BAS12K

PROGRAMMING MANUAL .

Copyright HISOFT 1980

SECTION

L] L]

L ¢ o
N 00Oy OOV O RN NN-
.
N -

.
N -

L] [] . L]
[) [

.
an & G N -

-— - — - -— - -— - - - — o — - - — —
. .

SECTION 2
2,1
2.2
2.3
2,3.1
2,3.2
2,3.3

2.4
2.5

SECTION 3
3.1

CONTENTS

PRELIMINARIES
Introduction

Conventions
Syntactical conventions
Keyboard usaae
Constants

Numeric constants
Character constants
Variables

Dimensioning

Operators

Mathematical operators
Logical operators
Relational operators
String operators
Operator precedence
Running a prdgram

PROGRAM ENTRY AND EDITING

Entry modes
Program entry
Program editing
Deleting lines
Line editor
Screen editor

Direct Mode

Use of the BACKspace Key

COMMANDS, STATEMENTS AND FUNCTIONS

Commands
ALOAD
AMERGE
ASAVE

O N NN NS NN D S S a

10
10
10
10

10
11

15
15
15
15

16

LPRINT

LPRINT USING

LTRACE
NEXT

ON GOTO

ON GOSuB
ouT

POKE
PRECISION
PRINT
PRINT USING
RANDOMIZE
READ

REM
RESTORE
RETURN
STOP
TRACE

WAIT

CLR TOP
copy

LINE INPUT

Functions
ABS
ASC
ATN
CHR$
cos
EXP
FRE
INP
INSTR
INT
LEFTS$
LEN
LOG
LPOS
MID$

28
28
28
29
29

29
29
29
29
30
31

33

33
33
34
34
34
34
35
35

35
35

37
37
37
37
37
37
37
37
37
37
38
38
38
38
38
38

APPENDIX 1

APPENDIX 2

PEEK
pPOS
RIGHT$
RND
SGN
SIN
SPC
SQR
STR$
TAB
TAN
USR
VAL

ERROR MESSAGES

IMPORT ANT ADDRESSES

39
-39
39
39
40
40
40
40
40
40
41
41
43

45

47

This manual is not intendecd for those who have never encountered
the BASIC language before; it is assumed that, if vou see the need
for a 12k 34SIC then you have previously used some other version
of the language on your machine and found it inadequate., Thus, you
will not find any detailed advice on programming practice within
this manual - it is intended as a reference guide to enable you to
use B8AS12K efficiently and without error.

I+ is recommended that you read throuch the whole manual before
attempting anything more than a superficial program in 8AS12K, with
aarticular regard to Section 3 which gives full details of the
commands etc. available in this version of the language.

1,2 Conventions.

To clarify definitions and ease understanding, several
conventions will be used tnrouchout this manual. No claim is made
that these conventions are industry standard although they should
not be unfamiliar in appearance,

1.2.1 Syntactical conventions.,

Throughout this document, although orimarily in Section 3, any
reference to BAS12K statements and commands will obey the followinag
Tules.

The statement or command being described, and any other keyword
essential to the definition, will be arinted in capital letters.

Angle brackets (< >) will be used to denote elements that are an
essential part of the syntax of the statement or command while
square brackets (L J) will denote those components which are optional.

< gssential element > [optianal element]

0,72 Keyboard usage.

Certain routines within BAS12K are reached by holding the
tcontral! key (or @ key on NASCOM 1's) down and then pressinag
another key; throughout this manual this feature is represented by
the word CTRL followed by the character that is to be keyed with the
‘control! kev.

e.g. CTRLA reoresents holding the 'control! key down
and then keyinag 'A',

Similarly, the t'shift' key has no effect when used alone; only
when another key is pressed with the tshift! key will a value be
returned by the keyboard. Yhenever it is necessary to use the 'shift!
key this will be represented by the word SHIFT followed by the key
that is to be pressed with 'shift!',

e.g. SHIFTA holding the 'shift' key douwn
and then keving 'A',

— | —

Certain CTRL characters are recognised by the NASMON routine which
blinks the cursor and reads a character from the keyboard. These
special characters are:

CTRLK use of this inverts the function of the SHIFT key
on alphabetics only.

