We use an additional convention with integers, however, that numbers in the
ranges -65535 to -32769, and 32768 to 65535, may be accepted by integar
variables, since it 1s often useful to do sc. In tihese cases, the values are
internally converted to lie in the ranges 1 to 32757 and -32768 to -]
respectively (since we should otherwlise need 17 bits to store such numbers).

2.3 Hexadecimal numbers

The allowance of hexadecimal numbers in XBASIC greatly increases the sase of
linkage to machine-code routines and locations, and they may normally be used
in any expressions requiring numeric quantities. The only limitations are
that only integers are allowed for, in the range &0 to &FFFF. To indicate a

)

hexadecimal number, a leading ampersand '&' symbol is supplied, followed by a
string of characters, each of which may a number in the range 0 to 9, or a
letter in the range A to F, When encountered within a numeric expression, a
hexajecimal number 1is internally converted into a deeimal integer and the
result of such an expression will =till always be a normal number. The
hexadecimal number may consist of 1 to U diglts. More may be entered, but all
axcept the last four will then be ignored,

Exampies:

&1F34 represents 7988 in decimal. _

LAT represents 167 in decimal. .
&1F34 still represents 7988 in decimal (the first digit is ignored).

To obtaln the hexadecimal equivalent of 2 decimal number, the HEX$ function
may be used {see Chapter VII.1).

2.4 Strings

These are combinations of ASCII characters representing letters, numbers and
symbols, useful for storing names, titles and text, although their intrinsic
data can be extracted by the interpreter and they are frequently used to hold
numeric values as well. A string can be any combination of up to 255
characters, usually shown in quotes " " in order to prevent confusion with
nurbers or variables.

Examples:
"TREYOR" "Trevor® ™2345.6% "Oh! ®*#" are all valid strings,

3. VARIABLES

A variable 1s a combination of letters and/or numberz, the first character
being a letter. XBASIC distinguishes the first FIVE characters {most BASICs
distinguish only the first two}. Variables may be of either numeric, integer
or string type, and hold numbers, whole numbers and strings respectively.
Integer variables must be suffixed with a "', and string variables with a
'$'. There i3 no theoretical limit to the length of a variable name, although
the length of the input line will clearly limit itt

Examples:
A AA X9 Z9J X$ Fut ABCDS AB123% KRAZY KRAZYID

are all valid variables,although BASIC would be unable to distinguish
between the names of the last pair, since their first five characters
are the same, .

Lare must be taken to ensure that variable namea do not- contaln reserved
words, otherwise SYNTAX ERRORs will result, '

Examples: "
TONE LETTER OOST EXPENSE PINCH TERROR TGO "LET o3
EXP INCH ERR {and OR)

will all ¢ausze problema,

Keeping variable names to two characters will aclve this problem {the only 2.
character names in XBASIC are IF, TO and FN) and this also saves space.

Integer variables may contain only integers in the range -65535 to 465535,
but they may also contain hexadecimal numbers. However, values returned by
integer variables are in the range -32708 to +32767, using the most-signific-
ant bit as a S5ICN flag (thess may be regarded as sixteen-plt numbers).

Example:

K6=65535: PRINT &% will display the value -1
LCC=49678: PRINT LOC will display the value 38520
LOG:=49678; PRINT LOG will display the value =27016

In addition to simple rumeric and string warlables, we can use numeric and
string arraya. An array 1s, in effect, a table full of variables, aach of
which can be uniguely identified. Naming of arrays takes exactly the same
form as for simple variables, except that they are followed by a set of one
or more subsaripts, each subscript representing cone of the dimensions of that

variable. :

Examples:
A(0) TABLEG(5,6) NAME$(1,0,2)

are 81l valid arrays, where A is an array of one dimension, the sub-
script (0} referring to the FIRST element. TABLE: is a two-dimension-
al integer array and NAME$ 13 a three-dimensional array holding
strings, each of which may be up to 255 characters in length.

In XBASIC all array subscripts number from zero.

In order for BASIC Lo know how much space to allocate to an array, the array
in question must be dimensiconed with a DIM statement {(see (hapter III.1)
before being brought into use. However, if all subseripts In an array have
maxiomm values of 10 or less, then that array may be used without a DIM
statement.

Example
AA(T,4,6)=56

will dimension that array exactly as though the following had been
written:
DIM AA{10,10,10}:AAL7,4,6)=50

assuming that no previcus DIM statement has been used for AA. This
array will have 11*11*11=1331 elements, requiring over 5320 Dbytes to
store it! NOTE: If we had used an integer array Af%, we should only
require about 2670 bytes to store it.

Fl

5. EXPRESSIONS

s e i ek s e e sl e e Mkl
-

Expressicns consist of variables, numbers, string variables or strings in any
combination, and related by means of arithmetic and/or logle operations.

5.1 Arithmetic coperators
The arithmetic operations zllowed in XBASIC are as followa:

+ {add) - (subtract) * (maltiply) / (divide)
4 {raise to power} MOD {remainder)

The £ operator has the following conventions:
X +t0=1"for =0, and 0 % Y=0 for DO (so 0% 0 = 1),
X +Y 1s undefined for X0 or for ¥:=0 and ¥O.

The MOD operator is the remainder from a division, and can be defined as

follows:
X MOD Y = X - ¥ * INT{X/Y)

Examples:

5 MOD 3 returns 2

-5 MOD 3 retwns 1 (see definition of INT, (Chapter III.3).
5.2 HRelaticnal and logical operators

RELATIONAL operators are used for compariscns and the evaluation of cond-
itions, particularly for IF statements. The ones allowed are:

> {greater than) »= (greater than or egqual to}
< [less than) <= {less than or equal to}
= {equal to) <> {not equal to)

LOGICAL operators allowed are:
NOT AND QR AX0R {exclusive-0R)

Example:
10 IF (X+Y-Z)>3 AND ¥=20 THEN 100

Expressions involving relational operatora and logical operators are normally
used within IF statements {(Chapter III.1), but can also be used within normal
arithmetic expressions, since a relational expression returns a value -1 if
it is TRUE, and O i’ FALSE., Ih some cases, quite a lot of space can be saved.

Example:
IF X»15 THEN A=0: ELSE A=} can be replaced by:
Az -(X>15)

.3 Bit manipulation

Logical operators may alse be used for bit manipulation, provided that the
sub-expressions on either side evaluate to results in the range -65535 to
65535 (i.e, they can be thought of as sixteen-bit quantities). Then AND, OR,
XOR and NOT will all work upon the individual respective bits of the two
expressions. .

Example:

PRINT 1234 AND 3412 outputa the result 1104
GO00 0100 1101 0010 {1234 = gO4Le)

0000 1101 0101 100 (3412 = &0IK4)

0000 0100 0101 0000 (1104 = &0450)

e .

T

5.4 Uperator precedence

Operator precedence follows the usual mathematical order. We also include the
relaticnal and logical operators here, so that they may be used within
arithmetic expressicns with the correct precedence:

Highest precedence: é} (parentheses).
/MR
[E—
LA -
NOT
AND
Lowest precedence: XOR CR

5.5 String expressions

XBASIC alao ailows string expressions, but the ohly operator ia CONCATENAT-
10N, represented by '+', .

Example:

A$="ABC": DB$="DEF": C$=A$+B$: PRINT C3
putputs the result

"ABCDEF!

String compariscon may alsc be performed for alphabetice sorting, since
HgMHnat - fopr example. In comparing twWwoe Sstrings, the oomparison 1s done
character by character, until a position is found in which the two differ.
The ‘greatep' string is then the cne whosze character haz the greabter ASCIT
pode. IF no differences are found, bubt one string is longer than the other,
the longer string is considered to be the greater.

Examples:

"GOLIATH" i=s greater than "Da¥ID!

TANDY" is greater than "ANDREW!

VBROTHEEHOCODY i3 greater than "BROTHER™

"Hello™ > "Goodbye" returns the numeric result -1 (true).

I1. THE SYSTEM EDITCR AND SYSTEM COMMANDS

1. SCREEN UCONTROL CODES

—— B

The following VDU control codes are used by XBASIC on the standard 48x36 VDU.
Note, incidentally, that all 16 lines scroll when running XBASIC.

Strl-a &1 HOME ewrsor to top left corner of soreen.

<TABR> &09 TAB cursor to next print ZONE, by printing spaces. towever,
see also IOM command in Chapter IV.3.

<LEF> DA LINE FEED, or move cursor DOWN. Scroll sereen at bottom.

LA 200 CLEAR SCREEN and Home cursor to top left corner,

<UR> 00 CARRIAGE RETUBN, without line feed.

ctrl-P &10 PRINT SCREEN to printer {device £1, see Uhapter IV.1).
Cerl-g &1 Move cursor LEFT.

Ctrl-B &12 - Move curaor RIGHT.

Ctrl-3 &13 Meve curscr UR.

Ctrl=T &14 Move curscr DOWH (same as <LE>»).

2. THE XBASIC EDITOR

P g e . o

This powerful facility, available to you the momeni that XBASIC 1a entered,
has been designed in an attempt to make program entry and debugging more of a
pleasure rather. Input lines may be up to 127 characters long, and note is
kept at all times of where the atart and finish of the line is. 3o, il you
have several lines in a listing, you may move the curscor up the screen to -
that llne and make modificationa to it, even if it cocuples LWo or more rows
on the serean, If the line is extended so that it will apparently run into
the next one, the lines below simply move down one row to make room for it,
Mote that the medified line iz only entered into the program when the <ENTER>
key 1is pressed while the cursor sits in one of the rows of the screen
containing that line.

The following special key functions are available, thne ones in brackets
indicating the equivalents for the Nascom 1 keyboard:

Ctrl-a (8a) HOME curasr to top left corner of soreen.

2B or <UX» CLEAR screen and Home cursor.

1 * (B} Move cursor RIGHT,

(g Move cursor LEFT,

1 (85} Move curscr UP.

1vO(BT) Move cursor DOWN (secroll sereen at bottom).

<BS DELETE character to the LEFT, but moving rest of line one
place to the left.

s' v (8U) DELETE character from the RIGHT,moving rest of line cne place
to the left. :

st {(&V) INSERT apace at curzor, moving rest of line one place to the

right, and moving lines below it one row down, if required.
NOTE: An 1lnserticn done at the bottom line of the soreen will
cause an immediate seroli, moving the cursor up with it.
This has no ill effects, apart from being =2 bit disconcerting
when first ocbaserved.

10

Ctrl-W (W) ERASE whole line. This differs from Ctrl-X in that the cursor
is returned to the start of the line befora clearing it.

Crrl-X {&4) ERASE to end of line {even if it occupies 2 or more rows),
the current cursor position.
Ctrl-0 (60) ERASE to end of screen from current cursor positicn,

CLrl-P (EP) PRINT SCREEN contents to printer.

<BESC> (=<NL>) Abandons a line ({though you could just use an arrow key or
a Ctri-W!} and prints the 'Ok' prompt.

<CR> or <NL> ENTER the current line on which the curscr sits intoc BASIC,
cursor will end uwp sitting at the start of the next line
{i.e, not necessarily the next ROW of the screen). Leading
and trailing spaces are ignered, and lines of gZreater than
127 characters will be truncated to 127 {this being the size
of the butfer area).

If this 1a all as clear as mud({!}, the best thing to do is to 'play'!

3. THE LINE EDITOR

——

In addition tc the screen editor, 2 ‘'Line edit' mode 13 alse available,
primarily for use within programs, wnen to use the screen editor could cause
gome irritation {since the INPUT prompt would also be assumed to be part of
the input line! On the other hand, this could also be very useful im c=rtain
applications).

In this mode, cursor movement keys are not available, except that ' ' and
<BS> both delete the last character from the line, Ctri-P atill gives a
screen dump to printer, <ES(C> abandons the line, and <CR> enters it into
BASIC,

For the reasons outlined above, screen edit mode is 'switched on' automatic-
ally in direct mode, and LINE EDIT mode turmed on for programs. In addition,
the user may use the IOM command (see Chapter IV.3}, inside or outside a
program to change the editing mode: IOM 0,1 gives SUREEN EDIT mode, IOM (,0
gives LINE EDIT mode. In direct mode, IOM 2,0 should be used befors IOM 0,0 ,
otherwise screen edit mode will be reselected on completion of the statement,

LINE EDIT mode shows itself by means of a prompt at the start of the line
(*]* in direct mode and '?' in an INPUT statement with no specified prompt

string).

SPECIAL NOTE: In spite of the declaration above that lines are limited to 127
characters in length, it is pomsible to move the buffer area to other aress
in the memory space, and to change the buffer length up to 254 characters
maximum! This may be done by means of the PIR command (see Chapter VII). Care
must then be taken over selection of the area used to contsin the buffer, ang
it is recommended that an area created by means of a CLEAR command be used.

4, SYSTEM COMMANDS

The following commands are normally intended for use in direect mode, although
some (such as HUN and LIST} can also be used to advantage within programs,
and CHAIN is used almost entirely within programs. Because they all affect
mxdification and overall control of programs and of the system, they are all
referred to as SYSTEM commands:

11

M Takes control back to the ogperating system, or the menitor. This is the
command to use when you wish to leave XBASIC.

NEW Causes all program liness and variables, if any, to be deleted,

DEL <L1><L2> Deletes all lipes from the program in the ranges <L1> to <12>,
Both start and finish lines should be apecified, but wiil default to 10 if
not givenl If <L1> is larger than <iLZ>, or if <L1> is larger than the largest
line present, a RANGE ERROUR will occur.

Example:
DEL 100,199 desletes all lines with numbers from 100 to 199 inclusive

LIST <i1>,<I2»>,<I3> Lists the program to the curpent output device, The
listing s=starts from the First line after <Ii> and ends at line <I3> or the
first line after <I3> if that line is not present. <I2> gives the number of
lines to 1ilst at a time. After <IZ> lines have been liated, there will be a
pause. The user then presses a Key, and the listing continues with anothap
<I2>» lines (except for scme special keys, given in note (iii)}. Any or all of
the expressions may be omitted, but the appropriate commas should be present
if’ <I2>» and/or <I3> are specified.

Examples:

LIST Lists wnocle program

LIST L5 Lists whole program, 5 lines at a time

LIST 100,7 Lists 7 lines at a time starting from 10

LIST 200 Still lists 7 lines at a time, starting from line 200
LIST 100,,199 Lists 7 lines at a time from 100 to 199

LIST ,4,299 Lists 4 lines at a time from the start to line 299
LIST ,,199 Lists 4 lines at a time from the start to line 199

LIST 300,5,999 Lists 5 lines at a time from 300 to 999
Nates:

(i) BASIC remembers the last value of <I2> given and keeps using it until
LIST is used with a different value. When BASIU starta up, <IZ> 15 assumed to
be 65535, until given.

(i1} A listing may be abandoned at any time, whether paused or not, by
preasing <ES(C.

{iii} When paused, the cursor movement Keys may be used to apandon the
listipng and, at the same time, move the cursor in the direction of the key
pressed, This only works in 3CREEN EDIT mode {see section 3 of this Chapter).
The purpose of thisz i3 to allow gquick exit to the Editer, without having to
remember to preas <ESS first!

{iv) Unlike many BASIC s, the LIST command may be used within a program as a
normal statement, and note alse that <I1>, <I2> and <I3> may all be
FEXPRESSIONS. This can be extremely nice!

Example: -
X=100: Y=50: LIST X,Y,X+99 Liats from line 100 to 19%, 50 lines at a time.

Foa

12

AUTO <Lit»«<LZ> Automatic line-numbering while entering programs, This
command requires a start line and increment <LZ>, and both of these
default to 10 1f not given.

Examples:

AUTO 100,5 Starts from line 100 and continwes 105, 110, 115, ete.
AUTO 100 Starts from line 10 and continuwes 170, 120, 130, etg.
AUTD Starts from line 10 and continues 20, 30, 40, 50, ete.

Each line number is displayed just as if it had been typad from the keyboard,
and the user may enter the usual program statements at that point. On
pressing <CR> in that line, the text is entered with its line number in the
usual way, and then the next line number appears. The user then continues
with this line, When finished, just type <ESC> to abandon, whereupon pormal
direct mode will be re-entered. Any error (BRANCH ERRCH is common, when the
uger just presses <CR> without entering any statement and the line dces not
exiat) will also cause a return to normal direct mode. The editing mode is
not affected by this command.

L]

LOAD <F> Lloads a file from tape OR dise ({depending which is availabie,
either if' both are available) whose file name 1is <F>», The file name
convention is described in full in Chapter IV.4, B0 the user is referred to
that.

Examples:
LOaD "TEST" loads the program file "TEST.XBS" from the ourrent default

disc or tape drive. Any existing program in memory 13 deleted, but note that

variables are NOT destroyed.

LOAD "B:TEST.ASU" Loads the ASCIT program file "TEST,ASC' from dise drive
B, whatever the current default drive. In this mode, the user may actually
observe the file loading, appearing line-by-line on the screen. Again,
variabies are NOT destroyed, but neitner is the existing program. Thus the
user may add extra routines to exdisting programs, and the added lines will
appear at tneir correct positions in relation to those already present. Hote,
nowever, that if a new program is to be loaded as a (ASC file, a NeW command
must first be executed.

LOAD "T:BOQUTINES.OBJ" [oads the machine—code routinea or data from the file
"ROUTINES.QBJ" on tape drive T, into the area previcusly reserved for them in
the memory map (by means of the CLEAR sommand), The start address will be
assumed to be the [first location above this CLEARed area (e.g, if a CLEAR
&9FFF has been done, the file will iopad starting at &A8000). See also Chapter
¥Ii.2.

In ail thres cases, if the size of the File is larger than the area avajil-
able, a MEM FULL ERROR will occur. If the file is not present,a NO FILE ERRCE
will occur 1if a dise drive is being searched, while no pesult will be ret-
urned if a tape drive is being searched - the user simply has to abandon the
tape load, as explained in Appendix B.

Il a type other than XBS, ASC or CBJ is specified, a FILE TYPE ERROR will
ocour (this also applies to SAVE. If it is desired to load or save data
filea, use the file access commands described in Chapter V).

i ek !

13

BAVE <F>» Az for [ODAD, but =aves a [ile named <F> to tape or disc,

Examples:

- SHVE "T:TEST" Zaves the program file “TEST.XBS" to tape drive T, whatever the
current default drive.

SAVE "TEST. ASCY,<X1> <12, <I3> Saves the program in ASCII format from lines
<Ii> to <I3>. The value of <IZ2> has no effect here, but should be a legal
integer quantity 0-65335. The format s, in fact, like that of LIST, excapt
that nothing appears on the ascreen, and NO pauses are made at avery <I2>
lines.

SAVE “TEST.ASC" by itself will save the whole program in this form.

SAVE "AIMUSTUFF.OBJ",<I1>,<I2> Saves the area of memory starting from <I1>

and ending at <IZ» Lo dise drive 4, Both <I1> and <I2> MUST be specified, and -

<IZ2> must be larger than <I1>», otherwise nothing will actually be saved.
Although intended for saving routines For use in the 'machine-code area' (see
memory map, Appendix B), there is no restriction on the actual area of memory
saved,

VERIFY <F> Verifies the file named <F> on tape or dise, reporting a
checksum error as a BAD DATA ERROR. This command works in the same way as
LOAD, except that program files are not loaded into memory, but treated as if
they were data flles. Any valid file name may be specified. As for LOAD, if
an attempt to verify a non-existent dise file, a KO FILE ERROR will result.

CLEAR <I1>,£I2> Clears all variables and arrays from the system, and clears
out all atrings.

When specified, <I'> and <IZ> set up the the topmost location of memory .
available to BASIC (<I1>} and size of the stack (KIZ>»), additional to
clearing the variables.

The stack 1s usually 256 bytes, and may not be set to a smaller value,

It will not normally be necessary to increase the size of the stack, unless a
large number of nested FOR loops, subroutines and expressions are used {(if
you encounter STACK FULL ERRORs, this is usually because subroutines are
being entered and not RETURNed from (i.e, something naughty is being done!).
If <I1> %5 not specified, the stack size will remain unaltered.

The top of memory is set in order to leave space for ORJ Files, that is
machine—code reoutines or data, KNormally, none iz reserved, ard the value
reserved 1s left unchanged if <I2> is omitted. <I2> may not be set above the
top of the RAM space - any attempt to do so, or to set it too low, orf to set
too large a stack size, will result in a MEM FULL ERROR.

Examples:

CLEAR ,500 sets 500 bytes of stack space. : y

CLEAR &T7FFF sets the top location of RAM for BASIC programs and variables
to &¥FFF, so that machine-code stuff can be placed in the area from 48000 Up.
The stack size is unaffected.

CLEAR &AFFF,300 sets 300 bytes of stack spaee, and the top location to &AFFF,

RUN Begins execution of the program currently in memory, starting at the
lowest line number, and clearing all variables. The following variations are
also available:

RUN <L> - Begins execution at line number <L
RUN <F> - Equivalent to a LOAD <F> fellowed by a RUN. This can be used within
a program as well, to link from one program intc another.

l4

CHAIN Exactly the same as RUN, except that, in all three variations all
variables are preserved, and can thus be passed from one program to another.
Thia is an extremely useful command, particularly when it is desired to run
an extremely large application, which may be split into several amaller
programs sharing the same variables. See also section 4 of this chapter for a
dilscussion of applicaticns of this command.

HOLD <L1>,<12> 'Holds' a range of lines for view in a program, so that
another program may be appended to it, or sc that this range may be
renumbered, and thus moved to another part of the program. The effect is that
the rest of the program seems to have disappeared. In fact, it is still
present in memory, but cannct be found by a LIST command, nor executed by
RUN, ete. Both <L1> and <L2> may be omitted, their default values being O and
65535 respectively. Thus, HOLD by itself has no effect.

Examples:

HOLD 100,199 Leaves only lines 100-199 inclusive 'in view'.

HCLD 100 Leaves all lines from 100 up in view.

HOLD , 199 Leaves all lines up to and including 199 in view. ;

What actually happens is rather ‘'sneaxy‘'. The normal text pointer TEXT is
moved up to polnt to the start of line <iL1», while the 'start of next line!
pointer held within the line immediately above <L2> is set to a pair of
nulls. Note that TXTTOP is still pointing to the real end of text. The
program memory map then looks like this:

HTEXT TEXT 0000 TXTTOP
e e e e e e e e e e e e e + 'QGDG

! HIDDEN AREA ! LISTABLE PROGRAM AREA 1| HIDDEN AREA |

e e e e g + el el L o S ————

Note that the listable area can be modified and even RUN without affecting
the hidden areas. LOADing another program DOES destroy the upper hidden area,
but does not affect the lower cne.