CTRLB decreases the rate at which a character repeats if
its key is held doun.

CTRLD increases the rate at which a character repeats if
its key is held doun.

CTRLC enters the extended screen editor of NASMON with the
display set to the start of the current text,

CTRLZ enters NASMON's Front Panel mode.

The use of CTRLC does not convert BAS12K's compacted text to
NASMON text format; see Section 2,3.3 and the command SCREEN for
‘details of text conversion. Also CTRLC does not reset any of
NASMON's vectordd jumps.

Note: BAS12K accepts all its commands and statements in either
upper or louer case so that the use of CTRLK will not affect the

response of the interpreter.

1.3 Constants.

1.,3.1 Numeric constants,

Numeric values are either held in integer form or as a

floating point number with sicned mantissa and exponent, The
conversion from one to the other is done automatically and the
user has no control over this intermal representation,

Externally (on the video screen or printer) the representation

of numerics depends on the PRECISION set i.e. what value that you

-2-

have set (using the PRECISION statement) for the number of
significant figures to which numerics are to be displayed. If the
nrecision has been set to X then all numbers below 107X will be
displayed normally; numbers > = 101X will be displayed in scientific
notation i.e. with a signed mantissa, followed by 'E' and a signed
exponent, Also, if the precision is less than the maximum (11) then
any number less than 0+1 will be displayed in scientific format,
whereas if the precision is 11 then numbers less than 0.01 will be
converted to scientific notation.

Examples:

PRECISION = 5 0.2345 printed as 0,2345
0,0143 printed as 1.4300E-02
1E4 printed as 10000
3.2E7 printed as 3+2000E+07

PRECISION = 11 34563,2 printed as _34563-2

2E£10 printed as 20000000000
0.0143 printed as 00,0143

0.0045 printed as 4-5000000000E-03
55,4E17 printed as 5-5400000000E+18

The largest number that can be held withoutan 'ARITHMETIC
OVERFLOW' error being displayed is 17014118346 £+38.

1.3.2 Character constants,

Another type of constant is the character constant or string.
It is different from other constants both in the way that it is
defined and in the way that it is used. Character string constants
will most frequently be seen in PRINT and INPUT statements although
they may be assigned to variables in the same way as any other
constant.

String constants are defined by placing any ASCII character or
group of characters between double quotes tnt .} string may be of a
length between 0 and 255 chara.cers inclusive., A string of zero
length is called a null string.

Examples:

"How are you?"
"Itm verv well! - thank you! (includes single quote)
nxn

nn (null string)
Note that double quotes are not allowed within string expressions
- they are only used to define strings.

1.4 Variables,

A variable is an item of data that may take on different values,
For example, it can be assigned a value by the programmer and later
be changed by the program during execution. Within BAS12K two types
of variable exist: 'numeric' and 'character string' variables.

Variables are identified by their unigue names which may be
defined as follows:

Variable names:

Numeric variables - names are defined by any alphabetic
character followed by any number of
alphanumeric characters. Note that
only the first two characters of this
name are taken as the unique identifier
of the variable.

String variables - names are defined as for numeric
variables except that the terminating
character of the name must be a
dollar sian ($). Again only up to the
first two characters of the name (not
including the dollar sign) are taken,

It should be noted that some combinations of letters intended
as variable names or as parts of variable names are not valid., These
are the BAS12K keywords.

Fither of the variable types may be subscripted and this will
be described below. The same variable name may be used for a numeric
or a character variable within the same program e.g. the names
DU and 'DU$' may be used in the same program since they are
considered different names.,

1.5 Dimensioning,

Both numeric and string variables may be subscripted using
the DIM statement. A variable is subscripted (dimensioned) in a
DIM statement by following the variable name with an integer
enclosed in parentheses - this would create a one-dimensional array.
It is possible to create n-dimensional arrays simply by using more
than one integer between the parentheses uith the integers separated
by commas. Note that BAS12K arrays have a Oth element so that, in
a statement such as DIM A(S), an array of six elements is defined,

In the absence of a DIM statement it is possible to refer to
and to assign an array as long as none of the subscripts used exceed
10; one can think of a default size of 10 for each dimension.