MOE Restores sanity to a 'held! program. MGE does not just replace text
correctly and restore the removed line pointer - it does a true 'merge' of
the held area, so that the lines of the resulting program follow their
eorrect order. MGE takes no account of two or more lines having the same line
nunber, and both lines would then appear in the text together.

RENUM <L1>,<{L2> PRenumbers a 'held' program, or the whole of it if no HOLD
cemmand has previously been used. <L1> is the new starting line, and <[2> the
increment. ALl references Following GOTO, GOSUB, RUMN, THEN, FLSE and RESTORE
commands are modified to their new line numbers. Only the 1line numbers within
the listable area (see HOLD) are modified, but references to modified lines
are checked throughout the whole program. This means that, by using HOLD,
followed by a RENUM, and firally doing a MGE, whole sections of the program
may be moved into a different area of the program.

Hote that both <L1> and <LZ> may be omitted, each defaulting to 10, as for
the AUTO command.

f’,

15

Examplea:
RENUM 1000,5 Renumber, making the first line become 1000, and incrementing in

5ta.
RENUM 500 Make the first line 500, increment In 10's.
RENUM 20 Make thne first line 10, increment in 20's,

S. CHAINING AND 'SEMI-CHAINING' PROGRAMS

. T T T e . b8 oy - —

The RUN & CHAIN commands have already been mentioned in the previous section.
In addition to allowing the use of RUN and CHAIN commands from direct or
deferred mode, Xtal BASIC 3 allows the ‘'semi-~CHAIN' of programs, so that
several programs may use a commnon 'pool' of suberoutines, without having to
keep tne same set of routines within each sub-program. This saves file space,
and greatly improves the efficiency of a CHAIN, by speeding up the loading
of each sub-program.

To oo this, we use the HOLD command before executing a RUN or CHAIN. The RUN
and CHAIN commands both restore a 'held' program by setting TEXT back to
HTEXT as soon as the program has loaded. However, execution of the resulting
program wWill ecormence at the start of the added seation, NOT at the start of
the program. The only restriction is tnat the commob sub-routines must have
line numbers smaller than those in any of the sub=programs. The Fallowing
simplified memory map should help to explain what we are trying to do:

Foiom=m==ZEE :==+

{ COMMON 1

! !

! ROUTINES !

HOLI:; +SSEE=aTscoo4 +z===smc-cxme +TzE=TTa=SE4 eto.

! INITIAL 1 ! SuB I I SUB |

! ROUTINES ! ! 1 ! ! 2 !

EX 1+ 1 ¢+ E TN I 1 A==z ===o==4

By 'INITTAL' routines, we mean those which set up arrays, variasbles and
memory space, 3uch as DIM and CLEAR statements, which only need to be
executed once (indeed, the initial routines couid be gontained in a separate
sub-program which would CHAIN to that containing the OOMMON routines). As may
Le seen, just ONE sub-program actually contains the common routines. When
SUBZ or SUB3 are CHAINED, they may use the commen routines, just as SUBT.

16

ITI. COMMANDS, STATEMENTS AND FUNCTIONS

1. COMMANDS/STATEMENTZ

There now follows a list of commands and statements available 1n XBASIC in
its unmodified {by the user) version:

CLS Clears the screen on the current cutput device, or sends a
form feed code, if the output device is a printer.

CONT {fausea an interrupted program to resume without clearing the
variables. It may be used after a program has terminated with a STOP command.
During the stopped period, the user may locok at or alter variables without
doling any harm, although any attermpt to modify the program itself will cause
a CONT ERHOR to oceour. CORT may also be used after a program interrupt using
<ES>, This {s a particularly useful aid to debugging in, for example, the
tracing of an infinite loop. '

[IM This is used to preserve storage for numerie or string arrays.
It takes the form DIM ARI1(I1,I2,..,In},82(..},...,An(..) , where A} to An are
names ol one or more arrays, and I to In are pmumeric expressions in the
range 0-65535 representing the maximum size of each dimension in the array.
If an array is referenced without having first been dimensioned, it 1is
assumad to have a maximum subseript of 10 for each dimension referenced.

The DIM statement thus defines the amount of storage, the number of
dimensiona and the size of each dimension in the array.

An array may not be dimenaioned more than once in each program - an attempt
to do so will result in a DIMENSION ERRCR.

END Tarminates execution of a program. It 1s not strietly
necessary when the end of the program coincides with the end of the highest
line number.

FOR <U>=<N1> TO <N2> STEP <N3» Allows us to set up program LOOPa, for the
repetition of sequences of one or more statements.

<U> is known as the CONTROL VARIABLE, which MUST be a simple numeric
variable. '

<N1> i3 the INITIAL VALUE to which the control variable is set.

<NZ> i3 the LIMIT VALUE, which, when passed, ends the loop.

<N3> is the optional STEP VALUE, which is the amount by which <> is
changed on each iteration of the loop. If STEP {HB} i3 omitted, a
step value of 1 is assumed,

The statement(a) within the loop follow(s) the FOR statement. To indicate the
end of the loop, we use the NEXT statement,which takes the form:

NEXT <> <>, .., <> where <U1> t6 <Up» represent control variables of n
nested FOR loops, and is egquivalent to the ssquence of statements

17

WEXT <Ui>:; NEXT <U2>: .., : NEXT <U> .

NEXT <[> adds the value of <E3> (or 1, as the case may be), and then compares
<> with <N&>. If <> is greater than <M2> (or LESS, if <NT> was negative),
execution continues on after the NEXT statement, otherwize execution trans-
fera back to the statement irmediately following the FOR statement corres-
ponding to <. If <U> does not correspond to an active FOR loop, a NEXT
ERRUR will occur, otherwise, if it does not correspond to the last FOR
statement, that one will be abandoned, as will any others, until the
specified onhe is found. Note: If no wvariable :is specified, the last SOR
statement is assumed to be the desired one.

Exampie 1: We may wish to print out square roots of numbers between]
and 10. We can do this:

16 FOR I=1 TO 10

20 PRINT SQR(I)

3 NEXT I

Example 2:
S DIM a(7,7)
10 FOR X=0 TO
20 FOR Y=0 TD
30 alX,Y)=H
40 NEXT Y,X

- When RUN, this routine sets all elements of an 8x8 array 4 to § (line

30).

7
T

GOTO <L> Tranasfers program execution to line <t>. If <L> does not
exlat, a BRANCH ERROR will coour. '

GOSUB <[> Transfers program execution to line <[>, BExscution continues
from there until a RETURN statement is encountered, whersupon execution ia
returned to the lipe immediately following the original GOSUB statement. In
this way, subroutines may be implemented. If <I> does not exist, a BRANCH
ERRCR will oceur,

RETURN Terminates a subroutine accessea by a GOSUB statement. IFf a
RETURN 1is encountered without having been preceded by a GOSUB in this way, a
RETUAN ERROR will ceccur.

POP Removes, or 'pops' one address off the stack of GISUB
addresses, so that the rext RETURN will branch one statement beyond the
SECOND most recently executed GOSUB. As witihn RETURN, a RETURN ERROR will
occur if no GOSUBs are currently active. ;

IF Allows the evaluation of conditions, 8o that the macnine may
make a choice depending on whether a condition 1s true or false. The most
general form ia: IF <N> THEN <X1>: <X2>: ..: <¥n>: ELSE <¥n+1>: ..: <¥m>

The expression <N> is evaluated and, if non-zerc (TRUE), execution continues
with the statemept(s) <Xi> to <¥n> following THEN. In this case, the ELSE
statement and the rest of the line after it is ignored. If <N> IS zero
(representing FALSE}, executlon continues with the statements following ELSE,
ignoring the cnas betuween THEN and ELZE.

11

ELSE is optional, and execution transfers.to the next line if <N> i{s ralse
and ELSE ia not in the line, ELSEs may not be nested (or rather, they MAY be,
but the result will be that only the first one will have any significance.
The following DOES, however, work: IF .. THEN ... ELSE IF .. THEN .. ELSE ..

{ther forms of IF statement allcowed ars:

IF <N> THEN <L1> ELSE <12>

Ir <N> GOTQ <L1>» ELSE <L2>, which is equivalent. Again, ELSE is optional in
both cases. If <N> is true, exacution transfers to line <L1>, otherwise to
<12,

It 1s also possible to mix the twe forms, replacing either <L1> or <L2> with
statemsnts (if <L1> is replaced by statements, there MUST be a statement
separator (i) between the last statement and the ELSE), but a line nurber
mast, of course, follow the GOTC, if that form is used.

INPUT Used for getting input, from the keyboard, frem a file, .or
from some other input device. The last two are described in Chapters IV and
W

The vsual form iz as follows:
INPUT '™ Prompt>"; {U1},{‘H’2}, - e VO

The prompt ia optional, but must be & string in quotes followed by a ; if
used. If no prompt is used, BASIC prompts with a 7. However, if the system is
in screen edit mede (see Chapter IT.1}) and no prompt has besen used, no
question-mark will appear (so that a line may be input without any Jjunk in
front of it!).

Data entered as a result of an INPUT command may be in the form of mrmbers,
strings, or stripgs within quotes. In the case of more than one variabple
being filled, the entries must be separated by a special character, NORMaLLY
a comma (but see SEP command in Chapter IV,3).

If the number of entries typed in exceeds the required number for the INPUT
atatement, then only the first values entered will be used, followed by the
displayed message EXTRA IGNORED, If insufficient data is entered, a further
prompt ¥ will appear.

If the user attempts to enter a string when numeric data is required, the
non-numeric data will be ignored, and 0 will be assumed if the first
character is non-numerio.

Examplea:

10 INPUT "Name, Rank and Mumber: "; NAME$, RANKS, N
20 PRINT RANKS$,NAMES:N !
RON

Name, Rank and Nurber: CORNISH, Capt,506659

Capt CCRNISH 506659

LET <¥>=<E> or <\>=<E> Assigns the value of <E> to the variable <V¥>, The word
LET is optional, but is REALLY more correct!

19

Example:

LET Ah=1+2%3/Y4 assigns the value 4.5 to wvariable AA

LET TEMP:=12 assigns the valus 12 to integer variable TEMP

NAMES= "JOHN'' assigns the string JOHN to variable NaME$,
angd shows use of the format without the word
LET.

It is perfectly permissible to assign integer variables to ordinary real
variables, and even to assign [leoating-point guantities to integer variables,
In the latter case, however, the result MUST be in the range -65535 to 69535
(not forgetting that numbers in the ranges -H5535 to -32769 and 32768 to
b5535 willk be converted as snown in Chapter 1.25). Moreover, any floatinz-
point part will be lost, as if an INT functich (section 3 of this Chapter)
had been performed before assigning the result.

Example:
A=P1 13 the same as £H=INT(PI), and assigns tne value 3 to &b.

ON <J> GOTO <L1% <12, .. ,<Ln>

ON <J> GOSUB <L1>,<12>,..,<ln> In both cases, expression <J> 13 evaluated,
and exscution transfers to line <L1> if <J>=1, <L2>» if <J><2, and s0 crn. If
J>=0 er >n, execution continues with the next statement. The transfer
takes the form of a COTQ or GOSUB as specified and, in the case of a2 GOSUB,
execution will eontinue wWith the statement followinp the ON statement
after returning., NOTE: 4 Gty Error ccours if <J> iz negative!

Example:

10 INPUT "Type in the day of the week (1-7}";Da¥
20 FRINT ©I¢ ja 1

30 ON DAY GOSUB 110, 120,130, 140,150, 160, ¥70
O PRINT ™ today, "

50 END

100 HEM DaYs OF THE WEEK
1M} PRINT “"SUMDAYY:: RETURN
120 PRINT "MONDAY";: RETURN

130 PRINT "TUESDAY'":: HETURN

160 PRINT "WEDNESDAY!™: : RETURH

150 PRINT PTHURESDAY";: RETURN

160 PRINT “FRIDAY";: RETURN
170 PRINT "SATURDAY';: RETUAR

RUN .
Type in the day of the week {1-7): 3
It is TUESDAY today.

PRTHT Used for sending out to the screen, printer, a file, or to
zome other ocutput device. Specizl formata for cutput to other devices and
files are described in Chazpters IV and V). The usual form is to follow the
command PRINT with a list of expressions, each separated by ons of a
selecticon of zeparators. The expressions may be numeric or string types.

The separators between exprezsions may be as follows:

; leaves the {imaginary) print-head where it is, 8o that the next
expression will print directly from the end of the previous ons.

20

, moves the {imaginary)} print-head to the start of the next tab-paing,
of which there are several per line, normally 14 colums apart (but this may
be modified by means of the ZONE command, as Ty the ‘'tab limit'), If the
print eclumn is already past the tab imit, a CRLF is printed before the next
exprassion.

@ allows printing of expressions at specified points on the screen
using ccordinates. For this situation, the sereen is divided (irternally and
autematically) inte eolurns and rows (see fippendix B for the numbar of
colums and rows in your own system). Both coordinates must be specified as g
number between O and 255 but if either is greater than the number of eclumns
or rows {as appreopriate), a 'wrap-around' will sccur, Thus if, on a 48x16
screer, for example, we do a FRINT 57,24 the cursor actually moves to 9,8,
Coordinates must botn be given and separated by a comma, while the separatsr
between the ooordinates and the expression following may be a comma OF &
seml—colon {in this case, the separator has na effect)., This last separator
iz not needed if ro expression follows the esordinate specification.

Exeept in the case of a coordinate specification coming at the end of a PRINT
statement, a CELF is printed at the and of a PRINT statement unless a *;' or
*y! separator appears at the end of the statement,

By the same token, a PRINT statement by itself will just print a CRLF.

Example:

10 PRINT "HELLO"; "GOODBYE","TD YOU;987,
20 PRINT 1234

RUN

HELLOGOODBYE TO YOU 987 -+ 1234

Note that all numbers are printed with a leading and trailing space, the
leading space belng reserved for a sign which iz only shown 1if the number is
negative. Both of these spaces may, however, be removed, when desired, by
means of the IOM command (Chapter IV.3), for convenience and compatibility
with some other BASIUS, Moreover, numerie printout may be specizlly formatted
on printout by means of the FMT command {in the same section}), and the user
should eonsult this section for information about the various forms in whiech
nunbers may be diaplayed,

PRINT may be abbreviated to ? when typed in as a line of program taxt,
althougn it will still LIST as PRINT (except, of course, that ? 5tays as such
within REM and DATA statements, or within guotes).

READ, ...DATA.,..RESTORE are used for storing and using data from within a
prograr: as opposed to data entered by the user,)

READ <¥1>,<V2>,..,<Vn> Reads in data from a list stored in the program
within ane or more DATA statements. BASTC maintainsg a pointer which remembers
the last item of data read, so that subsequent READ statements will sontinue
from that point. The format is very like that of the INPUT statement {without
a prompt } and if there is insufficient data available, a DATA ERROE will
ocaur.

DATA <data> Specifies the items of data to be read. These items may be
rumbers, strings in guotes, or strings without quotes, provided they contain
no leading spaces or separators. The user may have as many DATA statements as

‘\._.r

21

are desired within a program, each containing as many or as few items as are
convenient, DATA statemsnts may appear at any position In a program and will
be read a3 thouph they were all in cone block.

DATA statements are ignored when encountered during the running of a pragram
{just like REM statements)

As with INPUT, the separator {(normally ', ') may be modifled by means of the
SEP command (see (hapter IV.3), and it must be remembered that this cormand
affects both INPUT and READ statements.

RESTORE <L Restores the intermal data pointer to the first DATA
statement Following line <[>, <> is optional and, if omitted, the pointer is
restored to the very first DATA statement in the program, In tinds way, DaTa
statements may be re-read several times within the same program, without
requiring to be stored In variables throughout the execution of the program,

REM Causes the remainder of the line to be ignored by the
Interprater. Its main use is for entering programming notes during the
developtient of a program, so that it may be more easily understood by anyone
reading it.

SET <£J12,<J2> RESET <J1>,<J2> Graphics commands, for turning on (and off')
graphics points on the display screen. The standard screen is arranged as 96
prints horizontally and 96 points vertically.

STOK Like END, terminates a program, but also displays the message
BREAK IN <L>, where <i> is the line number in which the termination ocours.
Several STOP commands may be used in & program, and execution may be
restarted from this break point by means ¢f the CONT command, provided that
no program alterations have been mads during the break,

SWAP <¥1>,<V¥2> 3waps the contents of variables <Vi> and <V¥2>, which may be
nireric or string variables or array elements, Clearly, they :mmst be of
similar type, otherwise a TYPE ERROR will oeccur. This command is very useful
in sorting algorithms, being ruch faster than the follow- ing:

Example:
SWAP A(I),A(I+1) replaces T=A{I): A{I}=A(TI+1): A{I+1)=T

where T is an extra variable which would othervwise be needed to nold one of

the other variables. The speed of this command becomes very apparent when
string sorting ia done, since only the POINTERS are swapped not the actual

strings themselves.

2, DISC OOMMANDS pe

The following are available only in the disc veralon of XBASIC:

DIR <F>» [Displays the directory, showing the files specified by <F>.

B .

22

If <F» 1is not glven, or is given az "4 *", a1l files are listed on the
default disec drive. Locked files are indicated by a * in front of their
names. The actual number of Files per line shown varies according to the
value of the zone limit {see ZONE, Chapter IV.3).

Example:

DIR

s H{BAS JOOM X2 .XB5
H & 7 LASC 1+ ROUTIRES, GBI
s ®INVADERS. ASC

CIR w#, aSCH

: XY2 ASC : ¥*TINVADERS, ASC

ERA <F> Erazes the file given by <F>. Only one file at a time may be
erased (to discourage wholesale slaughter when you don't really mean it!). A
No File error cccurs if <F> does not exist, and a File Locked error i the
file ie locked.

“n

REN <F2>,<F1> Renames the file given by <F1> to the name <FZ> [(note the
order in which the pames appear!). A File Exists error occurs {f the name
<F2>» iz glready present, and 2 No File error oocurs 1P <F1> does not exist,
If <Fi> in locked, a Fila locked Error occurs.

LOCK <F> Locks the file named <F>, so that it may not be writtem en,
ERAged or RENamed, A Mo File error gccurs if <Fr does not exist, Locked flles
are shown 1n a DIRectory display with a leading "*'.

UMLOCK <F> Unlocka the file <F> previously LOCKed, 30 that it may be
written to, ERAsed or RENamed.

3. STAMDARD FUNCTIONS

Note: where we say that a function 'returns' a value we mean, of course,
Ireturns for use within an expression'. If you wish to try out the examples
glven telow put the command PRINT in front, to display the deaired result.

Example:

PRINT ABS{-3.14159) will display the result 3.1415%
ABS(<N>) Returns the Absolute value of <M) !

Example:

ABS(-3.14159) returns 3.14159
ATH{<N>) Returns the Arctangent of <N> in radians ranging from -PI/2
to +PI/2)

Example:
ATN(! dreturns 0,785398, which is PI/U

23

LOS(<N>) Returns the cosine of <N>, where <¥> is in radians.

EVAL{<S>) Returns the result of evaluating the text in the string
expression <3>, as if it were part of the normal program text. This is part-
icularly useful when it may be desired te INPUT an expression for eval-
uation. Tha expression <S> must be syntactically correct, otherwise =z
SYNTAX ERROR will ocecur.

Example:

10 X=5

20 INFUT "Type in expression:";A$: Y=EVAL(A$)
30 PRINT "Result is: ™Y

RUN

Type 1n expression: 1+X=-EXP{X/3)

Result is: 706851

EXF (<) Raises e (value 2.71828..) to the power of <N>. If <N> is
greater than about 87, an OVFL ERROR will result (since the result will be
greater tnan 1 E39!).

INCH Returns the ASCII value of the next input character, which it
must first wait for. This is very useful for pausing betwsen pages of
instructions, for example. See also INCH$ and INCH$(N) in section 4 for the
verasion to use with strings.

INT{<N) Feturns the largest integer less than or equal to <N>. This
definition is important, since it applies also to negative numbera.

Examples:
INT(3.18159) returns the value 3.
INT(-3.14159) returns the value -4,

KBD Similar to INCH, but orly scans for input. It returns 0 if no
character is avallable, or the ASCII value if one has. It does rot wait for a
character. See also KBDS in section 4, the version for uss with strings.

LN{<N>) Returns the natural (base e} logarithm.
LOG(<M>) Returns the base 10 logarithm,

Care is needed when using these, since many BASICS use only LOG, and that for
natural logarithms conly. If <¥> is less than or egqual to ero, a QTY ERROR
Wwill ococur, ' ¢

Examples:

LN(2) returns 0,693147 .

LOG(2} returns 0.30103 '

Pl Returns the value 3.14159, and is faster than using a var-
iable to hold the number pl.

Ty

24

POINT(<J1>,<J2>} Used 1in conjuction with the special graphics commands SET
and RESET, returns 1 if the graphics point at <J1>,<JZ> 1s lit, otherwise

0. See pppendix B.

FOS(<J>) Used to obtain the current output c¢clumn or row position,
according to the value of <J>.

FOS{0) returns the 'print column' count. This is independent of screen size,
and is only zerced when a CR, HOME or CLEAR SCREEN/FORM FEED code 1s output,
or if the column count exceeds 255, This is designed malnly for use with
printers.

POS{1) returns the current column position of the cursor on ths VDU

FOS(2) returns the current row poasition of the cursor on the VDU, Both of
these are designed to be used in conjunction with the PRINTE facility (see

PRINT in secotion 1}.

L]

RND{< I>) Returns a random number, depending upon the value of <I>.

RND{1) returns 2 random pumber in the range 0 to 1, as a floating-poirt
number.

RNIM<I>) with <> in the range 2-65535, will return an integer random number,
ranging from O to <E»-1. E.g, RND{9) returns a2 number in the range 0-3. This
achieves compatibility with many integer BASIU's, and chviates the need, for
example, for INT(S*RND(1}), which is often seen in other BASIC's.

RND(Q) returns the last random number produced, whether integer or real
The random number generator uses the Z80 refresh register several times
during the routine to Zive far more random results than a "pseude' random

rnurber Zenarator. Hence the RANDOMIZE stataement found in many BASIC's is not
required in XBASIC.

SGN(<>) Returns the mign of <N». If <¥» < 0, it returns -1, if <M>
= 0, it returns G, and if <N> > 0, it returns 1.