If an attempt is made to re-dimension an array in the same
program (i.e. to DIM the same variable twice) then an error will
be issued.

Note that each element of a character string array is a full
character string variable - you are not limited to single characters
in array elements.

Examples:

oim A(12), B8R$(3,2), AC(2,2,4)

DIM Pag(20)

with reference to the above DIM statements consider:

A(11) = 5.6 ok.

A(14) = 12 illegal - subscript too laroge.

aCc(1,1) = 56.4 illegal - missing subscript,

8R$(0,0) = "ONE™ ok,

pas(15) = BRF(1,2) ok,

BR$(1,1) = A(3) illegal - type mismatch.

¢ = A(0) + AC(1,2,3) ok,

D(11) = 78.955 illegal - D() not DIMensioned and subscript

greater than 10,

__('__..

Finally note that, if the dimensioning of a variable uses many
subscripts or if the subscrigts are large, then it is possible that
there will net be enough room within memory to hold the array. uWhen
this happens a 'SUBSCRIPT OUT OF RAMGE!' error will be generated on
reading the DIM statement,

1.6 Operators.

There are three different classes of operator available in
BAS12K. The class of operators which is most familiar is that of the
Mathematical Operators. These comprise addition, subtraction,
division, multiplication and exponentiation: +, -, /, ¥ and T .

The second class is the Logical Operators., They are used to
perform bit by bit operations on integer quantities and are used
extensively in conditional tests and for masking., BAS12K automatically
converts floating point quantities to integers when these numbers
appear as arguments of these operators.

The third class of operators are called Relational Operators.
They are also used in conditional tests but in a different fashion

rom Logical Operators. They are commonly used in IF statements to

termine whether one expression is greater than another. When
integer and floating point quantities are compared the integer is
first converted, by BAS12K, to floating point.

The above operators are now discussed in more detail,

1.6.,1 Mathematical Operators.

Symbol Example Meaning
+ X + Y Add X and Y
- X - Y Subtract Y from X
/ X /Y Divide X by Y
* X * Y Multiply X and Y
T X T v Raise X to the pouer Y

yhen an arithmetic expression containing several of the above
lebOIS is to be evaluated, it is processed by BAS12K according to
he following priority scheme:

T , unary minus, * and / , + and - .

This means that when BAS12K is evaluating an expression
containing a mixture of mathematical operators, it will first do
the exponentiation, then take into account any unary minus signs
(such as -0.456 or -X). Next it will do multiplications and
divisions followed by additions and subtractions, When signs of equal
priority are encountered then BAS12K does the left one first since
it evaluates expressions from left to right. The above order can
be altered by the use of parentheses. BAS12K evaluates gquantities
in parentheses first and, in the case of nested parentheses, it
starts with the innermost set and works its way out.

The above should be read cerefully if there is ever any doubt
as to houw a particular arithemetic expression will be evaluated by
BAS12K,

1.,6.2 -Lmpoical Onerators,

When Logical Operators are used on one oT tuo they perform the
desired operation on the corresponding bits of the number or
numbers. If the arquments of these operations are floating point
numbers then BAS12K converts them to intecer and the arguments must
be greater than -65537 and less than 65536,

Example:
= (0011110001010111)
= (1001100000111001)
A AND B = (0001100000010004) output=1 if both inputs=1
A OR B = (1011110001111111) output=1 if either input=
NOT B = §0110011111DUD11D) output=1 if input=0 and vice
versa

These operators used like this, operating cn one or two
numerical expressions, yield a single numerical result., The above
example is rather complicated but shows the bitwise effect of the
operators., As a simpler example consider:

63 (111111) aND 16 (10000) = (010000) = 16

-1 (1111111111111111) ©OR 4 (100) = (1111111111111111) = =1
NOT 0 (0) = (1111111111111111) = -1

Also note that in general: NOT X = =(X+1).

The logical operators have a very different effect when they
are used in an expression that is the test condition of an IF +s0
THEN ... ELSE statement. In this case the expression is being
logically evaluated to see if it is TRUE or FALSE. An expression
that is evaluated to TRUE has a value of -1 whilst an expression
which is FALSE has a value of O, The expression(s) are evaluated
to either -1 or 0 and then the logical operators orerate on the
result(s) to produce either -1 (TRUE) or O (FALSE), If the final
result is -1 then the statement(s) after the THEN are executed
whereas if the final result is 0 then the statements after the ELSE
are obeved or if the ELSE clause is not invoked then control passes
to the statement after the IF statement,

Example:

10 A = 56,03 : B = -200
20 IF A > 100 AND (Aa-B) 0 THEN TQ = TQ + 1

The conditions A > 100 and (A-B) 0 are evaluated to 0 and
-1 respectively, Now 0 AND -1 eguals 0 (FALSE) so that TQ is not
increased and control passes to line 30,

We see that, although the effect is different, the function of
the logical operators is the same in the above tuwo cases,

1.6.3 Relational Operators.,

As the name implies, this group of operators tests the relation
of variables to other variables or constants, The six relational
symbols and their meaning within BAS12K are given over the page.

Relational (Operators:

Symbol Example fleaning
= X =Y is X =Y 7
<> X<>y is X not equal to Y 7
< X <Y is X less than Y 7
> X > Y is X greater than Y ?
< = XL.= Y is X less than or egual to Y ?
> = X>=Y is X greater than or egual to Y ?

The results of all these tests will either be TRUE or FALSE
and these logical values are assigned the numerical values -1 and
0 respectively., These relational operators are most often used in
IF ... THEN ... ELSE statements but they may also be used in the
following manner:

A=8=29 would assign the value -1 (TRUE) to A if B = 9,
otherwise 0 (FALSE) would be assigned to A.

D < 100 is evaluated and the result assianed
to the variable C,

O
]

o
A
-
o
a

1.6,4 String Onerators,

The string operators consist of the concatenation operator (t+1)
and the relational operators. The '+' operator is used to join two
strings toaether (e.g. "ABCOD" + "XYZI" = "ABCDXYZ"), The relational
operators, when applied to string operands, indicate alphabetic
sequence. If one string is 'less than' another string this imolies
that the first string would appear before the second if they were
sorted into alphabetic order, If two strings of unequal length are
compared then the shorter string is padded with trailing spaces to
make it the same lenath as the other string. Otherwise trailing
snaces are ignored., A null string is considered to be completely

hlank and is less than any other string.

Examples:

WABCD" <€ N"XYZ" evaluates to TRUE(=-1)
"FRED" >= "FREDA" evaluates to FALSE(O)
nn = n evaluates to FALSE(O)

1.6.,5 0Operator Precedence,

The overall operator precedence is shoun below, The operator at
the top of the list has the highest precedence. Operators of equal
precedence are evaluated from left to right.

Operator Precedence:

1. () Expressions enclosed in parentheses.,
2, 1 Exponentiation,

K - Unary minus.

4y * / Multiplication and division,

5. + - Addition ana subtraction.

Be Relational operators.

7. NOT The negation operator.
8. AND The disjunction operator.
9, OR The conjunction operator.

1,7 Runnina a Program,

Once a program has been created it may be executed using the
AUN command. This clears all variables and enters the program either
at the beginning or at a specified line number (see RUN in Section
3)., A program may also be executed from a particular line number by
the use of the GOTO statement - this does not clear variables and
may be useful for restarting the program,

If loading a program from tape then the program may be run
automatically as soon as it is loaded by using the LOADGO command

(see Section 3).