STN(CH) Returns the sine of <N>, where <N> is in radians.

SIZE Returns the size of memory available for the program,
variables, pointers and strings, as a positive number in the range 2-65535.

SQR(CN>) Returns the square root of <M>. If <N> is less than 0, a QTY
ERROR will occur. W

SPC(CI>) Prints <J> spaces. This function is only valid within a PRINT
statement. :

TAR{(<J1>,<J&>}) Prints characters until the (imsginary) print head reaches
column <J1> on the output device. This function is also only valid within a

25

PRINT statement. The value of <J2> pepresents the ASCIT wvalue of the
character printed, and <JZ2> is optional. If omitted, the character specified
in a previcus TAB function will be used, or a space character If none has
been previously specified, thus being ‘upward—compatiple' with TAB on most

BASIUs.

This 'tab-character' feature is somewhat unusual, and 1s provided for two
reasons. Firat, a few BASIC's, for example, PET BASIC and SHARP BASTC, use a
teursor RTIGHT' instead of a space as the TaB character, with the advantage
that neadings and margins on the screen may be 'printed over! witnout
removing parts of the screen that may still be required. In these cases, wark
in f'translating! such a program to run under XBASIU is eased by specifying
the ASCIT code for 'cursor-RIGHT' at the first ocourrence of a TAB functionm
within a program.

Seccondly, by using other characters, patterns for lining up margins and
headings may easily be produced.

Example:
10 PRINT “Name';TAB{20,46)

20 PRINT "Address";TAB(20)
RUN

The user may well 'dream up' some other applicationst
NOTE: If the print colum is past or at colum <J1>, no T&B will occur.

TAN(<N>) Returns the tangent of <N>, where <N> i{s in radians.

4. STANDARD STRING FUNCTIONS

- ——— —

ASC{<S>) Returns the ASCII value of the firat character of the string
<S>,

Example:
ASC("BCD") returns the wvalue 66 (decimal for 42H, the code for "B").

CHR$(<J>) Returns the single character string whose ASCII value is <J>.

INCHS Waits for an input character, and then ,returns it as a
one-character string. This is very handy for single-character reponses such
as Y/N?

Example:

10 PRINT "Type in a character:":: Aj=TNCH$
20 PRINT: PRINT "You typed a: ":A$

30 END

RUN

Type in a character: {type a "B™)

You typed a: B

26

lote that neither this nor the INCH function will actually echo the key back
to you, s0 either PRINT the string as scon as it is input, or use INCH$(1)
instead (see next paragraph).

THCHS (<J>) Waits for an input string of <J> characters. Fach character
will be echoed as input, unless the IOM command has been used to suspend
echolng of characters. Mo special characters are recognised, and EXACTLY <J>
characters must be 1input. This function is mainly useful for file input,
since it does not react to selected characters {unlike INPUT), arnd rmay thus
be used to read program or machine-—sode files,

Jee also Chapter ¥ on file-handling, for the use of these functiona with
- files.

KBD% Again, like INCHE, hut returns a null string if noe character
is available, otherwise the charaster as a one byte string., Note: ¥BD ang
KBD$ work only with the console keyboard, whatever device is currently
gelected for inpot. '

~

LEFT$(<S>,<J>) Returns the leftmost <J> characters of the atring <S>,

Example:
LEFT${ “HELLO",2) returna the string "HE".

LEN(<3>) Returns the length of the string A$ including punctuation
marks, control characters and spaces. :

Example:
LEN{"HELLO") returns the value 5.

MIDE(<S»,<J1>,<J2>) Returns <J2> characters starting from the <Ji>th
character position in string <8k, <J2> may be cmitted, in whish caze the
whole string starting from the <J1>th character will be returned.

Example:
MID${ "HELLO",3,2} returns the string "LL",
MID$("HELLO",3) returns the string “LLO™,

MUL$ (<S> <J>) HReturns a string <5» repeated <J> times, This is ‘atring
miltiplication', The string returned cust be no longer than 255 characters.
This is particularly useful for displaying repeating patterns.

¢

Example; .
MULS("*',15) returns the string MEHEREERERERIREEN

MUL$("+——".8} returns the string "v——i——r——t——s——1 e

RIGHT$(<Z>,<J>} Returns the rightmost <J> characters of the string <S».

Exampie: .
RIGHT$({"HELLO",2} returns the string "LO".

m pmerE . o

27

SCRN$ (<J>) Returns the string of characters from row <J> of the VDU
sereen. <J> must be < the number of rows on the screen of the system (16 on a,
standard Nascom), and the lengbth will always be equal to the number of
eolums on the screen (48 on a standard Mascom)

STR$ (<) Returns the string representation of a numerie wvariable.
HOTE: The format in whicn rumbers are returned by this function is affected
by the BMT command in exactly the same way as for PRINT, and also by the I0M
5 eormmand (the trailing space opticnal under FRINT is not inecluded).

Examples:
STR$(1.234) returns the string " 1.234".
PMT 2,3: A$=STR$(37.7325) places the string " 37.733" in 2%,

VAL(<S>) Returns the numerical value of string <35>, up to the first
non-rumeric character {in this sense, the characters '+', '=', '.* and ‘E'
count a3 pumeric). If the first character iz nen-pumeric, tha value 0 is
returmed. In addition, the character "“&" is taken to indicate a hex rumber to
follow, which can be very useful!

Examples:
VAL{ "M ,2344BC") returns the valus 1.234,
VAL{"&"+"ABCD") returns the value 43381 {ZABCD).

5. USER-DEFINED FUNCTICMS

DEF FN <V1> (<V2>)=<E1> defines a user function. It must be kept to one
line. <V1> may be any legal variable name, as may <V2>, <V2> is a durmy
variable, which can be used within the expression <Ei>». The DEF statement
sets up pointers within the variable space which give the address aof the
expression <E1> within the program, and the address of the variable <V2> in
the wariabls space, The line is then ignored, and erxecution proceeds to the

next line of text as if nothing had happened. .

A call tc the user—defined function mzy now be made, as FN <V1> (<E2>). What
then happens 1s that the current value of <V2> is saved ih memory, and the
value of <E2> is placed in it. The address of <E1> is then obtained, and <El1>»
is evaluated wsing the new value of <¥2>, Having cbtained the result of the
functicn, the old value of <V2> is restored, as if nothing had happened to
it. Thus it is, In fact, reascnably efficient in exscution tima, certainly
better than using GOSUB atatements,

<V1> must be the same type as the result of <E1>, but either or both <V1> and
<¥2> may be of numeric or string type. If a function call occurs before the
appropriate LEF FN, a FN DEFN ERROR will occur.

Example: -
13 DEF FN ASN(X)=ATN{X/3QR{1-X*{))

20 DEF FN ACS{X)zPI/2-FN ASN{X)

30 FOR I=C TGO .99 STEP .1

40 PRINT I,FN ASK{1),FN AUS(I}

50 NEXT

When RUN, this program will print ocut a table of wvalues ARCSIN(I) ang
ARCCOS{I} for wvalues of I between O and 1, in increments of 0.1. Have a go...

28

V. INPUT/QUTPUT FACILITIES
1. DEVICES AND 1/0 ASSIGNMENT - PRINTE and INPUTE

- P

Special forms of the INFUT and PRINT statements allow the user to assign
different I/0 devices to the system, such as printers, serial or parallel
devices, dises and tapes. Each device i3 assigned a device number in the
range 0 to 254, so that we may have up to 255 ocutput devices, and 255 input
davices,

In addition, we may handle input and output to and from files, which may be
stored on disc or tape, and these are handled in a slightly different way,
described under sectiona 4 and 5 of this chapter., For your information, all
file I/0 is handled through device 255, which is assigned internally, and
whose addresses you do nol nead to know.

A1l devices other than the file device are defined in a special table oalled
IOLIST, the address of which 1s found at DEVPTR (see scratch-pad list in
1 - Appendix B). From BASIC, DEVPTR may be found or modified by means of the FPTR
. : command/function deseribed in Chapter VII.1. The table IOLIST is set out in
the followinhg manner:

A#2? TOLIST: DEFB n : The number of devices used. o3
thal DEFW INPO ooF i Input device 0 74AD
" DEFW QUFOw? ; Output device O zeed Ta- 39,077 S0 W o fBif can
st DEFW INP1ov7 zeju»; Input device | ase® <buf sef (BTT PR SENCAE BT e
18t DEFW QUT1 '~ . Qubput device 1 3Ase feas 30, AT
ll{.;-f- . .. 3817 cfe PR o
7 pDEFW INPne . Input device n-1 057 T8 e 80T
DEFW OUTn-1 -4 Output device g-1 .27

miE
=
The user may, of course, construct his/her own IOLIST in the above manner,
and assign the address to DEVPTR {CARE!l All I/0 goes through here, s0 can
cause dire consequences if the table is incorrectly constructed). It is
suggested that the user's table be located at a different address to the one
provided in the Interpreter, since the one provided may not be extended.
addition of I/0 routines to the user's apecification is guite easy, since no
- regzisters need be zaved (XBASIC has already saved any necessary registers on
B entering these routines). For an output routine, supply the charseter to be
- gutput in the 4 register. It does not have to be in the 4 regiater on returp.
For an input routine, return the input character in the A register.

Three devices are currently assig‘ned undar XBASIC as supplied:

0 QUTPUT to VDU (i.e, the 'conscle' cutput) .
INPUT from keyboard. Device @ 1is the only <ne which utilises the
soreen editopr. : .

1 OUTPUT to printer (may be serial or parallel, more usually parallel).
This is the device utilised for dumping the screen to printer when a
CTRL/P i3 typed. '
INPUT not assigned {may be parallel input, but currently set up as
for Q).

2 OUTPUT to serial port {(RS232).
INPUT from serial port.

r al

28

PRINTE <J> ' Assigna a new output device. All statements which produce
output, such as FPRINT and LIST, will now direct that output to device <Jd>,
until another PRINTE statement is encountered (for a different device), the
program endsa, or the program is aborted by an error or from the keyboard,

INPUTE <J> ASSigns a new input device. All statements requiring input,
such as INPUT, INCH, and INCH$, will now receive it from device <Jd>», until
ancther INPUTE statement is encountered, the program ends, or is aborted
(just as for FPRINTZ above). Note that the KBD function will ONLY work from
the input device 0 (the console keyboard), whichever device is used.

Both PRINTZ and INPUTE may be used as part of normal PRINT and INPUT
statements, in which case a semi-colon must be used to saparate the device
number from the rest of the statement. an INPUTE statement may NOT contain a
prompt, however (although subsequent INPUT statements using that device may).

Note that the CLOSE command (Chapter V.5) has the effect of including an
INPUTE © and a PRINTE 0, in addition to closing files.

The END of a program {(with or without the END or STOP statement} or the
abandonment by interruption or error also has the effect of including an
INPUTE O and PRINTE 0. This means that, in DIRECT mode, in which the line
typed may be regarded as a 'miniature' program, the assignment of a device
and the I/0 statement required must appear in the same line, otherwise the
I/0 will be made through device J!

Examples: -
PRINTE 1: LIST

This will lists the whole program to the printer device and then prints 0k
at the VDU (i.e an internal PRINTZ O has been performed). Mote that the'lipes
at a time' value is ignored when LISTing to a device other than 0,

10 PRINTE1: INPUTEZ;X

20 IF X=0 THEN END

30 FOR I=1 TO X

42 INPUT A%: PRINT A%

50 MNEXT

&0 INPUTED

T3 PRINTED; "Do you wish to continue?";:Y$=INCH$
B0 IF ¥$=1¥" THEN 10 ELSE END

This program accepts data from input device 2, and displays it at the print-
er, or whichever is cutput device 1. First, the number of items to be read
(X) is obtained from the input device, and then the items follow, belng
printed as they are read. After X items have been read, both input and out-
put retwn to the conscle, so that the user may choose to termirate the
program, or continue with another set of data (note that CLOSE could have
been used at line b0, even though no files are being invoked}.

For information on the wuse of PRINTS and INPUTE with files, see Chapter
V.5.

-t

30

2. DIRECT I/0 PORT ACCESS

In addition to the PRINTE and INPUTE commands described above, users may find
the following commands and funetions useful, when it ia desired to use I/0
devices for which the appropriate machine—coded internal operating routines
ara not available:

QUT <J1><J2> sends the value of <J2> to output port <JI1> of the
computer.

Exaple:

QUT &F0,5 2ends the value 5 to port FOH (240).
INP (<) returmms the current value of input port <J> as a

number in the range 0~255,
Example:
Ao= INP{&F4) reads the value currently at port FH {244)

WAIT <J1>,<J2> <J3> Monitors the port specifiled by <Jt>, EXCLUSIVE ORs it
with <J3> (which is optional, asaumed O if not used), and ANDs the reault
with <J2>, treating <J2> and <J3> as if they were eight-bit bipary numbers,
This will be repeated until the reasult is non-zero.

Examples:
WAIT 2,540 sugpends execution until bit & of port 2 is =et.

WAIT 1,%FF,&Fwalts until any of the 4 most significant bilts are
pet, or until any of the 4 least significant bits are reset on port 1.

3. SPECTIAL COMMANDS AFFECTING I/0 AND PRINT FORMATTING

—— — -

SEP <J>» A very useful little command, which ia not found in
other BASIC'a ({yet, or to our knowledge!). It defines the value of the
separator character used in DATA and INPUT statements. The ASCII value of the
required separator must be expressed after the 3EP command. Normally, this is
the comma. '

The usual use of SEP is SEP O, which allows the user to put any string of
characters inte an INPUT or DATA statement, when only cne item is required,
and it is desired to allow commas to be part of the input data {in some
BASIC's, a LINEINPUT command 318 provided to allow thig). Here is ancther
posgible use:

Example: .
10 SEP 47: REM '/' IS SEPARATOR
20 INPUT "Type in the Date as
DD/MM/YY: ™ DAY, MONTH, YEAR
30 FRINT "[ay 1s ™, DAY,'"Month is ";MONTH, "Year 1s":YEAR
40 END
RUN
Type in the Date as DD/MM/YY: 4/712/81
Day ia 4 Month is 12 Year 1s 81

el 1 e m— - -]

31

Three points to watch - first, a double—quote is assumed to swround input
data 1if it 1s the first non-space character in the input line, and will be
subsequently removed. Secondly, certain characters will not work well as
gseparators, particularly if numerie data is desired (e.g, the '.', althoogh
there are no problems here with string input). Finally, do rnot forget that
SEP affects DATA statements too! Normal operation may be restored by means of
a SEP 44.

The current separator may be cbtained at any time by using SEP as a function.

Example:
A=SEP puts the ASCII value of the current separatocr into A.

FMT <J1>,<J2> Formats numeric output, for PRINT statements or STR$
functions. The expressions <J1> and <J2> set up the number of figures to be
printed in front of and behind the decimal peint respectively. If the actual
number of figurea in front of the decimal point is less than that specified,
leading spaces are used, while overflow will cause a default output in
gelentific notation. Trailing zerces are always printed {except in the
'normal mode', see below), so that the output may be shown right-justified.

Xeientifie notation may be forced by setting <J1» to 15, in which case <J2>
still gives the number of trailing figures. Otherwise, the sum of <J1> and
<JZ2> may nct be greater than 8 (remember that the maximum precision of the
system is only 7 significant figures!;,

'Normal' eutput format may be restored by means of FMT 0,0. In this format,
output is to 6 significant figures, scientific notation ia forced if the
magnitude of the number iz > 186 or < 1E-2, and tralling =zerces are
suppressed.

Examples:

FMT 3,3: PRINT 567.9876 displays as %b57.988
PRINT .00124 displays as 0.001
PRINT -1,73205 diasplays as - 1.732
FRINT 7895 displays as 7.895000E+03
FMT 15,2: PRINT 567.9876 displays as 5.6BE+D2

FMT ©,0: PRINT 0.056 displays as .056

Note that the sign is not counted with the figures, but appears in the
leading space at the start of the entire number (when positive, this apace
may be removed by means of IOM, see below).

All in ail, although a PRINTUSING facility (a command for formatting output,
found on some other BASIC's) is not provided with XBASIC as supplied, the FMT
command provides a flexible way of 'tidying-up' output, and for putting such
numbers into strings (something that PRINTUSING cannot do).

IOM <J13>,<J2> Sets bit <J1> of the IOMOD word in the scratch-pad
area, This qonajsts of sixteen one-bit flags, of which'seven are used in
XBASIC, the othera being reserved for future expansion. Normally, all sixteen
bits are set (1), indicating a mode on, and <J2> may evaluate to either O op
1 only. The modes for <J1> are described as follows:

Eit O - Edit mode. On for SCREEN EDIT mode, off for LINE EDIT mode.

32

Bit 1 - Echo mode. On 1Ff all input characters are to be echced to the output
device, otherwise off. With this mode off, LINE EDIT mode is automatically
salected, whatever the setting of bit O (otherwise the whole system would

lock up!).

Bit 2 - Switch mode. Normally, we swap to LINE EDIT mode when a program is
RN, and back again to SCREEN EDIT when the program ends or is abandoned. By
setting this bit to 0, this 'switching' is prevented, i.e, the edit mnode,
cnce set, will stay in that state until it is set to the other mode.

Bit 3 - Breaks mode. On Iif <ESC i3 to be allowed to interrupt a program, and
<BEOF> to indicate end-of-file., If this blt is off, program irterruptions will
NOT be allowed (great for demonstraticns!}, and an end-of-file will only be
indicated by the last block in a file being detected {so there may be some
junk within that last block that iz ‘undesired™ data}. This is useful fer
reading files that may contalin ANY characters as part of the data (2.8,
program files),

Bit 4 - Trail space mode. On if a trailing space i3 to be printed after any
numeric output, otherwise numbers will all run intc cne another, as strings
already do! Scme BASIC's always print trailing spaces (e.g Nascom ROM BASIC
and Xtal BASIC 2}, while others never do, so the object of this and Bit 5 is
to make program compatibility easier to achisve.

Bit 5 - lLeading space mode. Similar to bit 4, many BASIC's will print a
leading apace on numeric output of positive numbers, while printing a
negative aign for negative numbers, while others omit the Ileading space.
Again, this bit {s on for a leading space, off for no leading space.

Note - these last two bits only afflect NUMERIC output, NCT string output
(even if the strings consist entirely of numbers).)

Bit & - Auto LF mode. When set, outputs a line feed character whenever a
newline is output, but just sends a <CH> if reset. By "newline', we mean that
XBASIC thinks that it is sending a <CHLF>», e.g, at the end of each line in a
LIST. 4 case such as PRINT CHR$(13);CHR$(10); would, however, print a <CE>
and an <LF> whatever the value of this bit. The setting of this bit has no
effect on device 0.

Note - this iz useful for file output, since the <LE> code iz ignored in
input of a file using INPUTE, sc that the file size may be reduced by
resetting bit © prior to output. Of course, some files may need the <LF>
codes, when bit 6 should be set. This facility is alsc necessary when using
some printers, which may not have an auto line-feed enable/disable option.

Bit 7 - Expand TAB's. When set, TAB's are expanded and, when reset, the
actual TAB character itself is output (ASCII code =9}, When a PRINT is
performed using the comma separator (for printing in 'zomes'), a TAB
character 1is actually printed, but normally is internally expanded into
spaces. Thus, by performing an I0M 7,0 , the actual TAB character is printed
(ASCIT code =%}, which 41s wuseful for sending output to a printer, for
example, which may have its own special tab settings.

TOM may be called as a function, to give the appropriate bit setting.

Example:
IOM 0,0: PRINT TIOM(D)

33

Prints the result G, after setting up for line edit mode. Screen edit mode
will be turmed on as scon as direct mode is re—entered and, if the above
example had begen executed from direct mede, IOM(0) would now return 1 again!

SPEEIX.J> Set=z a delay in the character output to the current
output device. 0 gives the slowest {VERY slow!) speed, while 255 is normal
(fastest) speed. SPEED may also be used as a function, to return the current
set speed.

Example:
3PEED 200: A=3PEED reaulta In A containing 200.

MILL <J> Sets the number of nulls to be printed after every
<CR> character. This command is designed for operating with slow serial
devices, where the <CH> code may take a little over the time allowed for one
character to print. The ¢orrect setting for particular devices will be found
by experiment, although 1 will usually be encugh for mpst applicaticns {up to
255 is allowed, however!). The default setting is 0.

The current number of nulls may be found by using NULL as a function.

WIDTH <J> Sets the width of the current output device, so that
an automatic CRLF is generated as soon as the column count reaches <J>. This
iz useful on certain types of printer {e.g Teletypes and Creed Teleprinters),
on which overprinting would normally cocur when the print head reaches the
end of a lire. Normally, the width is set to 0, when no automatie ORLF is
produced. The current width can be obtatped at any time, by using WIDTH as a
function.

ZONE <J12» ,<J2> Sets the print zone (tab)} width {<J1>), and the
largest colunn for which printing to the next zone will stay on the same line
{€J2>), known as the ZONE LIMIT. The default settings for these are 14 and 36
respectively.

34

V. FILE MANAGEMENT IN XBASIC

The management of files in XBASIC has deliberately been kept as simpie as
poasible, while maintaining flexibility. In particular, the commands for
handling cassette tape files and disc files are exactly the same, the only
differences being that cassetie files do not allow the following:

a. Random-access (since cassette tape 18 a sequential medium),
b. Changing from read to write mode (or vice versa) while acreasing.
c. File input after a CREATE, or file output after an OPEN.

Dae files allow ALL of these facilities.

Dise and tape drives are allocated single lettera of the alphabet, the
letters & to S inclusive being allocated to 'dise! drives {i.s, devices which
are capable of supporting a file directory area and random-access}, while T
to 2 incluzive are allocated to 'tape' drives.

For those who did not read the start of Chapter 0 (tut, tut!}, we remind you
that 'disc files' are those which belong to devices which allow random-access
and a directory of files, whereas ‘'tape files' belong to devices which
support sequential access only.

2. FILE NAMING CONVENTIONS

The flle naming convention used in XBASTC is based upon that of the CP/M dime
operating system (produced by Digital Research Inc.), since it is now very
well known and widely used, and the file name convention may be adapted to
other tape or disc operating systems.

We apecify an optional l-character drive name, a file NAME of up to B8
characters, and a file TYPE of up to 3 characters.

The drive name, if used, is a single letter from A to £, as explained in the
previous section. If not given, the default drive {the one which is assumed
to be specified if none is given) i3 set up as A 1n a system which runs discs
(or discs and tape), and T in a system which runs tape enly. The default
drive may be changed at any time by means of the DRIVE command, described in
section 5.