When a program is running, execution may be halted at any time
by pressing any key on the keyboard - the program will go into a
wait state until you either press ESCape (SHIFTENTER) which will
return you to BAS12K command level or any other key upon which
execution will be resumed normally. This is useful if you feel that
the proaram has gone into an endless loop or you wish to inspect
its progress - break out, do a list of variables (LVAR), amend if
necessary and then restart execution using CONT (see Section 3 for

full details).

__...__—.————.——-——_——_—_——_—_-————_—_—_-—-_.——
......_..__._—_-————_—_.—-————————_—__-——_—————_-.—

2.1 Entry lModes.

Text may be entered either within BAS12K or by using NASMON's
extended screen editor.

Entering text within BAS12K is done gither via the AUTO command
or by typing in lines directly; line number followed by text.

Text is entered within the screen editor in the normal way (see
the NASMON Programmer's Manual) but you must remember to give each
text line a line number and line numbers must be in numerical order.

Alternatively, text may be created within BAS12K and then
converted to NASMON editor format by using the SCREEN command. Note
that there must be enough memory in the machine to hold both the
compacted text of BAS12K and the ASCII text of NASMON at the same
time. Thus occasionally, for very large programs, Yyou will not be
able to use the screen editing facility because of lack of memory.

Text may be converted from NASMON format to BAS12K compacted
format by use of the NASMON editor 'J' command, assuming that
BAS12K has been initialised beforehand by executing it at 4300H/4303H.
BAS12K need only be initialised once in a session as long as a
cold start to the monitor is not made. If a cold start (e.g. RESET)
is made then either re-initialise BAS12K or set up locations
CVECT+1 and CVECT+2 to 01H and 40H respectively.

2.2 Program Entry.

The format of a BAS12K program line is:
nnnn < statement>[< :statement>JLeccecess]]

where 'nann' is the line number of the line and this must be in
the range 0-65529, Within BAS12K lines need not be typed in
following numerical order; the interpreter automatically orders
the lines as they are entered.

Lines may be entered by typing the line number followed by a BAS12K
statement or statements separated by colons ':'.

Alternatively the AUTO command may be used to automatically generate
iine numbers for you - you simply type the statement(s).

BAS12K accepts lines up to 255 characters in length; any entry from
the keyboard that causes a line to exceed this length will be
echoed as a carriage return/line feed and ignored within the line.

Lines are terminated by ENTER/NEWLINE.

As discussed above, lines may also be entered with NASMON's

extended screen editor but, before running the program, the text
must be converted to BAS12K's compacted text format. This is
achieved through the use of NASMON's 1J' editor command - see above.

Programs may also be entered from cassette within BAS12K using the
LOAD, ALOAD and AMERGE commands (see Section 3).

LOAD loads compacied text from tape straight into memory whereas
ALOAD and AMERGE convert the ASCII form stored on tape into the
compacted form first.

Note: ALOAD and AMERGE cannot be used to load a NASMON textfile and
vice versa. Text should have been ASAVEd if ALODAD or AMERGE is to be

used.

—q_.

2.3 Program Editing.

Errors in your program are almost inevitable especially in a
language like BASIC which does not encourage the use of flowcharts -
it is too easy to write in BASIC.

Therefore a good BASIC must provide adequate editing facilities

for correcting the errors. The following details the facilities
available within BAS12K.

23 Deleting lines.

Within BAS12K single lines may be deleted simply by typing the
relevant line number followed by ENTER/NEWLINE.

Blocks of lines may be erased from the program using the DELETE
command (Section 3) from within BAS12K or the 'X' command from
within NASMON's editor. Note that, when using DELETE, the line
numbers given as arguments to the command must exist in the program,
otherwise an error message will be generated - this is a safety

feature to prevent accidental erasure.

If, in the process of typing a line, you decide that you do not
vant to enter this line then type ESCape (SHIFTENTER). This will
cause a carriage return/line feed to be issued and the message
t*BREAK' to be displayed.

2e3e2 lLine Editor,

The line editor within BAS12K may be entered from BAS12K by using
the command EDIT. Full details of this command are given in Section
under EDIT. Note that if you attempt to edit a non-existent line
with this command then an 'ILLEGAL FUNCTION' error will result.

2¢3e3 Screen Editor.

Refer to the NASMON Programmer's Manual for full details of how to

use the extended screen editor.

2.4 Dirsct Mode,

Most BAS12K statements and all the commands may be executed from
within the interpreter without a line number i.e. directly. This
enables BAS12K to act as a calculator or a test-bed for certain

simple constructs; variables may be assigned and PRINTed,

-10 -

FOR.eNEXT loops obeyed (if on one line) etc. Of course some
statements may lead to rather odd results if used in this way.
Two statements will result in the error 'ILLEGAL DIRECT' if used
without a line number - they are INPUT and DEF FNV.

2.5 Use of the BACKspace Kevy.

Use of the BACKspace key from within BAS12K will produce a

different result from its use in screen editing. While still

deleting the previous character from the text buffer within BAS12K,
the character is not deleted on the screen - instead the character
that has actually been 'backspaced' over is displayed again between
slashes '/'. This is so that BAS12K can be used with a hard terminal.

Example:

Say you have just typed in 'PRUMT' instead of 'PRINT'; hit BACKspace
three times and then type 'INT'., The output that will appear is:

PRUMT/TMU/INT

it is clear exactly which characters you have backspaced over
although this may take a little while to get used to for those

familiar with screen editing.

- -
===

et i . SR g i PPl g -+ - T -
b PR — R i e it

The following is a comprehensive list of the various commands,

statements and functions available under BAS12K together with
detailed explanations,

Throughout this section the following definitions hold:

Commands: .those instructions to BAS12K that are
normally issued in the 'direct' made,
that is - not imbedded in the program.
Although all commands may be written
into a program, most of them will give
errors when used in this way and usua-
lly result in control being passed back
to BAS12K 'direct'! mode with 'Ready' dis=-
played.,

Statements: those instructions to BAS12K that are
normally issued within a program. Most
statements may also be used in the 'direct’

- mode (one exception being INPUT) without
line numbers., If an attempt is made to use
a statement illegally in the 'direct' mode
then the message 'ILLEGAL DIRECT' will be
displayed.

Functions: these are like subroutines; they return a
value given certain arguments. BAS12K
provides many mathematical, Input/Output
and character handling functions - these are
intrinsic fumctions, The programmer may
also define his owun functions using the
DEF statement.

The above distinction between commands and statements is rather

loose but perfectly adeguate for the purposes of this manual.

For information on the range of variables etc. and other

conventions used in the following section see Section 2.

3.1

Commands.

ALOAD
This command is used to load the ASCII version of a
program that has been previously dumped out to tape using
ASAVE. Normally a program is saved on tape in a condensed form
in order to economise on space; however it may be useful to
save the program as pure ASCII text if it is, say, required to
transfer the program to another system/BASIC - ALOAD and its
associated commands allow you to do this,

ALOAD prompts for a filename of up to 10 characters
and then searches the tape for the file in the same way that
ILOAD does. The command issues a NEW before loading the tape.

AMERGE

This is similar to ALOAD in that it loads a program
that has been dumped out to tape in ASCII. However this
command does not do a NEW before reading the tape and so
lines from the tape can be merged or appended to program
lines in memory. This command prompts for a filename of up
tg 10 characters in length, '

-15—

ASAVE

Saves the current program on tape in ASCII not in
condensed form that SAVE does., This enables programs to be
merged and appended with each other and, indeed, transferred
to other systems. ASAVE prompts for a filename of up to 10
characters under which to save the program on the tape.

auTo [€1ine number>] [<yincrement >]

This command causes entry to the automatic line
numbering mode. Line numbering will begin at the line number
specified in the AUTO command and the increment between line
numbers will be as given by the second argument of the command.
The default for both these numbers is 10,

Examples:

AUTO 5 causes line numbering to start at 5 and
increase in steps of 10 (by default).