Both the file name and type may consist of any- combination of ASCIT
characters, with the exeception of those with ASCIIL codes greater than 127,
and the charactera . , "< > ; 1 = 7 # .

The file types recognised are these:

XBS — XBASIC Scurce, a normal progrem file. IF the file ﬁype is not glven,
KBS 1s assumed. Many BASIC's use .BAS as the source file type, but it is
felt that .XES will rausze lezs confusion with other veraions of BASIC {it IS
possible that =omecne i3 using (XES for some obacure application, but we do
not know of any at the time of writing!}.

35

ASC - ASCIT program file, that 1s an uncompressed source file (,XBS filas
contain tokens for reserved words, whereas .ASC files contain them axactly as
they appear in a LIST).

CBJ - CRJECT file, or machine-code subroutines/data. & special area may be
set up within the memory map for the storage.of machine-code routines,
utilising the CLEAR command, and anything stored here may be SAVEd azm a .0RJ
file, and LOADed into this area. '

Any other combination is treated as a data file, that is, a sequence of ASCIT
characters, divided into one or more records, which may be accessed by a
BASIC program. In the broadest sense, this iIncludes files of the threes
special types .XB3, .0WJ, and ,ASC (particularly the .ASC files, since they

are pure text}.

In some disc applications, it is necessary to specify more than ore file (an
AMBIGUOUS file reference)}, e.g, in specifying the files for z DIRectory list.
Here, the ? character matches any character in that position in the file name
found. In additicn, the * character matches all of the characters at and
after its position in the file name or type in which it appears. This is beat
explained by some examples:

XYL ASC matches XYZ,ASC, Xa7, ASC, X9Z.ASC, eto.

74.D%T matches AX.DAT, BX.IAT, 4X.IET, ete.

L matches ANY file, and is the same as 79797977.777

* . XBS matches any (XB3S file.

* also matches any .¥BS file, being the default type.
PROG*. ASC matches PROGY.ASC, PROGIO.ASC, PROGABC,ASC, etc.

Ablguous references are not used {(or allowed!} in cassette tape operations,

3. THE FILE DESCRIPTOR

— ey —

Before describing the file-handling commands, it would be helpful to mantion
what we believe to be a new concept in file-handling. Most BASIC's have scme
method of assigning a storage area for use by a file for the time that 1t 1is
open. This area usually contairs a buffer, and also some information Lo
describe the file and where it ia stored on dise, ete. The probiem that
arises 13 that this area has to be fixed and set aside before running the
program, and this means that the spage set aside may not be used for anything
else when the file is closed. It also places a constraint upon the numbar of
files which may be open at one time.

XBASIC overcomes this by assigning a special string variable to a file when
it is opened for access, and dropping this variable when the file is closed.
Tnis string variable is known as the FILE DESCRIFTOR for the file. It is
always 168 characters long, econtains a 128-byte buf fer, and 40 bytes of
gpecial file information. '

The laycut of a flle descriptor string is as follows:

1

I.
!g:i .
F o

36

FDESC: DRIVE 1 byte Disc drive name, 01=a, 02=B, etc.
FILNAM & bytes File name
FILTYP 3 bytes File type
INFO 21 bytes Internal alleocation informatien (disc only).
RECORD 2 bytes Record number in the range 0-65535 (applies

+ 1 overflow byte to disc only).

FILPTR 1 byte Pointer to current byte in buffer for I/0.
EWFLAG 1 byte Read /Write Flag O=Input, 1=0utput.
RECLEN 2 bytes Random Record Length (Random access only).
FILBUF 128 bytes 128-byte file buffer.

The File Descriptor {which, for the sake of abbreviation, we shall refer to
aa an FDESC in the rest of thia discussion) must be a simple string variable
(it may not be part of a string array, but all of the parts of it are
acceasible by normal string functions. For example, the buffer contents may
be inspected by doing a RICHT$ of the last 128 bytes of the FDESC,

A file descriptor may not be modified by LET atatements, ete. If it is, a

File FError will ocour the next time dit is used in a FRINTE or INPUTE
atatement.

4. SEQUENTIAL AND RANDOM ACCESS METHODS

Before explaining the various file-handling commands, let us give a short
description of the two altermative methods of accessing files allowed
directly under XBASTC:

a. Sequentlal Access,

' RECORDO | RECORD 1 ! RECORD2 1 RECORD 3 I ete. ! &1A !

Start of file End of file
Marier

Sequential Access is most often used for the manipulation of text or index
files, where records may be of variable length, and need to be scanned
sequentlally, i.e, one after the other, starting from the beginning of the
file until the desired record Ilocation 1s preached. Each record should
normally have a terminator, such as a carriage return code, and a special
code toc mark the end—of-file (BOF), XBASIC supplies an EOF code when elosing
a sequential file if the last operation was a write, and will normally detect
the end-of-file marker on reading. For disc files, an end=of-file condition
will also ceowr if an attempt is mada to read beyond the last 2llocated
sector of the file. Note that tape data filea MUST hawve an EOF mark present
within the file, otherwiae the end-of-file will not be detected!

b. Random-acceas {Disc files only}.

fm————— + + } + $
! RECCRD O ! RECORD 1 | RECORD 2 ! RECORD 3 I ete, B
} —— } —_—— - o + e
Start of file End of file

{no marker)

37

Records stored in random-access mode will normally be of fixed length, or
of variable length within fixed-length blocks. The record length la specified
whern the flle 1s opened, and a pecord number is aspecilfied whenever a file
input or output is required. This means that we may move about the file in a
completely RANDOM fashion, accessing only the desired records. Having
accessed a record, readirg or writing omy continue from that point in the
file, =so that it is possible to read or write sequentially in the file, even
though & random record length has been specified. It 13 even permissible fto
write a file with onhe record length, and to read or wWrite to the same file
with a different record length (if the programmer has a good reason for
wanting to do so!).

Ar EOF marker is NOT supplied when closing a randcm-access [ile, since 1t 1
not. convenient - the end-of-file condition will occur when an attempt is made
to read a sector that does not exist. However, it will not always occur on a
non-existent record, since the disc space may have already been created for
it as a side—effect of writing ahother record which uses the aame physical
disc sectar. In that case, it will be as if the record i3 aimply empty.

This may all be as clear as mud, 30 read the following ssction, and then
study (and try cut!) the examples at the end of the chapter.

5. FILE-HANDLING COMMANIG

DRIVE Followad by a single letter, sets up the default dise
or tape drive for any subsequent file-handling commands, If the drive
specified is not available on the user's system, a DRIVE SELECT ERROR will

oocur.

Example:

DRIVE B Salects disc drive B as the default drive.

OPEN "DATA.TXT",F$ will now open the file DATA.TAT on drive B.
OPEN <F> ,<3V> <I> Opens a File named <F», and assigns internal file

information and buffer space to the FDESC <=V>. The random record size is
given by <I», which must be in the range 0-6553% if specified, but is not
required if the file is to be accessed sequentially. In fact, a random record
length of 0 indicates that sequential aceess i3 to be performed.

For tape files, only reading of the file 1s allowed after an OFEN statement.
(therwise, both reading and writing are allowed (but this is usually only
advantageous when using random access!).

For diac flles, a Mo File errcr occurs if the file 13 not present on the
apecified drive. ' 4

Example:

QPEN “A:SILLY.DAT" FD$,15 Opens the file SILLY.DAT on tha diasc
drive 4, assigns variable FD$ as the file descriptor, and seta it wup faor
random-access with 15—character records.

CREATE <F> <35> <I> The format is exactly the same as for OPEN, except
that an existing flle named <[> is first deleted if present, and a new empty
file of the same name 1a oppened. ¥For cassette tape drives, this is the
comnand to be used when writing to a file.

. ' A
s . N —— T — i ——

3B

CLOSE <SV1>,<3V2>, ... <5V loses the files given by the FDE3Cs <SV1> to
<S5V incluaive, writes the remaining contents of the appropriate buffera to
their files and stores directory information (for disc files). A buffer will
only be written out if the last operation performed on it was a write, The
FDESCa are then set to null strings, which effectively releases the apace fop
use by variables or other files. A File error will occur if any of the
FDESC's given is not active, or 1s an ordinary string (note that FDESC's are
internally marked so that XBASTC can distinguish them from normal strings).

CLOSE by itself is allowed, in which case ALL files currently open will be
closed, and no error is given if no files are open.

Mote: As a side-effect, CLOSE does an automatic PRINTZ O: INPUTZ O, so that
all input and output will g through the conscle. & CLOSE command may be
executed at any time when these two statements are required (it i=s shorter!),

AFPEND <F> <3V This command is used for disc files only, and 1a very
similar to OPEN. The difference is that the internal file pointer moves to
the end of the file inatead of the start of the file, and no record length is
supplied. This command is used to write extra information at the end of a
sequentlial file, when to OPEN the file and read up to the end would be most

inefficient!

A Ho File error will ccour if the [ile <F> does not exist on the disc.

PRINTE <3V¥>,<I»; <expresaion list> Outputs the <expression list> to the
file given by the FDESC <3V», from the start of record number <I> in the
file. The location relative to the astart of the file 1is caleulated as <I>
muitiplied by the recopd length which waa given when the file was opened,
Thia, of course, is if the file was opened for random access, and this is not
allowed for tape files. Hence a File Error will oecur if <> iz specified

with <SV> apecifying a tape file.

For sequential access, leave cut the ',<I>' but keep the ';%, and then output
will start from the current place in that file {(XBASIC does not lose its
place in a particular flle even when several {iles at once may be open for
putput). In fact, the only purpose of the record number is to define the
polnt within the file at which input or output iz to begin, and so it will ba
assumed that we start 'from where we left off" if the record number is not
glven. hith dise files that have been opened for sequential access, the
internal file pointer may always be set to the start of the file by
specifying a record number {(any will do, since it will be multiplied by the
zero record lengthl!).

The <expression list> ia similar to that in a normal PRINT statement, and
remember that the data output will be EXACTLY as for that. Hence a CRLF is
output at the end of the statement, unless terminated by a semi-colon.

Note that all subseguent statements supplying output will now go to a file,
until ancther PRINTE or CLOSE statement is epcountered.

PRINTE <3V>,<L> or PRINTL <SV> are allowed, setting up the specified [ile for
output. MNothimg is output by either of these {(No, not even a CRLF!), that
being reserved for subsequent outpubt statements (e.g, FPRINT or LIST).

et =

39

As you might expect,.a stream of data without CELFs may be cutput to a file
by aimply terminating each such PRINT statement with a ';'. FRemember also
that you may need to suspend the automatic tab expansion (where CHR3(S) is
expanded to spaces) by using the IOM 7,0 command. The output of strings which
contain machine-code may now be contemplated, for example.

INFUTE <SV>,<I>; <variable list> Takes input from the file given by
the FDESC <SV>, starting at the first character of record number <I> in the
file. As for PRINTE, the <I» may be omitted, in which case the file 1is read
from the last point reached (or from the beginning if it has just been
opened}. The <variable list> is as for the normal INPUT command (Chapter
III.1), and items are assigned to the variable names given in the same way.

Note that all subsequent statements requiring input (e.g, INPUT, INCH, INCH$
and INCH$(N)) will now try to gather input from the file, until ancther
INPUTE or CLOSE statement i3 encountered.

INPUTE <SV>,<1> or [NPUTZ <SV> is allowed, setting up the specified file for
input. HMNothing will actually happen until the next INPUT statement, which
need not then have the file specification given.

INCH$ and INCH$(N) These are mentioned again here, aince they are very
important when files containing all sorts of c¢ontrol characters are reguired
to be input (e.g, machine-code files). Remember that INPUT ignores most
control characters, and terminates on a CR or null character (and alsoc on the
input terminator defined by SEP), INCH$ suffers from none of these disabil=-
ities, and S0 may be used for this purpose. INCH$(N) may be used even more
effectively, aince it creates a string of length N and ia usually much faster
than INCH$ on its own., An EOF condition on INCH$(N} causes the truncation of
the string to the length reached at the time when the EOF occured, ao that
all of the information may still be passed intc an expression before the EOF
error 18 actually flagged. The very next input from that file will then flag
the EOF condition in the usual way (l.e, 'End of text Frror' or ON ERR/QN EOF
routine).

¢. FILE-HANLDLING EXAMPLES

6.1 A text file display program,

This program allows the display of data or .ASC files on the screen. It MAY
be used under the tape version of XBASIC by removing line 35 (which is useful
on dis¢ systems, when the name of the required file has been forgottent!}.
Users of CP/M will notice that this performs virtually the same function as
the TYPE command, and that it works at about the same speed!

10 EEM TEXT FILE DISPLAY PROCRAM

20 N=128: REM No. of characters read at a time

30 INPUT "File to display?"; NAME$

35 IF MaME$='""' THEN DIR: GOTC 30

4o ON EOF GOTO B0

50 CPEN WAMES,FL$

&5 INPUTE FId

TO PRINT INCH${N};: GOTC 70

80 CLOSE FD$ ' ' rp
S0 END

40

Try replacing line 70 with the following, noting how much slower it is:
7O PRINT INCH$;: GOTO 70 or try smatler values of N in line 20.

6.2 A aimple Malling List (Sequential Access)

The program below iz a simple majling list program suitable for either tape
or disc drives, showing as it does the use of sequentlal aceess for reading
and writing files. In this case, the data file is read into a large string
array M$ at the start of the program, and rewritten to the file SMAIL.DAT at
the end. This means that acecsss to particular customers is very gquick, but at
the expense of keeping the entire file in memory at once. Moreover, the
maximum number of customers that the system can handle is limited by memory
size, and the size of M$ as dimensioned in line 39000,

The information under each customer oconsists simply of his/her nanme,
telephone no. and address, the address being stored in two lines, or fields.
The array CUST$ holds these items temporarily when being accessed by one of
the program optlons.

The optionz supported by the program are to add a customer to the list, to
access a customer from the list for modification, and to list all customers

fo the screen or printer.

10 REM *%% STMPLE MATLING LIST PROGRAM (SEQUENTIAL ACCESS) ###
20 REN

30 GOTO 9000

08 REM

99 HEM *¥¢ COMMON ROUTINES #*#

198 REM

199 REM **% OPEN DATA FILE ###

200 PRINT: PRINT "Do you have a file to load {Y/N)7V;: Y$-INCHS
210 PRINT Y$: IF Y$=VN" THEN RETURN

€20 CLS: PRINTE4,10;"Reading in data file..."
230 COPEN FILES,FD$
240 INPUTE FD$; KCUST: REM Get No, of customers on file
250 IF NCUST=0 THEN 290
260 FOR I=0 TO NCUST-1
270 FOR J=0 TO 3: INPUT M$(I,J)

280 NEXT J,I
290 CLOSE
295 RETURN
298 REM
299 REM **% HEADTNG DISPLAY Euy

300 CLS: PRINTEE,0:HEADS

310 PHI[‘J‘I@B,E;"I*hmber of customers on fller ";NCUST: FRIKT
220 RETURN

368 REM)

393 REM *** YRITE NEW DATA FILE #¥#

400 PRINT: PRINT "Do you wish to save the file (YJ"H}"",. Y= INCHS
410 PRINT Y§: IF Y$="N" THEN RETURN

b20 CL3:; PRINTSE4,10;"Writing kew [ata file..."

430 CREATE FILE$,FD$
443 PRINTE FD%$; NCUST
e IF NCUST=0 THEN 490
460 FOR I=0 TO NCUST-1

Y70 FOR J=0 TO 3: PRINT M${I,J}

480
490
499
798
799
800
810
820
830
840
850
870
880
Bg0
Bg8
899
900
910
998
999
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1993

2010
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2999
3000
3010
3020
3030
3040
3050

411

NEXT J,I
CLIJSE

RETTIRN

REM

REM *#% MEND DISPLAY #3#

CLS: PRINTEE,0;"SIMPLE MAIL LIST PROGRAM"

PRINT®Y,3;"Ontions:"

PRINTE4,5; "0, Exit Program"

PRINT®4,7; " . Enter Customers®

PRINTSY,5: "2 Modify CQustomersa®

PRINT&Y4,11; "3. List Customers"

PRINT8Y,13; "which? ";: N$=INCH${1): PRINT

N=VAL(N$): IF N0 OR N>3 THEN PRINT BEL$: GOTQ 870

IF N=0 THEN GOSUB 400: CLS: PRINT&S,0:"GOODBYE!":BEL$: END

REM

REM #%% SEILECT OPTICNS ¥%#

ON N GOTO 1000, 2000, 3000

STOP: REM SHOULD NEVER GET HEREY

REM

REM *%% END OF COMMON ROUTINES *¥# .
REM *** MSUB1 —- Enter Customers %%

HEAD$= "ENTER CUSTOMERS!"

GOSUB 300

PRINT"Any more customers to add (Y/N)?";:Y¥$=INCH$: PRINT Y$: PRINT
IF ¥g="y" THEN BOO

FOR I=0 TC 3 :

PRINT PRMPT$(I);: INPUT CUST$(I}

NEXT

FOR I=0 TO 3: MB(NCUST,I)=CUST$(I}: NEXT: NCUST=NCUSTe}

GOTO 1020 :

REM

REM ®%¥* MSUEZ —— Modify Customers ##®

HEAD$= "MODIFY CUSTOMERS"

FOSUB 300

INPUT "Customer Mo.7";CN3: IF CN4="END" THEN 800

CN=VAL{CN$): IF CN=0 OR CN>NCUST THEN 2040

CH=CN-1%

FOR I=0 TO 3: CUST${I)=M$(CN,I): NEXT

PRINTE3,8; "Customer No. :', CNe}

FOR I=0 TO 3

PRINT I+1:PRMPT${I}, CUST$(I)

NEXT: PRINT

FRINT "any changes for thias item (Y/N)?":: Y$=INCH%: PRINT Y%
IF Y§>"Y" THEN 2180

PRINT '"Which Line (1-4}7";: Y$=INCH$: PRINT Y$: PRINT
I=VAL(Y$)-1 .

IF 1=0 OR D4 THEN 2030 ELSE PRINT PRMPT$(I);: INPUT CUST$(I): (1S
GOTD 2080 .
FOR I=0 TQ 3: M§(CN,I)=CUST${I): NEXT '
GOTO 2030

REM

REM **%¥ MSUB3 -- List Customers ###
HEAD$="LIST CUSTOMERS"

GOSUB 300: IF NCUST=0 THEN 800

PRINT "To Sereen or Printer (S/P)7";: PF$=INCH3$: PRINT PF%: ERINT
IF PF$="P" THEN PRINTZ1

FOR CN=0O TO NCUST-1

42

3060 PRINT "Customer No. :", CN+1

3070 FOR I=0 TO 3: PRINT PRMPT${I} M$(CN,I): NEXT: PRINT
N80 IF PFH>"PM THEK INPUT "Type <CHE> to go on:';Y$: PRINT
3090 HEXT CN

3100 PRINTE O: GOTO 800

83995 REM

3995 REM #* INTTIALISING STUFF *%

G000 SEP 44: REM Use separator for DATA below
3310 BEL$=CHR$(7): FEM The bhells, the bells!
Q020 CMAX=100; FEM Max. No, of customers allowed
9030 DIM ME{CMAX-1,2), PRMPTSH(3), CUST${3)

9040 FOR I=0 TO 3: READ PRMPT$(I): NEXT

9080 FILEF="SMAIL.DAT": REM File name

G060 SEF {: REM aAllow commas in input text

9070 ZONE 28,20: REM Set up zone width

9080 COSUB 200: REM Read in data file

9090 GOTC 800: REM Go and do your stuff!

9048 REM

Q039 HEM ###% DaTp FOR FIELD PROMPTS ###

2100 DATA "Customer Name:", "Telephone MNo,:"

9110 DATA "addr. Line 1 ", "Addr. Line 2 :"

6.3 A simple Mailing List {(Random Access).

The program suite below 1s given to illustrate both the use of randonm- access
filea and the ‘'semi-CHAIN' facility outlined at the end of Chapter II, It
does the same job as the single program at example b., but wilth much lesa
memory, and shows how the random-access method improves the file-handling
capability. The limit on the number of customers 13 now dictated only by the
free disc space available, and the array M$ of example b, is dispensed with.
The suite consists of four programs, the common and setiing-up routines, and
the three sub-programs which deal with the three cptiorns currently supported
{see example b, above),

A record length of 75 characters 1s used, and this limits the amount of
information that may be held on each customer, checks being needed to ensure
that the total lengths of the fields entered (NB, including CR and LF codes!)
do not exceed this length. Such checking may be found at lines 1090-1100 in
MSUB1, and 1170-1180 in MSUEZ2 below. This kind of check is not necessary with
a seguential file.

The first record contains the total number of records on file (NCUST), and
provides a useful way of preventing access above the limit available.

Finally, note the use of the ON ERR routine at 10, which makes =zpecial
checks for CHAINimg to a non-existent sub-program, and allows the user to
create 2 hew data Cile if one ia not present.

-’

10 REM **#* STMPLE MAILING LIST PROGRAM (RANDOM ACCESS) ###
20 REM *** COMMON ROUTINES *¥#

30 ON ERR GOTO 100

O GOTO 1000

a8 REM

9 REM ¥*% ERROR ROUTINE **#

100 IF ERL=900 THEN PRINT"CANNQOT INVOKE DESIRED OPTION':BEL$: GOTO 800

110
120
130
140
158
199
200
210
220
298
299
300
310
320
798
799
800
810
820
830
840
850
870
380
490
898
899
900
210
998
999
1004
1010
1020
1030
1040
1050
1060
1070
1380
1098
1099
1180
1110
1000
1210
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
120
1130
1140

43

IF ERR>25 THEN PRINT ERR$;™ Error in line ";ERL: END
PRINT "No data file -- Create (¥/NIT";: Y$=INCH$

IF Y§="Y" THEN CREATE FILE$, FD¥: PRINTE ED$:"0™: CLOSE
GCOTO 800

REM

REM *%% DEN DATA FILE #%®

OPEN FILE$,FD$,HL :
INPUTE FDF,0;NCUST: INPUTE O: REM Get No. of customers on file
RETURN

REM

REM *#% HEADING DISPLAY *#%

CLS: PRINTEB,G:HEADS

PRINTE3,Z; "Number of customers on file: ";NCUST: PRINT
RETURN

REM

REM ®%¥ MENU DISPLAY #¥#

CLOSE: CLS: PRINTES,0;"SIMPLE MAIL LIST PROGRAM"
PRINTEY, 3; "Options: v

PRINTEY,5;"0. Exit Program"

PRINTBY,7;"1. Enter Qustomera

PRINT@Y,3; "2, Modify Customera

PRINT&84,11; "3, List Customers?