AUTO 100,5

causes line numbers to be generated starting
at 100 and increasing in steps of 5.

CONT

This causes program execution to continue after the
execution of a STOP or END statement or after ESCape has been
input from the keyboard. This command is particularly useful
as a debugging tool since you can put a STOP statement in your
program at some relevant point, then list the variables in use
(using LVAR), check their correctness, amend if necessary and
then re-enter the program using CONT.

Note that CONT will not function if any direct-
command error is encountered or if the program is modified at
all before typing CONT.

Note also that this command should not be used when
the 'break! out of the program using ESCape has been from an
INPUT statement, If it is required to re-enter the program
in this particular case then a GOTO statement must be used,

DELETE <line number>[< - line number>]

This command will delete blocks of lines from the
program beginning at the first line number entered following
the command and finishing at the second line number entered
i.e. the delete is inclusive. If only one line number is
entered then only that line will be erased.

Examples:

DELETE 95 - 150 will delete all the lines with
line numbers between 95 and
150 inclusive,

DELETE 4S5 deletes line 45 only.

If either line number does not exist in the program
then an error will be generated as a safety check,

-

EDIT € 1line number >

This is a most powerful command giving access to the
inbuilt line editor of BAS12K.

The commands available under the editor are as followus:

A - abandon the changes made so far and reload the

[n]D

working buffer with the original line (used when
you have made an irrecoverable error while editing
but still want to edit this line.

delete the next 'n' characters starting at the
current position of the pointer. D alone deletes
the next character.

[n)f<character>

{n]R

[]w

this command 'finds' the nth occurrence of
tcharacter' within the line starting from the
current position of the pointer and then sets
the pointer before the 'found!' character. This
is useful for skipping quickly to the portion
of the line that you wish to edit,.

insert text before the character currently
pointed to, To end the insertion of text use
either ESCaps (to stay in the edit) or CR (to
return to BAS12K command level).

tkill' the rest of the text from the character
currently pointed to until the end of the line
i.,e., delete the rest of the line.

1ist the line currently being worked on to the
video screen.

'quit' the edit and return to BAS12K command
level leaving the line as it was i.e. ignoring
all changes made in this session,

replace the 'n' characters from the current
pointer position with 'n' characters which
should follow the R. The default on 'n' is 1.

set the pointer to the end of the line and
enter the 'I'nsert mode - useful for appending
to a line.,

move the pointer 'n' characters to the right,.

[n]BS - move the pointer 'n' characters to the left.

CR - return to BAS12K command mode and print the

final version of the edited line.

“'l?—

In order t» clarify the use of this line editor an example is
set out below. This example is not meant to shou a realistic use of
the editor, its purpose is to illustrate the way in which the more
common editor commands are used - it is certainly not the most
efficient way of using the line editor.

Example of editor use:

Consider the following line of text:

90 PRINT "PAYROLL - details,":GOSORB 1998

This line is incorrect and should read as follous:

90 PRINT "PAYROLL - Personnel details.":GOSUB 1000

We can use the line editor to amend the incorrect line as
shouwn below (note that the commands themselves are not echoed as
they are typed in; only replaced or inserted characters are echoed) :

1. Enter the editor to work on line S0,

EDIT S0
90

2, List the line (for convenience).

90 PRINT"PAYROLL - details.":GOSORB 1999
90

-

3, Set the pointer to just after the '-'.
F-us 90 PRINT"PAYROLL -

4, Now insert the word 'Personnel', terminated by ESCape.

s

90 PRINT"PAYROLL - PersonnelESCape

S, Now set the pointer just after the 'S' of GOSORB.
FO 90 PRINT"PAYROLL - Personnel details,":GO0OS
6. Delete the '0',

90 PRINT"PAYROLL - Personnel details.":G0S/0/

o

7. Replace the 'R' with a 'Uf.
RU PRINT"PAYROLL - Personnel details.":605/0/U
8. Set the pointer after the '1' of 1989,
wuw 90 PRINT"PAYROLL - Personnel details,.":G0S/0/UB 1
9, Replace '999' with '000'.
3R00090 PRINT"PAYROLL - Personnel details,.":G0S/0/uB 1000
10, Return to BAS12K command mode.