PRINTEY,13;"Which? ";: N$=INCHS$: PRINT W%

N=VAL(N$): IF N0 OR >3 THEN PRINT BEL$: &OTO 870

IF N=0 THEN CLS: PRINT&R,0:"GOODBYE!":BEL$: END

REM

REM **% CHATN TO OTHER SUB-PROGRAMS #2%

HOLD 1003: CHAIN "MSUB"+N$

STOP: REM SHOULD NEVER GET HERE!

REM

REM ®*#% ENT} OF COMMON ROUTINES ###

REM ** INTTIALISING STUFF *#*

SEP 44: REM Use separator for DATA below
BEI$=CHR$(T7): REM The bells, the bells!

DIM CUSTH(3), PRMPTS(3)

FOR I-0 TO 3: READ PRMPT$(I): NEXT

FILE$="RMAIL.DAT™: RL=75: REM File name & repord size
SEP 0; REM Allow commas in input text

ZONE 28,20: REM Set up zone width

GOTO 80C: REM Go and do your stuff!

REM

"REM *** DATA FOR FIELD PROMPTS ###

DATA "Customer Name:*, "Telephone Mo, "

DATA "Addr, Line 1 :","Addr, Line 2 "

REM **% MS(R1 -- Enter Qustomers #%%

HEAD$="ENTER CUSTOMERS!

GOSUB 200

SOSUB 300 4

FRINT"Any more customers to add (Y/N)?";:Y$=INUH$: PRINT Y$: PRINT
IF Y§>'"¥" THEN 8CQ

FOR 1I=0 TO 3

PRINT PRMPT$(I}:: INPUT CUSTS$(I)

NEXT

L=0: FOR I=0 TO 3: L=L+LEN(CUST$(I)}+2: NEXT

IF [>RL THEN PRINT "RECORD TOO LONG"; BEL$: GOTG 1030
PRINTE FD$, NCUST+1

FOR I=0 TO 3: PRINT CUST$(I): NEXT: NCUST=NUCUST+1

PRINTE FD$,0; NCUST: PRINTE O: REM lUpdate Mo. of customers
GOTO 1030 ‘

1000
1010
1020
1030
U0
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1180
1160
1170
1180
1190
1200

1000
1010
1020
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1740

This example

44

REM ##% MSUR? —- Modify Customers #

HEAD$= "MODIFY CUSTOMERSH

GOSUB 200

GOSUBR 300

INPUT "Customer Mo.?7";CN$: IF CN$="END" THEN 80O
CH=VAL(CN$): IF CN=O OR CN>NCUST THEN 1040

INPUTE FD$,CN

FCR I=0 TO 3; INPUT CUST$(I): NEXT: INPUTX O
PRINTS3,8;"Qustomer No. :",CN

FOR I=0 TC 3

PRINT I+1;PRMPT$(I), CUSTH{I;

HEXT: FPRINT

PRINT "any changes for thisz item (Y/N)?";: Y$=INCH%: PRINT Y%
IF Y$>1y" THEN 1170

PRINT '"Which Line (1-4)%";: Y$=INCH$: PRINT Y$: PRINT
I=VAL(Y%$)-1; PRINT PRMPT${I};: INPUT CU3T${I): CLS
GOTC 1080

L=0: FOR I=0 TOQ 3: L=L+LEM{CUST$(I))+2:NEXT

TF L>RL THEN PRINT “"RECORD TOO LONG™;BEL$: GOTD 1080
PRINTE FD$,CN: FOR I=0 TO 3: PRINT CUST$(I): NEXT: PRINTE O
GOTO 1030

REM *#* MSUB3 -- List Qustomers **#

HEAD$="LIST CUSTOMERSH

GOSUB 200

GOSUB 300

PRINT "To Screen or Printer (S/P)7?";: PF$=INCH$: PRINT PF$: PRINT
IF PF$="P" THEN PRINTE1

FOR CN=t TO NCUST

INPUTE FD$,CN: REM Read Customer record from file

FOR I=0 TO 3: INSUT CUST$(I): MNEXT: INPUTE G

PRINT "Customer No. :",CH

FOR 1I=0 TO 3: PRINT PRMPTH{I),CUST$(I): NEXT: PRINT

IF PF&>"P" THEN INPUT "Type <CR> to go on:";¥$: PRINT
NEXT CN

GOTO 800

has bean given Lo give an idea of what may be done, but is npo

doubt greatly extendable (for example, there cught to be a facility to delete
a cuatomer entry, and facilitiea for searching and sorting under a given
field). No doubt a useful exersise for the user. ..

.....

45

VI, ERROR HANDLING

1. LIST OF ERROR MESSAGES

After an error occura {(whether resulting from a direct command or from within
a program}, one of the following messages will be output and execution will

terminate (unless, of course, an ON ERR statement is in force, as described

in section 2).

The forms of error messages are:

wooox Erpop in direct mode

xxxxxx Error in <I> in program mode

where 000008 Will be one of the following:

Bad Data A checksum error has been detected while loading or verifying
a program/data file from diac or tape.

Branch Reference has been made to a non-existent line number. .

Cmd An attempt has been made to reference 3 reserved word which

does not exist in the system. It may be that one user i3
trying to run & program developed on another user's system,
bt does not have all of the necessary commands on hiafher

oWn ay=tem,

{ont in attempt has been made to CONTinue a program afiter an error
pocurred, or after alterations have been made to the Program.

[lata A READ statement has been presented with insufficient data

from DATA statements.

Dimensicn An attempt has been made to redimension an array. An array

may only be DIMensioned once in a program.

This includes

arrays of under 10 elements that have not been formally

DiMensioned.

Hdvision An attempt has been made to divide a number by 0.

Drive Select A tape or disc drive has been selected which is not avallable

on the aystem.

End of Text an end-of«file marker haz been encountered in a data file, or
the last block of the file has been read. This error may be
handled specially by means of the ON- EOF command.

Flle An attempt has been made to open & file which 18 already
open, or to read or write from/to a file whieh 1a not open,

Flle Type A file of cne type has been specified, when cone of another

has been axpected.

fn Defn A uzser-defined function has been referred to, without having
first been DEFined, or CALL has been used aas a function

wilthout the USRLOC having first been set up.

416

Mem Full A attempt has been made to execute a command which would
need more memory than is available.
Next A NEXT has been encountered which cannot be matched to a FOR
statement.
Operand A1 operand has been omitted after an operator,
Example:
PRINT 2.3*4+
Ovfl A numeric overflow has resulted from a calculation.
2ty A parameter in an array, command or function is out of ranme.
Examples:

A(X) where A 13 an array and X0 or X»65535.

LOG{X) where X=0,

SQR{X) where X0,

T X,Y where X or Y are <0 or >255.

Note: Reference to the sections describing the commanda and ﬂmctlms
concerned will usually reveal the cause of this error message.

Range An attempt has been made to access an element of an array
outside its previously defined dimensions.

Return A attempt has been made to execute a RETURN or FOP without a
corresponding GOSUB,

Stack Full FOR loopa, GOSUBs and/or parentheses in exnressions have been
nested too deeply, causing a stack overflow,

Str Ovfl An attempt has been made to exceed the maximum length of a
atring (255 characters).

Str Complex A strlng expression 1s too long or complex and needs to be
broken into smaller =ections.

Syntax A typing error has been made, or a command / function has been
wrongly formatted.

Type A numeric quantity has been found where a string type was

expected, or vice versa,

The followlng error messages apply only to the Plac versionh:

ir Full The directory is full up. ' !

Diag Full No more space 1s avallable on the dise.

[Mac Locked An attempt haa been made to write to a wr-:-lrte-pi'ot.actad‘ disc
{or under CP/M to a read-only disec.

Disc Seek in attempt has been made to access a zsector that is not on

the disc {usually in random-access files, when the record
required is off the disc).

47

File Exists An attempt has been made to REName a file to an already

existing one,

File Locked An attempt has been made to write to a file that has been
LOCKed,

Mo Flle The required file cannot be found in the directory {not given

by cassette tape).

4 complete list of the error messages, together with their error numbera, is
given at Appendix A of this manual.

2. ERRCR HANDLING WITHIN BASIC

OB ERR GOTO <L> ON ERR GOSUB <L>

Speclal forms of the ON statement, which do, however, work in an entirely
different manner. These two commands are used for handling error routines
from within a BASIC program rather than forcing abandonment of execution.

They simply set an intermal flag 30 that, if an error occurs AFTER the
comiand, a GOTD or GOSUB will be made to line <L>, where a routine will
perform whatever action has been programmed (by the user) to overcome that
error. This allows us to forget about, for example, testing for division by
zero within a program; the error is simply allowed {o ocowr and ia then
handled by a subrcutine.

If an ON ERR GOSUB statement is used, the last statement in the error-
handling routine should be a RETURN, as with other GOSUBa (or use POP and go
where you willl). Execution returns to the statement POLLOWING that where the
error occurred,

Notes:

{i)} Any error mist occur AFTER the ON ERR atatement. .

(11} Te ON ERR flag reverts to normal after the first error (in case you
have an error in the error routine!}, =20 this should ke set again by another
ON EER statement, either at the end of the error routlne, or acon after
re-entering the main program,

(111} To restore the ON EER flag to normal within a program, or after a
program has terminated with a STOP (as opposed to an END), use OQFF ERR as
previocusly mentioned. The flagz reverts automatically upon nortal termination
of a program,

{iv) Within the error-handling routine, the number of the error that has
oocurred (see section 1 of this chapter) is passed im ERA, while the line on
which the error occurred is passed in ERL.

A
4

ON EOF GOTO <L> ON EOF GQSUB <L>

As for ON ERR above, except that this deals specifically with the encountanr
of an end-of-file on reading. There 1s an error message {End of Text Error)
which deals with this occurrance, and so tnis could easily be handled by
means of an ON ERR statement. However, since it is often useful o handle the
end-of-file condition separately, the ON EOF atatement has been included. The
only difference in execution of an ON EOF routine 1a that the ON EOF flag is

48

NQT reset - it stays in foree, so that a subsequent EOF will also invoke the
same routine (unless another ON EOF statement has been encountered). For this
reason, an OFF EOF statement should be used when the end-of-file conditlon no
longer heeds to be handled. Note alsc that, if both ON ERR and ON EOF are in
force, ON EOF has pricrity for end-of-file conditions.

OFF ERR or OFF EOF Turns off the ON ERR and ON ECF modes respectively,
if either of these have been previously turned on. OFF EHH will cause any
errora which subsequently occur to be displayed at the console, while OFF EOF
will cause any subsequent end-of-file to give an END OF TEXT ERROR, or to be
routed through an ON ERR routine, if that mode is still on, Nething happens
if the appropriate mode 1s already off, and both modes are autcmatically

turned of f if the program ends in a2 normal way.

ERR Returns the number of the last error that occurred.
This function 1s particularly useful within ON ERR routines, to find out what
error actually cccurred.

L]

ERR$ Returns the error STRING message, without the word
‘Brror!, corresponding to the last error that ocourred. This saves having to
flag every possible kind of error within an ON ERR routine, when onhe in
particular may be expected.

Example: Suppese the last error was a SYNTAX ERROR (it often is!).
ERR returns the number 2.
ERR% returns the atring "Syntax".

ERL Returns the line mmber at which the last error
ocourred.

3. ERROR MESSAGE TABLE CONSTRUCTION AND EXTEMSION

As well as command and function extensiocn {see Chapter VIIT), XBASIC allows
the addition of user-defined error messages. The error messages are normally
formed in a table pointed to by ERRTAB (see PTR, Chapter VII.1), in a similar

way to the reserved words:

B re ak Ne x t S yntax He¢turmn
C2 72 65 61 6B CE 65 78 74 D3 79 6E 74 61 78 D2 65 T4 75 72 6E
Code: O 1 2 .3

Any standard ASCII characters may be included here, including spaces, unlike
the case for reserved words above, so that an errcr message may consist of
severa) words, if need be. Again, an &80 code must terminate the table.

The word ' Brror!' is supplied automatically on the end of the message (except
for ‘'Break', which i3 not strietly an error, but is trapped in the same
manher as an error). To call up an error, a machine-code jump should be made
to the routine ERROR (see Appendix C under Useful Internal Routines), passing
the error code number in the E register. If the error measage is in the
table, it will be printed out in the usual way, and the user returned teo

R

49

Direct mode (unlesa, of course, an ON ERR statement is in forcel). If the
error number iz larger than the number of messages, the number itself is
printed, followed by 'Errcr'.

Example: Suppose a PTR 4,49F00 command is performed, and location &3F00
contains &80, Then a subsequent syntax error will result in the measage:

2 Error appearing on the screen.

Up to 128 error messages may be contained in this table, which is lmown as
the Standard Error table. In addition, up to a further 128 error messages,
numbering from &30 to &FF, may be supplied in an Audllary Error table,
pointed to by AUXERR (accessed by PTR(5)). This table contains a single 80
code as supplied, so that the user may add error messages without affecting
the standard table, if desired (the standard error table as supplied allows
na room for expansion by the user, although the user may expand 1t by
recreating the table elsewhere and adding to it, or even replace the messages
by those of his/ her own choosing, when fed up with the messages supplied -~
How apout a 'Not Understood Error' instead of 'Syntax Brror'?l)

50

VII., MACHINE-CODE LINKAGE TO Xtal BASIC

1. MACHINE-CODE RELATED COMMANDS/FUNCTIONS

YBASIC contains extenaive facllities for allowing access of machine—code
routines and data, over and above the command /function extension capability
desoribed in Chapter VIII. The following commands and functions are avaliable

for this purpose:

CALL <I> Calls a machine—code subroutine starting at the
addreas glven by the expression <I»>. The user need not worry about pushing
registers, as long as the routine is terminated with a C9H (RET) code, whlch
will automatically return control to BASIC. Hote that the pointer to the
current position in the program text will be avallable at the top of stack,
if needed. .

Example:

CALL 3BU0 will cause the program to jump to a routine at location
LOFD0 (note that CALL &F00 would have the same effect). .
CALL{<E>) CALL may also be used as a FUNCTION, in which case
the working 1is very much altered. Here, we may pa3s any expreasion as an
argument to the function, having previcusly set the location USRLOC in the
seratch-pad {set it by means of the PTR 9,<I> instruction, described later in :
this =mection). This defines the location of the required machine—code !
routine. The argument i3 passed into the FPA (Floating-Point Accumuilator},
from wnich it may be accessed by cne of the routines described in Appendix C.
n return, any result may be stored in the FPA, and this is then returned as
the result of the functlon.

CALL used ip this form is very ruch like USR in many other BASIC's. We feel
that to allow CALL in both forms 1s both more flexible and more easily
adapted to use with other BASICs.

BOKE <> < J1>,<J2>, ., . <> Places the values of the expressions <J1> to
<Jo> into memory starting at location <I», Eazch of these expressicns occupies
a aingle byte, 50 must be in the range 0-255.

Example:
(1) POKE 16384 ,132 puts 132 (=484} into location 16384 (=&400C).
(ii) POKE &5100, &77 , &34 results in the numbers &77 and &34 being
" placed into locations &5100 and &5101 respect-
ively.
DOKE <I»<I1><12>, .. ,<In> Places the wvalues of the expressions <I1> to

<In> into memory starting at location <I>. This is 1ike POKE, but each
expression is placed into TWO bytes, the first byte being the lower significant

vyte.

Examples:
{1) DOKE 16384, 5764 results in the numbers &B4 and &1&6 being
plaged into the locations &4000 and 24001 respectively {(16304=24000, S764
=&1684).
{ii) DOKE &5100, &77,41234 results in the numbers &77, &0, &34, and £12 :
being placed into locationa &5100 to 85103 consecutively. i

51

PEEK(<T>)} Returma an integer in the range 0=255, which repres-
ents the contenta of the memory location (<I»).

DEEK {<T>) Returns an integer in the range -~32768 to 32767
representing the contents of memory locations <I> and <I+1>. The byte <I+1>
is taken as the most significant byte.

Example: Suppose location &4000 contains &CH, and &4001 contains 106.
DEEK(&4000) returns 1732 (or &06CH),

PTR <J>» <> Allows the user to set selected scrateh-pad locat-
ions, without wusing POKE or DOKE, but using the number <J> to select the
location, and <I» to be the new value, <J> may be chozen as followa:

- HTEXT Default or 'hard' peinter to start of BASIC program.
- TEXT Pointer to start of BASIC program (modified by HOLD).
- 3CHD Pointer to standard reaerved word tahle,

- ATXOMD Pointer to auxiliary (user) reserved word table.
- ERHETAB Pointer to normal error message table.

- AUXERR Pointer to auxiliary error message table.,

~= SADR Pointer to atandard address table,

- SENADR Pointer to standard function table,

- ALTXADR Pointer to auxillary address table.

—— USRLEX; Pointer to user machine-code routine (CALL as funct.)
- DEVPTR Pointer to list of available [/0 devices.

~ DEFLST Ba. of lines to 'LISTT at a time.

—-- BUFPTR Pointer to start of input buffer.

- BUFLEN Length of input buffer.

B—i—i.—i..-_u...u..._n__.._.l....a
A CO =3 CMOL L P o DD =l SN L) B e D

= TLTTOF Pointer to end of BASIC progrart.
-~ VARTOP Pointer to end of aimple variable space,
- ARRTOF Fointer to end of array space.
- STRBOT Pointer to bottom of string space.
- STHBOT Fointer to bottom of stack area.
- VRAM Pointer to bottom of 'intermal VDU' area.
- LIMIT Pointer to top of RAM used by Xtal BASIC.
21 - TOPRAM Pointer to top byte of HAM available to user.
22 = LNMNO Current line number being executed.
23 - DATLN Line number of current DATA statement (undefined
before a READ statement has been done).
24 = DATPTR Pointer to current poaition in DATA statement (I

using READ statements), Can be m oved to specified
‘line by RESTORE <L> statement.

Any value for <J> cutside this range will result in a BRANGE ERROR. The
advantage of using this copmand rather than the more usual methoed of PCOKEs or
DOKEs is that the same command may be used in different wersions of XBASIC
without modifying the programa in which 1t ia used, even though tha
scrateh-pad ares may sometimes be in a different place (e.g, the scratch-pad
area for NAS-SYS/NAS-DOS 1s at 1000H, on the CP/M version it is at 0100H, and
so on). It may not entirely achieve compatibility, since users are bound to
use 3ome other scratoh-pad logations not in this list, but will reduce the
mxdifications needed,

CARE!] Like POKE and DOKE, this comiand can be 'lethal' if applied
indiscriminitely, since no checks can be made to see if the alteraticna are

52

being made to non—existent tables, locations within areas already used, eto.
For example, the CLEAR command (aee Chapter II.3) should be used to set up
the LIMIT and STKBOT locations, rot PTR 20,<I> and PTR 18,<I> respectively.

The current value of any of the PTR loecations may be agesased by using PTR as
a function, with the argument representing the desired location.

Example:
A=PTR(12) puts the start addresas of the current input buffer
area into varigble A,
HEX$ (<>, <J>) Returns the Hexadecimal string corresponding to the

number <I» (the integer part oniy, I'm afraid!), as a string of <J>»
characters, where <J> must be <=4, If <J> is omitted, a value of 4 is
asaumed. The number 1s 'padded!' with leading zeroes, if needed and, if <J» is
too small for the number to be returned, only the lower <J>» significant
digits will bGe returned. This 'fixed' format is preferred toc the 'floating!'
Format used for numbers, since most applications with hexadecimal numbers
require 2- or 4-digit output.

Examples:

HEX$(1234) returns the atring "OLD2".
HEX$(100,2} returns the string "O4".
HEX${356,2) also returns the string "6un,

2. [OADING AND SAVING MACHINE-CODE FILES

As previously described in several places within this manual, a protected
area may be set aside for the storage of machine-code routines and data, by
means of the CLEAR command. With this in mind, the facility exists for
loading and saving memory within this area, using the normal LOAD and SAVE
commarids. Thia may be achieved by using the file type "OBJ" to specify that
it 1is machine-¢code routines or data to be loaded or saved, as opposed to a
BASIC program.,

Examples:

LOAD "T:ROUTINES,OBJ" Loads the machine—code routines or data from
the [file "RHOUTINES.OBJ" on tape drive T, into the area reserved for them in
the memory map (reserved by the CLEAR cormand)}. If the size of the file is
larger than the area reserved, a MEM FULL ERROR will occur.

SAVE MA:MUSTUFF.OBJ" <I1><I2> Saves the area of memory starting
from address <I1> and ending at address <IZ» to disc drive A, Both <I1> and
< 12> MUST be specifiled, and <I<> must be larger than <I1>, otherwise nothing
will actually be 2aved. Although intended for saving routines for use in the
‘machine-code area' (see memory map, Appendix B), there is no restriction on
the actual area of memory saved.

53

VIII, COMMAND/FUNCTION EXTENSION

In 1979 Crystal introduced in Xtal BASIC a capability which is still, at the
time of writing, unique to their versiona of BASIC. It allows the creation of
an auxiliary reserved word table of up to 64 extra reserved words. This meana
that nmachine-code routines can be written and added to the interpreter as if
thay were comnands and functions already built inte the language. Some
knowledge of machine—code programming is needed to take real advantage of
this facility, and users who have not yet experienced wmachine code are
advised to get studying! The ability to create what is, in effect, a
personalised BASIC conforming to your own requirements is an extremely
powerful tool indeed.

1, PROGRAM STORAGE

Baefore describing the method of adding auxiliary reserved words, it would be
helpful to consider the way in which a preogram iz stored within the text
area. Many users will already realise that XBASIC does not actually use a
line as typed, but instead shortens each reserved word into a unique single-
or two-byte 'token®., This apeeds up program execution, and also saves atorage
space. In addition, a null byte is appended to sach line, 3o that we have a
delimiter between each line of text {i.e, each numbered line). The line
nurber is stored as a two-byte quantity (hexadecimal), and an additional two
byte number is stored, which gives the offset to the atart of the next line
in the program text.

To illustrate this polnt, consider the following line of program text, stored
in memory:

300 FOR I=0 TO 9: PRINT 3QR(I): NEAT:END

A normal text editor would store thia line in memory in the form of ASCII
codes thus:

[

3 0 ¢

F O R = 0 T O 9 : PRINT S Q
33 30 30 20 46 4

F52 20 49 3D 30 20 S4 4F 20 3G 3A 20 50 52 49 4E 54 20 53 51

R (I) N E T : E N D <CR»
52 28 49 29 3A 20 4E 45 55 S4 3A 45 4E 44 OD

This would be abbreviated by XBASIC, intc the following form:

0 FOR I = O TO9 : PRINT SQR{ I } : NEXT: END
1B 0D 2C 01 8F 20 49 TE 30 20 72 33 34 20 A2 20 D3 28 49 29 3A 20 9B 3A BE 00

Here, the first two bytes give the offzet to the next line (this ia 20018, as
you will find if you ecount, atarting from 0 at the first byte of the offset}.
The next pair gives the line number (&012C= 300), Finally, you will note that
the spaces are aignificant, and remain in the text. They make virtually no
difference to the operating speed of XBASIC programa, and allow the user to
lay out programs in the way that suitsz himfher. Removing them does, of
coliras, sava space, but this should be not be done at the expense of
readability unless absclutely necesaary.

Note that even '=!' iz treated as a reserved word, although it has only cone

54

character anyway. This is sc that execution will be faster when scanning for
relaticnal operators {including '<' and '">').

The above format still applies if the line is the last in the program, since
we always indicate the end of the program text by means of a null pair, i.e,
the last THREE bytes of a XBASIC program are 00, The pointer TXTTOP alwaya
peinta cne ABOVE the last byte.

Since variable names and constants use ASCIT codes from O to &5F (lower ocase
variable names are internally converted to upper case immediately aftar
entry), we may use codes &0 to &FF to represent our reserved words, and
XBASIC actually uses codes &6F to &F9.

Within BEM and DATA statements and between double quotes, howaver, this
compression does not occur, so that all ASCIT codes, including lower case
letters and graphic characters, may be included in theze casea.

LIST 'blows up' the reserved word codes (but not within quotes, REM or DATA
ytatements!) into the actual words used, so that the user is not normally
aware that all of this is going on.

2. RESERVED-WORD CONSTRUCTION

The reserved word table appears within the interpreter as a long string of
reserved words held together, and separation is achieved by setting the top
bit of the first byte in each word. In XBASIC the start of the table looka
like this:

3 P C { ST E P T A B { T HE N ..,...8t0,
7B DI SO 4328 D3I S4 4550 D4 41 42 28 D4 4B 45 HE
Token: &F TO 71 72

The first byte of this table is the total number of reserved words allocated
(7B, or 123 in this case), in case a corrupted program should happen to
contaln a non-existent token.

Thia i3, in fact, not the best place to look at the table, sinee all of these
words are special, in that they are not commands/functions in their own
right., but appear only 1n certain statements. If we look a bit further
through the table, we pass through the arithmetic and relaticnal operators,
and firally arrive at the commands:

a U T 0 C H A I N o L E A R C L O 5 E ...etg.
C1 55 G4 4F C3 48 41 49 4E 3 4c 45 41 52 L3 4C 4F 53 45 ...,
Token: 80 81 8a 83

Assoclated with each command or function is an address, where the routine for
executing it may be found. All of these addresses build into an address table
which, at RUN time, is indexed according to the token supplied. This means
that: ’

a. The reserved word table is NOT used (or needed) at RUN time, only
the address table.

b. All commands/functions may be accessed at RUN time at the same spead,
80 that the order in which they appear within the tables is immaterial.

L

55

3. THE AUXILIARY TABLES

Thia much is done in a aimilar way on many BASTIC'a - the podnt about YBASTC
is that it has TWC reserved word tables, one of which 1s empbty, and may be
expanded by the user. All user—defined reserved worda are stored as TWO- byte
tokens, the first one always being &FF, to distinguish them from the inbuilt
reservad worda. These words are stored in an AUXILIARY reserved word table,
with their addresses being stored in an auxiliary address table. Both of
these ocoupy no space within the interpreter, and s the user must create
extra space in memory for the tables, in addition to that needed for the
actual routinea themselves,

Barlier versions of Xtal BASIC used a2 fixed area of RAM for holding the
tables, but XBASIC wuses the two pointers AUXCMD and AUXADR in the scratch
-pad area, which may be set up by means of the PTR command (Chapter VII.1).
Hence the wuser may make his/her tables as big or as small as desired, the
only requirement being that the last btyte of the awiliary reserved word
table MUST be an 80H code, and MUST have the correct total of reserved words
Elven at its start.)

4. COMMANDS AND FUNCTIONS

There is an lmportant distinction fo be borme in mind when creating commanda
or functions and each will be checked by BASIC for correct syntax when being
used. If the reserved word is to be used as a funetion, the word MUST end
with a '(' (ASCII &28) to indicate that an argument is to follow.

In a command routine, the HL register pair is treated as the text pointer
and, on entry, holds the memory address of the first non-space character
following the command word 1n the program text. On exit, HL should point to
the statement separator (':') ar the end—of-line byte 00. A simple RET
instruction may be used to get back to BASIU. No other registers need to be

preserved.

In a function routine, on the other harnd, the text pointer has already been
PUSHed onto the stack, and should be POPped and incremented to find the value
of the argument, The routine almost always has a special end, since a cloaing
parenthesis ')*' MUST follow the argument expression.

Note: If an auxiliary reserved word has been defined and used in a program,
but has subsequently been cleared from the tables (or the tables themselves
have been re-initialised), the program will still be LISTable, but all
references to that word will display aas a decimal number preceded by a
question-mark (e.g, 764),

F)
]

5. HOW TO ENTER EXTRA RESERVED WORDS

.

Without any further ado, let us now give the step-by-step method for adding
extra words to XBASIC:

a. Decide whether the new words are to beoome a permanent part of XBASIC, ar
are just to be added onr temporarily. For example, you may have soma
'"Tool-kit' type commands which may be reguired to assist with development of

56

a PBASIC program. You may then wish to drop those routines later, so that the
space may be utilised by the program developed. To do zll of this, use the
CLEAR command to set aside a machine—code area at the top of the memory
space, put your routine(s) and tables in there, either storing them in a .UBJ
file (see Chapter YII.2) or POKE/DOKEing them from a BASIC program. Temporary
extensions may be removed by exepcuting a 'Unld Start' to XBASIL, it 1s quite
in eorder for a BASIC program to define its own reserved words, which it will
use itself later on within the program, and then to remove these extra words

on completion.

If, on the cther hand, you wish to make a permanent addition toc the aystem,
this may be done by moving up the HTEXT pointer (using a PTR J,<I> command),
80 that the routine{s) and tabies may be placed in the area created. They
then become a natural extension to the interpreter, which may subsequently be
saved to disc or tape {as your operating system allows). In this case, it i3
advisable to make the auxiliary tables larger than required, so that
additional extensions may then use the same tables.

The aimplified memory maps below illustrate the two methods:

Permanent Extenaions: Temporary Extensions:
TOPRAM: #=-=z=c=====zz===+ TOPRAM: +zz===zszs=z==z=z=+
fLIMIT STACK ROUTINES/ TRBLES
STACK: +4==csss=-=====zz+4 LIMIT: +=-=sczzzs==ZZcz=+
STACK
VARIABLES ete STEBOT: +s=r==zaszccsoo--a
TITTOP: 4==zz=========zF=z=Z4 VARTABLES, etc
PROGRAM
TEXT: S-S EDSSSCSSITE==T 4 TATIOF: as==cocsS===zosc+
JHTEXT ROUTIMES/TADLES PROGRAM
I — TEXT: fEmmEm=m==TIZTSS=S4
XBASIC FHTEXT ABASIC
INTERPRETER INTERFRETER
ﬂ::::::::::::::-f el s e,]

For the remainder of the discussion, it is assumed that only one comand or
function 13 being entered, although clearly the same instructions apply to
the additicn of several words at onee.

b. Having found our free area, write the machine—code routine for performing
the command/furction within this area. This may be POKEd in from XBASIC, or
entered from within the machire-code monitor of your machine.

¢. The name of the routine, its reserved word, must now ba written into the
Auxiliary Reserved Word Table (pointed to by AUXCMD) as a set of ASCII codes,
the firat letter having its top bit set, as shown in section 2 of this
(hapter, [o not forget to set up or modify the first byte of the table for
the number of reserved words in the table, otherwise the command/function
will peturn an error when later invoked! The address of the table held in
AUXUMD may be entered from within BASIC by means of a PTR 3,<I> command, if
desired.

d. The appropriate address in the Auxiliary Address Table {which iz polnted
to by AUXADR) is then set up for the start of the newly entered machine -code
routine so that, when the command or function is invoked, thls routine will

57

be executed. The address of this table may be set up 1n AUXADR by means of a

PTR 8 <> command, if desired. NOTE: This alsc applies to c., above. Do NOT

use the PTR command to 3et up the Auxiliary Tables when making permanent
extensions, because the next '(old Start' will simply remove them! For
permanent extensions, set the pointers in the 'defaulf scratch-pad' (which is
copied to the acratch-pad area whenever a 'Cold Start™ is executed). The
necessary addresaes are glven at the end of Appendix D,

e. If permanent extensions have been made, save a new copy of XBASIC onto
tape or disc before running it up, not forgetting to include the area added
to tha end of the Interpreter!

f. Re-enter XBASIC via either the COLD START or the WARM START entry polnts
given in hapter O, if the above cperations were carried out fram within the

monitor of your machine.

Your new reserved word will now behave exactly as though it had always been a
part of XBASIC (if there are no bugs in the routinel!). Now 13 the time to
try the examples of extra reserved words given in Appendix D, which should
illyatrate these inatructions.

AWFULLY IMPORTANT NOTE: Ir scanning the reserved word tables for the
compression of text typed in, the Auxillary Reserved Word Table la scanned
before the Standard Aeserved Word Table, 2o that it is possible to use
complete words from the existing table as part or whole of Auxillary words.
Thus the following would ba perfectly acceptable as reserved words:

PRINTUSING SINH DELAY VALUE

and would not affect the appropriate existing reserved words which they
replace,

However, if READ was included in the Awdliary tables, it would assume
priority over the existing word READ, with rather interesting resultat In
particular, a .XB3 [ile containing READ statements would continue to execute
the existing READ statement, but any lines added to that program would
correspond to the new READ command, if READ was typed into any of those
lines. This option should therefore be used with some care.

58

APPENDIX A —- INDEX TO RESERVED WORDS AND ERROR MESSAGES

1. RESERVED WORDS

A complete list of reserved words is given below, together with thelr
associated 'tokens' and main pages on which descriptions of them may be
found. The TYPE column tells whether the word is a Command, Funetion,
Separator {i.e, 1t appears only as a part of another statement, e.g, THEM in
an IF statement), or Operator, and CF indicates that the word may be used
either as a Command or Functlion, An asterisk indicates that the word is only
available in the disc versaion of XBASIC.

CODE PAGE

HEX DECIMAL TYPE
+ T4 116 8] 5
- 75 117 0 5
g TG 118 0 5
bl T 119 Q 5
! ‘78 120 Q g
> 7D 125 0 6 ~
z TE 126 0 &
< TF 127 0 &
4BS8 CY4 196 F 27
AND TA 122 0 6
APFEND Bl 177 *C 48
ASC 5 i F 3
ATN b 198 F 27
aUTO 80 128 C 12
Call B8 184 CF " 65 -
{HATH 81 129 C 14,17
CHR$ cT 199 F 31
CLEAR 82 130 C 14
CLOSE 83 131 C 47
(LS B4 132 C 18
CONT 85 133 C 18
oS <8 200 F 27
CREATE 86 134 C y7
DATA 87 135 e 2y
DEEK s 201 F &6
LEF B8 136 [34
DEL 89 137 C 1
OTM 8A 138 [18
DIR B2 178 * 26
DOKE 8B 139 C 66
DRIVE BC 140 C 46
ELSE ap 143 3 20
END 8E 42 C 18 ,
EOF E2 226 3 62,63 ,
ERA B3 179 LW
ERR ED 224 F 62,63
ERL El 225 F 62,63
EVAL CA . 202 F 27
EXP B 203 F 27
FN E3 227 F 34
PMT BD 176 C 39
FOR " BF 143 C 18

29

GOSUB 90 144 C 19
GoTO g1 145 C 19

HOLD Q2 146 C 15,17
HEX$ oo 204 F 58

IF 93 147 C 20

INGH Ed 228 F 28,31,49
INP) 205 F 38

INPUT g 148 o 21,36,49
INT CE 206 F 28

T0M BS 185 CF 10, 40
KBD S 229 F 28,31
LEFT$ Db 221 F 32

LEN LF 207 F 2

LET 95 149 c 21

LIST 96 150 C 1

LN o 208 F 28

LOAD a7 151 ¢ 12

LOCK B4 180 C 26

LOG o1 2049 F 28

M3E 98 152 » 15 .
MID$ DE 222 F 32 »
MOD 79 121 o 5,6

MON 49 153 Y 1

MULS BG 230 F 2

NEW 94 154 c 11

NEXT 9B 155 £ 19

NOT Ef 23 F b

NULL Ba 186 CF 42

OFF 9Cc 156 O 63

ON 9D 157 G 22,62
QPEN 9E 158 C 47

OR i: 123 0 6

OUT gF 159 c 38

PEEK b=, 210 F 66

PI 2] 232 F 28

POINT D3 21 F 28

POKE FYy 160 C 65

POP Al 161 ¢ 20

POS Di 212 F 28
PRINT a2 162 £ 22,36,49
PTR BB 187 CF 66

READ A3 163 C 23

REM Al 164 C 2y

REN 5.5 181 L1 26

RENUM L 165 C 1%

RESET b 166 ¢ 24
RESTORE AT 167 ¢ 24
RETURN A3 168 C 20
RIGHT$ DF 223 F 32 N
RND 5 213 F 29

RUN A9 169 C 14

SAVE AR 170 C 13
SCRNS$ 3 214 F 32

SEP BC 188 CF 39

SET AB 171 C 24

SGN oy 215 F 29

SIN v 216 F 29

SZE D] 233 F 29

SPC 6F 111 3 30
SPEED BD 189 CF 42

QR
STEP
STOP
STR$
SWAP
TAB
TAN

™
THEN
UNLOCK
YAL
YERIFY
WATT
WIDTH
XOR
ZONE

9
70
AC
DA
AD
71
B
72
73
BS
DC
AE
AF
BE
7C
BF

2. ERROR MESSAGES

Braak
Hext
Syntax
Return
Lata

Qty

Ovf'l

Mem Full
Branch
Hange
Iimenaion
ivision
Stack Full

Type

Cmd

Str Ovfl
Str Complex
Cont

th Defn
Cperand

Bad Data
Fnd of Text
File

rive Select
File Type

DISC ERRORS:

Mo File
File Exists
File Looked
Diac Locked
Disc Seek
iae PFull
Dir Full

01
474
03
04
05

o7
08
09

0B
ac
0D
OE
or
10
11
12
13
1i

15

16

17
18

19

18
1C
1D
1E
1F

217
112
172
216
173
113
214
(AL
115
182
220
174
175
190
i2d
191

&S
EE

Pud o) M
RN eI FGEORI[CRACVFLN O

LEIBRRY

e

29
18
25
33
24

8

26
33
14
38
42

o)

ﬂD%(‘Jf‘]"ﬂ rolarmiacmaam

1)
S

£

Only available in the diss version.

u__‘ -

61

APFENDIX B —— HARDWARE CONFIGURATION (CASSETTE YERSION)

1., MEMORY MAF FCOR XBASIC

FREE SFACE FOR
MACHINE-(ODE
ROUTINES .
4+======z=zzz======4+ LIMIT T,-;""F
INTERNAL VDO
FOR EDITCR -
— + VRAM ECFT
XBARTC
STACK
tm + STKBOT E BFF
STRINGS
4=z======zzzzz=zzz+ STRBOT EE}EF
{FREE SPACE--
FIGURE RETURNED
BY *SIZE*;
#=x====zzszzzczzz==4 ARRTOP y4s oY
ARRAYS
+ + VARTOR 43 DM
SIMPLE
VARTABLES
+ TXTTOP 4% AC

XBASIC Lol
+ PROGRAM TEXT + TEXT Yfiormally same as HTEXT,
modified by HOLD)
R e e N A HTEXT

The interpreter itself cccupies the area 41000 to &UI1FF.

2. XBASIC SCRATCH-PAD LOCATIONS

The scratch-pad 1s divlded into two parts - that part which must be
initialised with certain default wvalues, according to the hardware
being used, and the part which simply requires setting to <zern. The
‘default’ area is 1In fact copied from an area within the interpreter
called the HARD seratehpad, starting at HTEXT, which may be found at
3ATCH. The default settings for this area are shown in the table below,
given for the tape veralon:

1000 XCOLD: JF XOOLIM ; ENTRY TO TCOLD START' ROUTINE
003 JWARM: JP XWARM? ; ENTRY TO 'WARM START*' ROUTINE

1006
1008
1004
1000
100E
1010
1012
1014
1016
1018
1014
101C
101E
101F
1021
1025
1026
1027
1028
1029
1028
1020
102E
1030
L[
032
1033
1034

1035
1036
1037
1039
1038
03¢
163D
103E
"103F
1040
1041
1043
1045
1087
1049
1048
104D
104F
LS
1053
1055
1057
1059
1058
W50
105F

62

NAME DEFAULT VALUE REMARKS

; SEPARATOR FOR fINPUT! {SEP)

i CHARACTER FOR 'TAB' FUNCTION

; ENI OF VDU LINE FOR ZONING {ZONE(O))
i PRINT ZONE WIDTH (ZONE{1))

SEPRTR: &2C (',') 7
TABCHR: 420 (' 1}
WIDTHT: 36 surt -
ZWIDIH: 14 °° -

TEXT: &4201 - : PTR TO START OF BASTC PROORAM (PTR(1))
SCMD: &3E35 : PTR TO STANDARD CMD TABLE {PTR(2))
AUXCMD: &3FCH . PTR TO AUXILTARY CMD TAPLE (PTR(3))
ERRTAB: &3D8E . ; PTR TO STANDARD ERROR TABLE (PTR{4))
AUXERR: &3E34 . PTR TO AUXILIARY ERROR TABLE {PTR(5))
SADR: &3FCB - + PTR TO STANDARD ADDR TABLE (PTR(6})
SFNADR: &4053 : PTR TO STANDARD FN ADDR TABLE (PTR(7))
AUXADR: O + PTR TO AUXILIARY ADDR TABLE (PTR(8})
USELOC: &15CA - : PTR TO USER 'CALL' ROUTINE (PTR(9)})
LEVPTR: &342D 2o + PTR TO START OF I/0 DEVICES (FTR(10))
DEFLST: 65535 "~ *F : LINES TO 'LIST' AT A TIME {PTR{11))
BUFPTR: &0CB0 ¥ - - : PTR TO INPUT BUFFER AREA {PTR(12))
BUFLEN: 127 = ¢ % . LENGTH OF INPUT BUFFER (PTR{13)}
RNDMOD: 1 1 MODE OF RANDOM Mo, (INTEGER/REAL)
RNDHO: &BO4LTERT (9 : HOLDS LAST RANDOM No, (0.780148)
NDISCS: @ - : No. OF DISCS ALLOWED
NTAPES: 1 - : No. OF TAPES ALLOWED
XLEN: 48 tod - ; VDU 0L SIZE
TLEN: 16 ; VDU ROW SIZE
VDUSIZ: &0300 : SUREEN SIZE {XLEN*YLEN}
STKSIZ: &3100 - » STACK SIZE
DEFDRV: &13 ('T'-1a')+" ; CURRENT TAPE/DISC DRIVE
IOMOD: &FFFE < Ff¥ : O/P MODE, USED BY EDITOR, ETC {IOM{0-15))
TXFIGS: O : NUMERIC DISPLAY FORMAT FOR FMT

]

ABOVE IS COPIED ARES - BELOW IS AREA INITIALISED TO ZERO

WIDTH: DEFS 1 : WIDTH FOR PRINTOUT (WIDTH)
PRTCOL: DEFS 1 s PRINT COLUMN (PCS(0})
ROWCOL: DEFS 2 + CURRENT CURSOR (COORDs (POS(1 or 2))
CURPQS: DEFS 2 : LOCATTION CF INTERNAL CURSOR

VSPEED: DEFS 1 . DELAY FOR CHARACTER O/P (SPEED)
NULCNT: DEFS 1 : NULLS AFTFER CR? (NULL)

KEYIN: [DEFS 1 s INPUT CHARACTER FROM QUIKCK

PRTCHR: DEFS 1 ; LAST QUTPUT W

ODEV: DEFS 1 i CURRENT QUTPUT DEVICE

IDEV: [EFS 1 s CURRENT INPUT DEVICE

TXTTOP: DEFS 2 ; PTR TO END OF BASIC PROGRAM (PTR{14))
VARTOP: LEFS ~ 2 : PTR TO END OF VAR SPACE (FTR(15))
ARRTOP: DEFS 2 : PTR TO END OF ARRAY SPACE {PTR(16})
STRBOT: DEFS 2 : PTR TO BOTTOM OF STR. SPACE (PTR(17)})
STKBOT: DEFS 2 : PTR TC BOTTOM OF STACK AREA (PTR(18))
YRAM: DEFS 2 » PTR TO START OF VDU AREA (PTR(19})
LIMIT: DEFS 2 + PTR TO TCP OF USED AREA (PTR{20})
TOPRAM: DEFS 2 : PTR TO TCOP BYTE OF RaM (PTR{21))
LNNO: DEFS 2 ;i CURRENT LINE NO. {PTR(22))
DATLN: DEFS 2 ; LINE NO. OF CURRENT DATA STATEMENT (PTR{23))
DATPTR: DEFS 2 ; CURRENT POSN, IN DATA STATEMENT (PTR(24})
TXTPTR: DEFS 2 ; SAVE TEXT PTR AT START OF STATEMENT

EXPETR: DEFS 2 : SAVE TEXT PTR IN EXPRESSION

LNN.: DEFS 2 . QLD LINE PTR FOR CONT

TXTPTZ: DEFS 2 : 10LD' TEXT PTR FOR CONT

ENDLST: DEFS 2 ; LAST LINE FOR LIST

i3

NE

3o

w1 -

63

1061 PFTR: DEFS 2 i GENERAL-PURPOSE POINTER
1063 PTR1: DEFS 2 ; GENERAL-PURPOSE POINTER
1065 DIMFLG: DEFS 1 ; FLAG FOR DIM/FNDVAR ROUTINES
1066 NTYPE: DEFS 1 ; TYPE QF EXPRESSION EVALUATED
1067 VIYPE: LEFS 1 ; VAR/ARRAY TYPE USED BY FNWIVAR
1068 STRELG: DEFS 1 ; FLAG TCQ INDICAYE HOUSE-CLEAN DONE
106% GARPTR: DEFS 2 ; GARBAGE-COLLECT POINTER
1068 ASNFTR: DEFS 2 ; TEMP. PTR FOR 'LET'
; 106D STRPTR: DEFS 2 i PTR TG END OF STRLST
. 106F STRLST: DEFS 10 i STR SUB~EXPRESSION LLST
1079 CHAR: DEFS a ; TEMP, STRING 'ACCWMILATOR!
078 (HRADR: DEFS 2 ; ADDR, ASSOCIATED WITH CHAR
W7D RDFLAG: DEF3 1 ; IN READ/INPUT, FLAG TQ SHOW WHICH
- 10786 FPA: DEFS 4 i F.P ACCUMULATOR
1082 TEMP: DEFS 1 ; LOC. USED IN F.P CALCULATION
1083 PRTTAT: DEFS 17 ; TEXT AREA FOR FORMING WUMBERS
1094 TANEAP: DEFS 1 ; TEMP. EXPONENT VALUE FOR FORMATTING NUMBERS
1095 TANBUF: DEFS 8 ; DIGIT BUFFER FOR FORMATTING NUMBERS
109D ZERMOD: DEFS3 1 ; COPY OF CURHENT ERROR MODE (FOR 'STOB')
109E ERRMUD: DEFS 1 ; CURRENT ERRCR MODE
109F ONERRLN: DEFS 2 i LINE NO, OF ON EER STATEMENT
1041 ERRNO: DEFS 1 ; NO. OF LAST ERROR GENERATED
1042 ERRLN: DEFS 2 ; LINE NO, OF LAST ERROR
1024 EOFMOD: DEFS 1 ; CURRENT EQF MODE
1045 ONEQFLN: DEFS Z ; LINE NO, OF ON EQF STATEMENT
1047 STESAV: DEFS 2 ; SAVE STACK FOR ON ERR.. STUFF
1049 VDATTS: DEF3 32 ; "START-OF-LINE ROW' LIST FOR INTERNAL ‘'¥DU*
1609 ASCFLG: DEF3 1 ; FLAG TO SHOW WE ARE HANDLING .ASC FILE
10CA FDESC: DEFS 4 ; CURRENT FILE DESCRIPTOR NAME
10CE OTDESC: DEFS i i O/F FILE DESCRIPFTOR NaME
1002 INDESC: DEFS b + I/P FILE DESCRIFTOR NAME
1006 FILTYP: DEF3 1 7 STORE TYPE OF FILE IN 3SAVE & LOAD
1007 F3PELC: [DEFS 28H ; FIXED FILE SPEC. AREA, FOR SAVE, LOAD, ste
10FF FBUFF: DEFS3 80H ; BUFFER FOR FSPEC

3. INPUT/OUTPUT

As described in Chapter IV, the I1/0 device specification is given by
IOLIST, pointed to by DEVFTR. As supplied, the devices are as follows:

0 - Normal Mascom VDU, 48x16, but with all 16 lines scrolling. This
overcomes the 'top-line printing' problems apparent when using NAS-SYS
1, where printing a character to the non-scrolling line resulted in the
cursor moving to the bottom of the screen, accompananied by a acrcll of
the screen!

s

Input device O i3 the NASCOM keyboard,

i - Qutput to serial printer, using bit 7 of port 0 as DIR. connection.
This allows handshaking, and a 1 on bit 7 indicates that the printer is
ready to receive data from the R5232 port,

The input device 1 13 currently as for device (.

2 - OQutput to and Input from the R3232 port, in the usual way (i.e,
with nc special handshake connections).

G4

The user can, of course, define his/her own IOLIST, for the warious
other I/C possibilities, and is referred to Chapter IV.1 for the

relevant details,

4. GRAPHICS SUPPQRT

SET, RESET and POINT have already been described in Chapter IIT.1 and
IIT1.3. All that need be said here is that the resclution provided by
these 'dot' graphics is 95 by 48 (0-95 and 0-47 bpeing the respective
ranges}. Coordinates outside these pranges may be specified, up to a
maximum of 255, with ‘wrap-around'.

Those used to Nazcom ROM BASIC should note that SET and RESET may NOT
be wused with parentheses around the ccordinate pair, and that the
vertical coordinate works more loglceally (i.e, 0 is at the very top of
the screen, with 47 at the very bottom), rather than making special
exceptions for the 'non- scrolling row'.

65
APPENDIX C - XBASIC USEFUL SUBROUTINES

Note: All of the addresses given within this appendix are specified 1in
Hexadecimal, This appendix has been provided for assisting the generation of
extra reserved words in an efficient manner. It is not complete, but we think
that the most useful routines are all present in this liat!

1. ERROR MESSAGES

Not much more need be saild about this than has already been covered in
(hapter VI, except to give the address of the routine ERROR, which actually
handlea errors, and may be found at 15CF. The only register which matters
here 1s E, which contains the error number, as defined in Chapter VI. Tt is
not necessary to CALL this routine, just Jump to it!

2. USER=-FUNCTION TERMINATICH ROUTINES

1185 FNBIT: /; RETURM BIT VALUE IN CARRY FLAG. .
1188 ENENDB: : RETURN BYTE VALUE IN A.

118B FNENDI: ; RETURN INTEGER VALUE IN &B (high byte in A).
11BE FNENDF : ; RETURN NUMERIC VALUE IN FPA (Floating-point).
1191 FNEND: ; RETURN EXPR. VALUE IN FPA (may be a strirg).

These routines should NOT be CiAlled, but used to terminate your function
routine. The routines all assume that the text pointer is on stack, so that
the registers may contain anything on entry to these routines {except, of
course, for the onea returning results!). Also, see section 8 of this
appendix for the use of STREND, the usual way of returning string results,

3. GENERAL-PURPOSE TEXT SCANNING ROUTIMES

As explained in Chapter VIII, XBASIC uses the HL register pair as the pointer
to the current pesition in the program text. The following routines make use
of this:

RDLN 3587 Feads in a line of text from the keyboard or current input
device to the BUFFER, polnted to by BUFPTR, This makes use of the editing
facilities deseribed in Chapter II, according to the IOM setting currently in
use. M entry, il 'Lire Edit" mode is in foree, the character contained in A
iz printed as a prompt at the start of the line.

On exit, the carry flag is set if the line has been abandoned by <ESC-, but
is reset 1if <Ci> has been used to complete the line. In this case, the line
in the buffer is terminated with a 00 byte, and HL 1s left: pointing to ona
byte before the start of the buffer. Registers affected: 4 and HL.

PR J4ET Print character in A4 .register, to V¥BU or current output
device., The side-effect of this is that the loecation PRICOL is adjusted to
give the correct colurm on the screen/printer, for TABg, ete. In addition, a
delay 1is imposed if the 3SPEED command has been used to slow down the print
rate.

66

FRTNUM 11FC Prints the contents in the HL register pair as an integer in
the ranges 0-65535. All regiaters may be affected.

PRM 1189 Frints the message immediately following the sub-routipe
call, terminated by having the MSB of the last character set, This means that
all other character codes must have ASCII values in the range U-47F. Thua, to
print "Hello there", we do:

CDBY 11 4B OSGUBLEF20T4 7815 T2 BB

He l 1 o t h e r e

n exit, A holda the last character printed, still with its top bit set, and
the retum address is that immediately following the last character Iin the
me3sage. Mo other registers are affected.

CPHLDE 1187 Compare HL and LE and return flags set as follows: Carry - Set
if HIZLE, reset if HL==DE, lerg -« Set if HL=DE. Registers affected: A,

LTRCHK 11DF Places the character contained at (HL} in A, and tests to see
if it is a letter in the range A - Z {i.e, a capital letter}. Carry is Reset
1f it i3 a capital letter, and Set if it is any other character. No other
register iz affected. !

LWRTST 1100 Loads character from (HL) into A and, if in the range &60-47F,
converts it to upper-case (in the range &40-§5F). Only A and the flags are
affected.

IGBLE 114a Increments HL, until the first non-space character is found.
{n return, A contains the charazeter found, and HL points to that character. Z
flag is set if at the end of statement (mull or ':' found), and C flag set if
numeric character found (0-9).

TSTC 1142 Teat character at (HL), ensuring that it is the same as that
specified immediately after the call, If not, a Syntax Error occurs., This ia
affectively a four=byte call, e.g, D e 2t 28 looks for a '('. 4 contains
the test character, and HL points to the next non-blank character following
the tested one. Note that we may alsc use this routine te test for a reserved
word token.

TSTCOM 119D
APARN 1192 Special cases of TSTC, test for comma ',* and right parenthesis
'}' respectively. These only require 3 bytes instead of four, though!

£

FNDLN 123B Searches for the line in the program text rgiven by DE, from
the start of text. Returns with the following conditions:

Carry and Zero set: Line found, BC points to start of line, HL points to
start of Tfollowing line (or to 0000 if the line found is the last in the
text), as described in Chapter VIII.1 ,

Carry reset, Zerc set: Line not found, and end of text reached. B(then
points to the start of the last line of text, and HL=00GQ,

M

67

Carry and Zero reset: Line not found, but we have found a line with a number
larger than that searched for, BC pointing to that line, and HL pointing to
the next line {(or 0000).

ther registers affected: A will be affected, but DE will remain unchanged.

NXTLHN 123E As for FNDIN above, but this time searches for the line given
in DE from the current position in the text, given in HL.

COMPRSS 1761 Foutine to take a line of text in the buffer starting at the
location given in HL, and terminated by a 00 byte, and which generates the
same line in the compressed format given above, in the input buffer {BUFFER}.
Note that the new line is ALWAYS shorter thar the original. In normal use,
when entering a line of text into a program, the compressed line overlays the
input line, since the pointer to the opiginal text iz always in front of that
to the compressed text. In addition, the line number is not considered here,
alnee HL iz pointing at the rext ron-blank character after the line number
(if one has beer used), COMPRSS does NOT gererate a compressed line number
nor the polnter to the rext iine.

Beglistera affected: All. HL pointa to one byte before the start of the buffer
en exit, DE points to the last byte plus two in the compressed line, and ©
holda the rumber of bytes in the compressed line, plus four to take account
of the space needed for the line number and pointer.

4, FLOATING-POINT FEATURES

a. Representation of floating-peint numbers,

A fleoating-point number in XBASIC is stored in four consecutive bytes. There
are four bytes reserved within the scrateh-pad, used for fleating- point
calculations, called the Fleoating-Poirt Accumulator {(FPA), and a further byte
TEMF 1is used by the f.p routines for storing temporary calculations. Apart
from these, only the registers and the stack are used for f.p calculaticns.

The high byte of the FPA 1s the exponent, which is a signed power of two.
Mote that the sign bit is 0 if NEGATIVE, 1 if POSITIVE (for a reason which
will become apparent later). The lower 3 bytes form a signed mantissa, the
top bit of the top byte being the sign (this time 0 if POSITIVE, 1 if
NEGATIVE!). The mantissa is a number between O and 1, with the binary point
coming above the top bit, '

If we let e = Exponent byte, and m = Mantissa bytes, we express any f.p
number N as: ‘

N= {1 +m*2%e -1}, '
with the added convention that any number with a zero exponent 1s taken as O.
Now we 3see why 1 1is used for a positive aign on the exponent - e=01 muat
represent 2(-128), and 0 is clearly smaller than this (not muchl!), Note that
e=80 represents 2%(-1), or 0.5 up to 1 {(depending cn the value of m), The
advantage of using this convention for 0 1s that we can initialise wvariables
and arrays simply by filling them with 0's (each element is then zero).

This is still probably as clear as mud{!), sc let's have a few examples, to
illustrate the system:

r
o

N 7.1
!

r'i‘j
Decimal MNumber Hex {f.p) representation Remarks
o 00 00 00 Q0 Zero
1 81 00 00 0O 2%
2 B2 00 00 Q0 24
3 B2 40 Q0 0D . 1.5%211
-3 82 (D 00 00
3.141593 82 49 OF DB 51
0.6931472 B0 3172 18 Ln{z}
65536 g1 00 00 00 2416

The FRANGE over which we can aperate is determined by e, and is thus:
21(-128) < N < 2127, which iz 2.338736 * 104(=39) to 1.70712 * 0438,

The ACCURACY of caleculations is determined by the length of m, which in this
case represents 1 part in 2 24, or an error of < 5.960464 * 104(-8), which is
better than 7 sig. figs. However, to try and account for rounding errors, we
allow one guard digit, and so you will note that all numbers are printed to 6
sig. figs {even this does not ALWAYS account for ALL errors, and you will
note, for instance, that 3f4 is displayed as 81,0001, and not 81, as it
ghould be! This 1s mainly due to problems with converaion from binary to
gdecimal, as well as the accuracy of the method used for caleculating powers),

k. Floating-point functions and operatora.

The addresses of the single-argument f.p functions are as foliows. In each
case, the argument is taken from the FPA an entry, and the result returned in

it on exit:

LOG 2451 LN 245D EXP 2D14
SIN 2094 003 2I8E TAN 2074a
ATN 2064 RND 2EDN0 ABS 2C24
SCN 2036 INT 20BA 8 2CCT

By ‘'operatcrs' we mean those in which we are dealing with THO f.p quantities,
In general, we do a caleulation in the form a = b © a, where a = contents of
FPA, b = contents of top four bytes of stack, and o is the operation
performed. On the stack, the top pair of bytes represent the exponent {high
byte) and top byte of mantissa. For each operator, there is another entry
point {given a suffix *1'), in which b is stored in the BCDE reglsters. Here,
B contains the exponent, C the high byte of the mantissa, and DE the rest aof
the mantissa. We call the set of four registers used in this way the Floating
-Point Register (FPR). The result of any of these operations is, of course,
returned in the FPA,

ADD 2558 ADDN 2570 SuUB 2968 . SUB1 296D
MULT 2590 MULT1 2A9E DIV 2AEE DIV 2AFD
POWER 2C00 POWER] 2CIR ADDN 2962 SUBN 2967
MOD 2875 M 2T MILI0 ZBAd DIV1O 2aE2

EXP (Y * LOG(X}), with the

Mote: POMWER is actuzlly calculated as: X ¢ Y -
=0 for YO, and X tYis not

econvention that X' 40 = 1 for D=0 and 0 % ¥
defined for X0 or for X=0 and ¥0.

MUL1C and DIV10 respectively multiply and divide the contents of the FPA by
10, leaving the result in the FPA,

ADDN and SUBN are like ADDi and SUB1, except that HL points to a memory
location at which b may be found. You can place a constant here, or even a

63

temporary reault, il you wish., XBASIC stores a large table of constants
within the Interprater, and here are some of the more useful onea:

HALFPL
TWOFPL
(HE

¢. Cther useful

STKFFA

LLFPR
STFPR

HLTEFPA

HLTFPR

FPATHL

FPRTHL

CHICSON

CHGSGN

2808
2FQ7
2ECD

2051

2C5E
2C76
2C73

2001

2C7F

2064

2082

2C1B

2(2E

Pi/2 HALF 2F0F 0.5
Pi%2 QTR 2813 0.25
1 NEGONE 2ECS -1

F.P routines,

Returns with the FPA on the stack, in the form shown above,
Destroys the DE registers.

Copies the FPA to the FPR, leaving HL pointing to TEMP.
Copies the FFR to the FPA, without affecting any registers.

Coples the four bytes starting at (HL)} into the FFR AND FPa,
leaving HL. pointing to the byte following the block of four.

Copies the four bytea starting at (HL} into the FPR, leaving
HL as above, but not affecting the FPA,

Copie= the FPA into the four bytes starting at (HL), leaving
HL. as above, DE pointing to TEMP, B=00 and A= exponent of FPA.

Copies the FFR into the four bytes starting at (HL), leaving
HL as in HLTFPA, but no other registers affected.

As above, but copies the four bytes starting at (DE) to those
starting at (HL).

Test sign of FPA, returning A4=00 1f FPA=0, A=01% if FPAXO and
A=FF if FPAO. This does not change any other registers.

Changea the sign of the FPA, turning it from a positive to a
negative number, or viee versa. This affecta A and HL.

d. Polynomial awvaluation.

XBAZSIC uses routines called POLY and POLY! to evaluate polynomials for the
transcendental functlons LOG, EXP, SIN, and ATH. 4l) of the others are
derived from these 'big four'. Both of these functions use HL on entry to
point to a table of ccefficients, and these are then used to form the
rejuired polynomial. The first byte of the table gives the number of

ecefficients,

and e=ach coefficient then follows {highest order coefficient

first), stored in four bytes as usual. The result is, of course, returned in
the FFA. Now, let us assume that the FPA holds a number X.on entry, and Y on
exit to/from these routines, and that there are n+l coefficients O-Cn:

FOLY1

POLY

2D

n+1

Returna an evaluation of a polynomial of the form:

Y= 0+ O X+ C2FXE2 - G343 4wl + O XD

The table looks like this:
M ..., . C3 2 1 0

HL pointa here on enbry.

2D

Returns an evaluation of a polynomial of the form:
Y= CO% X + C1* X43 +« C2* X85 + + Cn* XH{2%n+1),
and the table locks the mame as above.

70

A1l other registers may be affected by these routines.

SINTAB 2EF6 LOGTAB 2EA3 ATNTAB 2EDY EXPTAB 2FEH) are the ones
used within XBASIC, but they won't look like they do in your standard math-
ematics booka, because we use a special method known as CHESYSHEY econ-—

omisation to calculate these functions to the required degree of gocuragy
and the same degree of efficiency over the appropriate range of valuea,

5. EXPRESSIONS AND FUNCTIONS

v ———

To get 2 number or a complicated expression containing numbers, functions and
operators, imte the f.p format described in the preceding paragraphs, we use
a set of very powerful routirnes to evaluate them. In all of the following
cases, HL points to the position in the text where the expression is to be
found and, urless ctherwisze stated, all register contents may change:

EXPR 2554 The zeneral expression evaluation rmoutine, for ecaleulating
both numeric AND string expressions. The numeric result {or string pointer in
the case of string expressions) is simply returned in the FPA, and NTYPE
contains the type of expression returned (0 for numerle, 1 for string). The
expragssion can be as simple or as complicated az desired, and may even
contain logical or relational operators.

EXNMCK 2541 A3 for EXPR, but only accepts a numeric expression, and
returns 'Type Error', if a strirg expression is found.

PARNZ 201C Az for EXPR, but expects the expression to be enclosed inside
parentheses (), returning 'Syntax Error' if not.

PARN 2556 Az for PARMZ, but only looks for a left bracket '{', so that
more expressions can be evaluated, perhaps separated by commas {uss T3TOM to
test for separating commas), finally finishing with HPARN to test for the
right. bracket.

FCHNIR 2F34 Tests for a f.p number (NB, NOT an expression, just a numeric
eonstant), leaving HL peointing to the first non-numeric text character.
Examplas of values accepted by this routine are:

1 2.34 51.76548 (rounded to -51.7655)
-1.23E-07 LTFE {hexadecimal value, taken as 2046)

The result is returned in the FPA.

GETNM 2510 Like FCHNUM, but this time the number must be an integer in
the range 0-65529, and 'Syntax Error' 1s returned 1f it is not in this range.
The number ia returned in DE, and HL again points to the , first non-numerie
character. This routine is mainly used for fetching line numbers in the text
le.g, after GOTO or GOSUB statements}., This routine leaves BC unaffected.

TATNUM 2FD4 -

TXT1 2FDT Converta the number in the FPA into an ASCII format number,
starting at PRTTXT (or at the position givern by HL in the case of TXT1). The
format in which the mumber is returned depends upon the FMT statement that ia
in force (L.e, the number of leading and trailing figures given in the
nusber). Thia 1s alsc dictated by the scratch-pad location TAFIGS, which

contains the number of leading figures allowed in its top half, and the

i3

p—

71

rumber of trailing figures in its bottom half {e.g, 1f TXFIGS containas 42H,
we have 4 leading figures and two decimal places.

The number stored is terminated by a 00 byte, and the routine returna with HL
at its original value.

UEXINT 24ET As for EXNMCK, but this time makes the expression into an
integer, which must be in the range =65535 to +65535, returning the result in
DE, as a signed 16-bit quantity. Note that, due to the range allowed,
equivalent positive and negative wvalues may be used interchangeably, e.g,
55535 is equivalent to +1.

INTEXP 24FY4 As for UEXINT, but restricts the range to 0 to +65535.

I255 250D Here, we reatrict the range to 0 to +255, and the result is
returned in A as well as DE (Ix00, of course}.

In these last three routines, 'Qty Error' is returned if the number is not in
the correct range desaribed.

6. ROUTINES TO PRODUCE NUMERIC RESULTS

it is often necessary, after obtaining one or more numeric expresaiona and
doing some manipulation, to return a numeric result. If the result is an f.p
rmumber, there is no problem - we just return the result in the FPA. If we
have an integer result, We can use the following routines to return the
resyult in the FPA suitably converted. Note that these may be CAlled, urnlike
the function terminating routines deseribed earlier.

FORMNUM 146B Converts a two-byte integer (-32768 to 32767) inte an f.p
number. The integer is stored in the A and B registers (high byte in A), and
all of the other registers are affected.

FORMPOS 13E1 As for FORMNUM, but returns the number unsigned, i.e, it

assumes the number to be in the range 0-65535. In this case, the integer is
taken from HL on entry.

7. TYPE CHECKYNG ROUTINES

There are thres routines provided for checking the type of variable returned
by a sub-expression or expression:

NUMCHK 2544 Enaures that the expression just evaluated is z number.
STRCHK 2547 Fnaures that the expressicn Just evaluated 4s a string.

TYPMCH 2549 Checks that the type of one expression matches another, This
is done by making the Accurulator represent the type of the first expression
(0 if numeric, 1 if string).

In ali of these cases, we return a TYPE ERROR if the wrong type was found,
and the NTYPE contains the type of the expression last evaluated. (nly the A
register and flags are affected by these routines.

-

r
.

12

8. STRING EXPRESSIONS

We already know that we may use EXPR to returm the pointer to a string
expression in the first two bytes of the FPA. In order to process the string
correctly, we use the {ollowing routine:

FUHSTR 2309 This does a call to STRCHK {to ensure that the expression just
evaluated was a string}, and exits with HL printing to the length byte of the
string expressicn. It also checks to see whether the string was a 'temporary!
sub-expression. 3tring sub-expressions are stored at STRLST in the secrateh-
pad, and serve toc stack the pointers to strings which are created within an
expression and then forgotten about when the expression has been completely
evaluated. We use CHAR to store the current 'temporary string' (for example,
the result of concatenating several strings, which, until assigned to a
variable, would have nowhere to keep its pointer).

Registers affected: Apart from HL, the contents of all of the regilstera are
modified, but thelr values are robt important.

LEN1 233k If you want to use LEN, you should in fact use this routine,
which calla FCHSTR, and then returns the length of the string in A. HL still
points to the length byte. TYPE is set to O, to indicate a numeric result,
and so is D,

ASCT 234D Similarly, use this routine where you wani to use ASL. This
calls LEN1, returns the address of the start of the string in DE, and the
first character in A. HL is left peointing to the LAST byte of the string
painter, not the first, as it was in the above two cases.

STRSPC 2105 Creates space for a new string within the string space, the
regquired space being given by A. All other registers are affected. I there
is insufficient string space, a ‘house-cleaning' operation is initlated,
which removes all strings to which there 18 no longer a peointer (i,e, the
astring variable which wasz pointing to it has now been assigned to another
string}. DE 13 left pointing to the first byte of this free space, and STREOT
13 lowered by the appropriate amount.

ASNSTR 2173 As for STR3PC, but then assigns thils string aspace to the
‘temporary String accumulator' (CHAR), writing the length to CHAR, and the
start address to CHAR+Z. Thiz is thus the routine to use 1f it is desired to
greate 3 string in a user-defined function, since it is now an easy matter to
copy your string into this space, and then use STREND (see below). Registers
affected: M1, but HL firnishes pointing to CHAR, DE still points to the start
of the created space, and A contains its length.

STREND 2146 Sets the first two bytes of the FPA to the next position in
the sub-expressiocn list, and then moves the temporary string pointer from
CHAR into that position, thus freeing CHAR for another string, if necessapy.
This provides the correct way to end 3 user-defined string function. IF the
sub-expression list at STRL3T is full, a STR COMPLEX ERROR is returned. This
is a rare otceurrance, since the only Lypea of string manipulation that occur
do not require stacking {(e.g, you DON'T need to do this:

A$="HELLO"+{ Af+(B3+E$))

It is allowed, however, 80 we must allow for 'idiots! within the programming
fraternity!)

73

This routine also sets NTYPE to 1, indicatimg a string result. BRegisters
affected: a&ll. This routine should never be called as a Sub-routine, since it
expects to find the text pointer on stack, and this will be found in HL at
the end of the routine. B30, ensure that the text pointer is immediately
avallable on stack, and then JUMP to this routine, when you use 1it!

9, DYNAMIC ALLOCATION OF STRING SPACE

A strirg may have any length from 0 to 255 charactera, or 0 to 285 bytes,
whereas a numeric variable occupies just 4 bytes, a fixed length. In order to
make storage allocation more efficient, we therefore use a aseparate 'string
space’ area in addition to the 'variable space'. The variable space contains
pointers to the various strings used, while the string space ceontains the
actual strings themselves. No separators are needed within the string space
to tell us where one string ends and the rnpext one starts, because the
pointers contain both the start address and the length of the string (this
needs only 3 bytes, but we actually use U4 in order that string polnter

ocoupy the same space as numeric variables), .

When we DIMension a string array, we use up variable space in setting up the
pointers, but we do HNOT at that stage use up any string space, sinece no
strings have actually been assigned.

1C. INTERNAL STORAGE OF VARIABLES AND ARRAYS

a. Storage of variables.

Let us first look at the storage of variables, both string and numeric. Each
string and rnumber, as it is defined in the program, is searched for in the
list from (TXTTOP} to (VARTCP}. If it is not found, the list is extended by
inereasing VARPTR by eight bytes (and moving the arraya up eight bytes, if
necessary), and then inserting the following information:

First four bytes: The firat five characters of the variable name, in reverse
arder. In order Lo 'squeeze them in', we use Five bita to represent the first
character (in the range &0 to &1A corresponding to A ~ 2), and six bits for
subsequent. characters (the range being &)1 to &4 and &12 to &2B correspond-
ing to 0 -9 and 4 - 2. Note that &0 represents no character, for variable

rames of less than five characters).

The first character thus occupies the top five bits of byte four, while the
other characters, if used, are placed in the first three bytes.

The bottom three bits of byte four are reserved for the TYPE of the variable,
bit 0 being set for string variables, bit 1 set for integer variables (both
bits reset thus represent ordinary numerics!), and bit 2 is set if the
tvariable' is actually a user-defined function {of the DEF FN variety!) -
more about that later.)

Examples:
& gtores as: 00 00 00 00
AB storea as: 13 00 00 00
ARE stores as: 13 00 00 01
b4 7% storesa as: AB Qa 0D B9 “
HOUSP: stores as: 16 69 82 3A

- v 270 80 OM.

. o

74

Remaining four bytes: These contain the mumber or string, stored in the same

manner as they would ke in the FPA, i.e, High byte is exponent, lower three
are mantissa. In the case of stringa, the high pair give the 3tart of the
string in the string space area, while the bottom byte actually gives the

length of the string.
Here are some complete examples:

A=3 stores as: 00 OG 00 OO

00 00 HD 82
Y2 $="hellao" : AB 04 00 BO 05 00 FB BB, where we are assuming that the

string "hello" is stored at 38BFB.
b. Storage of defined functions.

There 1is a special type of 'variable', although it may not seem as such, and
that is the DEF ¢N funetion. Here, the funetion 18 defined within the
variable space Jjust as a numeric variabie, except that pit 2 of the fourth
byte is set (to distimguish it from a numeric or string variable), and the
other four bytes contain two pointers., The first pointer gives the addressa
Wwithin the program at which the expression on the rignt-hand side of the CEF
statement may be found, while the second gives the address within the
variable space at which the argument variable of the DEF statement may be
found., Example: Suppese we have a [DeF statement as the first 1line of a
program, that the text starts at &1207, and the variable space at &4300:

10 DEF FN HSN(X)= (EXP{X)-EXP(-X))/2 Tiis is the Hyperbolic sine

Thia is at the address stored in the variable space.

if the pregram is RUN, the wvariable space ahould look like this:
k300: 1F 09 00 3C 10 42 0C 43 00 00 00 B8 xx xx xx xx
This iz the address of the CONTENTS of the argument

And here is the address of the expression szhown above (as an

exercise, work it cut and verify 1it!;.

Note that, if the argument variable name already exists (X in this case},
that variable will be used {we do not create a new onel), but its value is
atacked away before the function is evaluated.

o. Storage of arrays.

An array iz just an ordered set of variables, so, as we would expect, each
array element is stored in the same way as a numeric or string variable, in
four bytes. However, scme extra overhead is needed to define the type and
extent of the array, and thias is done as follows:

Firgt four bytes: ada for variables,

Bytes five and six: (ive an offset to the start of the next array in memory.
Byte seven: Gives the number of dimensions in the array. Let us call this
number N.

Bytes eight to 2*N+T: Pairs giving the size of each dimension in turn, used
to calculate the required offset to obtain a particular array element, and to
ensure that an array access is within the required bounda.

The remaining bytes: Contain the slements of the array.

As this is rather complicated, let us have an example, of the array created
by means of the following DIM statement:

10 DIM XY{22,5,4)

75

This i3 a three-dimensional array, containing a total of 236#5=690 elements
(remember, we count from zero in XBASICY). It should losk like this:

2A 00 00 B3 CF QA 03 05 00 06 00 17 00 xx xxete,
Hera are the three dimenaion paira.

The number of dimensions,
And this is the offset to the next array (or to the end

of the list 1f there are no mors arrays),

We calculate the offset as: <ko. of elements>% + 2*§ + 1, where the No of
glements is found by multiplying together all of the dimension paira. Note
that the dimension pairs are stored in the opposite order te that in which
they were given in the DIM statement, and that the actual numbers stored are
one greater than those given. Note alao that, in the case where we are not
using a DIM statement, the dimension pairs are each made egqual to GOOB (10
+1), and the number of dimensicns worked out from the pumber of expressions

glven in the subscripts.

Finally, when arn array is set up in the above manner, the space set aside for
the elementa 13 filled with (0s which means that each element 15, affec-
tively, s3et to =zero (or made te point to a null string, in the case of a
string). Note that an array iz set up, if it does not exist, whichever side
of an assignment it appears on, unlike variables (see a. above).

11. ROUTINE FOR ACCESSING VARIABLES DIRECTLY

It is often necessary to access a numeric or string variable directly, rather
than allow any type of expressicn and, indeed, to return a SINTAX EREOR 1f an
expression i3 attempted instead of just a variable name.

FNDVAR 277D General routine for accessing variables, depending on value
of YTYPE.

a. Simple variable or array element expected. VTYPE=Q on entry.
PE points to the contents of the variable on return,

b. Entire array expected., VIYPE=1 on entry.
This 1s the case in which we refer to the array as a whole,
without any parentheses, On return, BC points to the location
gontaining the no. of dimensions and DE contains the offset

to the next array.

¢. Simple variable ONLY expected. VIYPE>1 on entry. Otherwise as a.
An example of this case iz in the FOR statement, where we
have a SYNTAX ERROR if the control variable i= given as an
array element. The routine itself does nob actually return
the error in this case -- 1t simply Jleaves HL pointing
to the '(". '

In all of these cases, HL starts pointing to the first character of the var-
iable/array name, and finishes pointing to the first character AFTER the end
of the name. If this routire is ¢alled with VIYFE non-zero, you should make
it zero agaln sometime before returning from the routine in which you call

FNDVAR.

76

APPENDDI B -- EXAMPLES OF EXTRA COMMANDS/FUNCTIONS

To help illustrate the method for command/function extensiocn glven in Chapter
VIII, let us try a few examples. It is assumed that we are constructing a
permanent set of additions to XBASIC, the Auxiliary Reserved Word Table
starting at location &4200, the Auxiliary Address Table at &4240 and the
actual routires starting from location &4260, Clearly, these addressea are
given purely for the sake of exanple, and the user may care to use different

aress.

before entering the monitor to add these extras, move HIEXT up first to
4400, by doing a PTR O, &4800, to reserve space for all of the 'extras'
described below.

-

XBASIC does not have a reserved word to home the cursor to the top left-hand
corner of the screen, although it does have a command to clear the screen
{CLS). XBASIC can be made to perform a <HOME» by means of a PRINT CHR$(1); ,
where the semi-colon would be very important here, since a <CRLF> would
otherwise be cutput as well.

However, it 1s only necessary to write a short routire te output the <HOME
code, and then to define a rew reserved word HOME to execute it, and we may
then use this command whenever reguired. The routine used is as follows:

4260: 3E Ot HOME: LD A,01 : <HOME> CODE IN ACCUMULATOR
4263: C3 E7 34 JP PR . QUTPUT IT
4265 . 5 BYTES TOTAL

The reserved word table is next constructed:
4201; CB 4F 4D 45 HOME

Lastly, the addresa table is set up:

4240: 60 42 Point to HOME poutine.

FR ia the routlne internal to XBASIC that outputs a single character given in
the Accumulator to the current output device. It is one of a set of useful
general—purpogse routines that the user may wish to utilise for his/her own
additicns. The 1list of these routines and their addresses are given at

Appendix C.

¢

RAD is a degree to radian conversion furnection. It takes a [loating- point
expression in degrees and converts 1t to radians by multiplying it by PI/180.
First, the machine-code routine: .

4265: E1 RAD: POE HL i BETRIEVE TEXT POINTER
23 INC HL
D 41 25 CALL EXNMCK ; FETCH F.P EXPR IN FPA

01 OE 1B LD BC, TEOEH : GET PI/180 INTO FPR

17

18 BYTES TOTAL

11 35 Fa - LD DE, FA3ZSH

E5 PUSH HL ; SAVE TEXT POINTER AGAIN
Ch 9E 2a CALL MULTY v DO MULTIFLICATION

391t N JP FNEND ; TEST FOR '}' AND RETURN

4277

Mext, the reserved word table:

4N205: T2 41 44 28 RAD(

Finally, the addresa table is extended:

4242 b5 42 Point to RAD routine.
On re-entering BASIC in the usual way, try the following:

PRINT SIN{RAD(30})
5 the sine of 30 degrees.

3. EXTRA TRANSCENDENTAL FUNCTIONS

By usming mathematical identities, we can easily obtain a hoast of extra
Fupetions, with no great uze of memory, The advantage of having them dene in
this way is that we can save time which would otherwise be wasted in scanning
text, e.g, it i3 much better to do TAN(X) than to do SIN{X}/COS(X).

The following identities are employed:

ASHNEXY =ATN(X/SQR(1=X%1); arcsinix)
ACS(X) =(PI/2)-ASN(X} arccoa(x)
HES(X) = (EXP{X)+EXP(-X))/2 cosh{x)
HSN(X) = (EXP{X)-EXP{-X})/2 sinh(x}
HTN{X)} =1=2/(1+EXP(X*2))) tanh{x)

Athough HIN(X) could be done as HSN{(X)/HC3{X}, we need only do 1 call of EXP
by the method adepted, rather than the four needed otherwise. Some more
useful routines are included here, and are explained as follows:

4277: CD EB 42 ASN: CALL TFN s ASN(X)
427A: CD 51 2C ASNY: CALL STKFPA ; STACK X

CD 5E 2¢C CALL LDFPR

CD 9E 24 CALL MILTY 5 Xg2

21 CD 2E LD HL, ONE

CD 67 29 CALL SUBN ; 1-Xg2

€D C7 2¢ CALL SOR : SQR(1-Xg2)

C1 D1 PCFP BC,DE ; UNSTACK X

38 81 10 LD A, (FPA+3) ; SPECIAL UASE FOR ASN(1)=P1/2

BY OR A

28 0C JR Z,ACS2 _

CD FO 24 CALL DIVi : X/SQR{1-Xg2)

C3 54 2D JP ATN i ATN(X/SQR(1-X32))

4294: CD B8 42 ACS: CALL TFN
CD 74 42 ACS1: Call ASN1
21 0B 2F ACS2: LB HL, HALFPI

4286

4287 :

Yele:

42DC:

Y2FE8:

H2Fy

$2FC:

4309

C3 67 29

CD E8 42
CD DT 42
CD 0D 29

: 21 81 10

7E
BY
8
35
Y

cn BB 42
CD DC 42
ch 70 29
18 ED

CD EB 42
CD FC 42
CD 14 2D
21 LD 2E
5

€D 62 29
CD F4 42
€D FC 42
El

c3 67 29

€D 14 2D
Ch 51 2C
CD F4 42
Ci DY

9

El
E3
23
CD 41 25
1191 1N
E3
(b5
E9

c1 00 81
51
59
€3 M0 2A

21 81 10
TE

34

1E 06
C3 CF 15

HSH1:
HALVE:

HCS:
HCSY:

HIN1:

TFN:

RECIFP:

DOUBLE:

INC
CALL
LD

PUSH

78

HSN2
5UB7

HL, FPA+3
A, (HL)

{HL)

H3N2
ADD
HALVE

TFN
DOUBLE
EXP

HL,ONE

ADEN
RECTFP
DOUBLE
HL
SUBN

EXP
STKFPA
RECIP
EC, DE

HL

(SP), HL
HL
EXNMCK
DE, FNEND
HL, (3F)
LE

(HL)

BC,8100
D,
E,C
DIV

HL, FPA+3
A, (HL)

A

(HL)

E,06
ERROR

M s b o mE omm

PI/2 -ASN(X)

EXP(X)-EXP{~X)
DIVIDE-BY-2 BY JUST
DECREMENTING EXPONENT

NOT IF FPA=O

EXP(X)+EXP(-X)

x*e
EXP(X*2) '

1+EXP{X*2)

1/ (1+EXP(X*#2))
2/(1+EXP{X"2))

1-27 [1+EXP(X*2))

GET EXP(X) AND EXP(-X) -

DO EXP(-X) AS 1/EXP(X)

ROUTINE TO EVALUATE THE
EXPRESSICN EETWEEN THE
BRACKETS, FOR USER-DEFINED
FUNCTIONS.

WILL EVENTUALLY RETURN TO
FNEND

JUMP TO RETURN ADDRESS
CALCULATE RECIPROCAL

FFPR=1

DOUBLE FPA BY INCREMENTING
EXPONENT

NOT IF FPA=01

OVERFLOW IF EXPONENT=FF
SIZE 146 BYTES

19

Next, the function names:

4209: C1 53 4E 28 C1 43 53 2B ASN{ aCS(
4211: B 53 4E 28 (B 43 53 2B HSHN({ HCS(
4219: B B4 UE 28 HTHN(

And, finally, the addresses:

4auh: 7T 42 9A 42 A6 M2 BT Y2 2 42
424E:

4. LOC

It is often useful to be able to obtain the location in memory where the
contents of a varlable may be found. A variable name or array elemant MUIST be
specified as the argument, and the memory location of the start of the
contents of the variable I3 returnmed as a result. In the case of a string
variable, the address of the start of the actual string is returned,

§309: Ei LOC: POP HL
23 INC HL
Ch 7D 27 CALL FNDY AR
&5 FUSH HL
34 66 10 LD A, (NTYPE)
BT OR A
EB EX DE, HL
28 0A JR Z,LOC1 - .
23 INC HL + IF STRING, GET ACTUAL STRING
23 INC HL ; ADDRESS, NOT JUST POINTER
TE LD A, (HL]
23 INC HL
66 LD H, (HL)
oF LD L, A
AF XOR A
32 66 10 LD (NTYPE),A
ch E1 13 LOCT1: CaLlL FORMEOS
£3 91 11 JP FHEND
4326

The functlion name:

YMD: CC 4F 43 28 LaC(
8221

And lts address:

424E: 09 43 | o
4250: '

This function retumas a string cormsi::onding to the argument (which is also a
string}, with all lower-case letters converted to upper-case:

4326

4348«

E1

23

CD 54 25
Ch 92 11
ES

CD 4D 23
2B

2B

2B

TE

5

CD 73 21
E1

&7

TE

ch 0 11
12

13

23

10 F7
C3 Ah 21

UCss:

uct:

The function name:

4221: D5 43 53 24 28

4226

And its address:

42501

80

26 43

POP
INC

PUSH
CALL

DEC
BEC

FU3H
Call
POP

LD
CaLL
LD
INC
INC
DJNZ
JP

UCs$(

80

HL

HL
EXER
RPARN

ASCY

A, (HL)
DE
ASNSTR

B, A
A, (HL)
LWRTST
(DE}, A
DE

uc1
STHEND

-
L]
.
¥

GET CLOSING BRACKET

AND PUSH TEXT POINTER

MAKE NEW STRING

CONVERT LOMWER-CASE LETTER
AND PLACE IN NEW STRING

The number of reserved words should now be added at location 4200, this

being 9,

if all of these extra comands and functiona have been entered.

Also, do not forget to put the code &80 at the end of the Auxiliary Reserved
word Table.

Finally, the pointers to the Awdliary Tables should be changed to point to
the new tables, by modifying the DEFAULT Auxiliary pointers:

3A88: 00 42
3892: 40 42

Note that this cannot be done by meana of the PTR command in BASIC, owing to
the fact that the next "Cold Start' would restore the old valuess,

We hope that thiz set of examples will give the user many mora ideas!

T R LM oo ZUmm e o e =l

£
4

81

APPENDIX E - TRANSLATOR FOR NASCOM ROM AND TAPE BASIC PROGRAMS

XBASIC will not run programs written for ROM BASIC or tape BASIC as they
stand, for two reasons; the reserved word 'tokens' are different, and the
tape loading format is different.

A small program is therefore provided, on the reverse side of the XBASIC
cagsette, called NLOAD.XBS. This is a BASIC program, which loads the actuzl
translator routine (in a file called NLOAD.CBJ, which follows HNWLOAD.XES on
the tape). As well as loading the translator routine, NLOAD.XBS alsg sets up
Lhe user command and address peinters for the extra command ("NLOAD") that is
added to the aystem.

You should therefore load XBASIC and execute it at 1000 in the usual way.
Then type LOAD “RLOAD.XBS", press <ENTER> and press 'PLAY' on the cassette
recorder to Jload the NLOAD program. When this has loaded type EUN, and turn
the caasette Lo 'PLAY' again to load the file NLOAD.CBJ. When thia has loaded
(O will be displayed) you can load a ROM BASIC program by simply typing
NLOAD and then pressing <ENTER>. Now press 'PLAY' an the cassette recorder.
The program name will be displayed, in a similar format to the normal ROM
BASIC display, and the program will then be loaded in the same way as for
XBASIC programs (a Bad Deta Error ocours, if a bad block is read). A short
pause wlill then occur, while the program is being ‘translated!'. On the
complation of the translation, the 'Ok' prompt will reappear, and the program
may now be RAUN, LISTed or modified as a normal XBASIC program.

Hote the following 'incompatibilities' which are dealt with by the trans-
lator:

a. SUREEN X,Y commands are converted to PRINTE X, Y. NASCOM BASIC treats the
top line of the screen as line 16, whereas Xtal BASIC treats it as line 0,
but, happily, this will cause no problems, since XPASIC ‘wraps around' in
both directions, and 30 no further modification is needed.

k. The LINES cormmand, 1iF found, will be corverted to a ':', since that
command 1s not provided (or needed) in XBASTC.

¢c. SET(X,Y) and RESET(X,Y} are translated to SET X,Y and BRESET X,Y
respectively since the brackets would cause a Syntax Error in XBASIC. The
trapslator allows for expressions contalning brackets within these two
commands, so that SET(X{I},Y(I}) would become SET X(I),Y(I) , for example,

frother incompatibility here is that, in ROM BASIC, SET and BERESET use
coordinates in the ranges 1-96 and 1-48, whereas XBASIC uses 0-95 and 0-47,
tHowevar, XBASTC again allows these to 'wrap arcund' so that the only effect
will usually be to shift the graphic display one position to the right.

d. UWSR(X) 1is translated to CALL{X}. However, this may still not work, aince
machine-code routines used formerly with USR may call internal BASIC
sub-routines, whieh will no longer be available in those locations under
XBASIC. These routines should therefore be modified to run under XBASIC.

Of course, the user will now probably want to take advantage of some of the
extra features of JXBASIC, to improve the efficiency of the programs, but
should in all but a few cases require no mdifications to run programs that
have previcusly been c¢reated under ROM BASIC,