CR 90 PRINT"PAYROLL - Personnel details.":G0S/0/uUB 1000

-1¢-

Note that, in the above example, the editor commands and other
entries from the keyboard are underlined for clarity. Note also that
any deleted character(s) will be enclosed by slashes t/ts this will
also be the case when backspace BS is used in BAS12K command mode,
if you are not in the screen editing mode,

You are encouraged to work through the above example until you
fully understand how it works and then try many more examples of
your own before attempting to edit real BASIC programs.

LIST [< line number>][< ->:”_< line number >]

This command is used to display portions of the
current program onto the video screen, A few examples will
clarify its use:

Examples:
LIST 5 will print line 5 only on the screen.

LIST 10-30 will print all lines from line 10 to
line 30 (inclusive).

LIST -50 will list all lines from the start of
the program up to and including line 50,

LIST simply prints the whole program line
by line on the video screen,

I1f, during an extended listing, you wish to stop the
list at any stage in order to inspect it, then you simply hit
any key on the keyboard (apart from CTRL, SHIFT or GRAPH) and
the listing will be halted. You will then have the option of
continuing the listing by hitting any key (apart from CTRL etec)
or returning to BAS12K command mode by hitting ESCape (this is
SHIFT CR).

LLI ST[< line number>][< - >] [< line number >J

Functions in exactly the same way as LIST except
that the output is directed through the serial port (normally
one would expect this to be connected to a printer) intead of
to the video screen,

LOAD

This command causes a BASIC program to be loaded
into memory from tape. It first prompts for the filename of
the program - this filename may be up to 10 characters in
length). After the filename has been entered the tape machine
should be switched to 'PLAY' and BAS12K will begin searching
the tape for a file with the required filename, If a file with
a diffepent filename should be encountered then its filename
will be displayed and searching will continue., On finding the
correct filename the program will be loaded, Programs are stored
on tape in 256 byte blocks and as the found program is loaded into

-9 -

memory, a block count is displayed alongside the filename.

If a checksum errar should be encountered then the
message 'RDERROR' will be displayed and you will be returned
to BAS12K command mode., You can rewind the tape beyond the
defective block and trv to load it again by using LOAD and
entering the relevant filename.

LOAD?

This command does not actually load a file from tape
but simply compares the fileon the tape with the program
currently held in memory., If, at any stage during the comparison
a mismatch is found then the message 'FILES DIFFERENT' is
displayed.

This command is useful for checking that your program
has been successfully dumped to tape,

LOADGO

A command that is exactly the same as LOAD except
that, once the program has been successfully loaded, a RUN
command is executed,

Again, this command prompts for a filename of up to 10

characters.
LVAR

Produces a list of the values of all the variables
(apart from arrays) that are currently activated. A variable
is activated by occurring on the left hand side of an assign-
ment statement or in an INPUT or READ statement,

This command is most useful as a debugging tool e.g.
interrupt the program (using ESCape tuice), do an LVAR to
inspect the state of the variables, alter the variables if
necessary (using a direct assignment statement) and then
re-enter the program with CONT.

LLVAR

Exactly the same as LVAR except that the output
goes to the serial port and not to the video screen.

NEW

The command that deletes all record of the current
program and clears all variables. Used before entering a neuw
program into memory,

RENUNBER[< line number?][<3inc:ement'>1

Renumbers the current program so that the renumbered

nrogram begins at the line number given and its line numbers
increase according to the increment given. The default of both

arguments is 10,
The renumber command amends all GOTOs, GOSUBs and
ON....GOTOs so that they refer to the new line numbers.

RUN [line number]

Causes execution of the current program starting at
the line number given. If no line number is given then execution

-— D N

begins from the lowest line number in the program,
This command clears all variables.

SAVE

Used to save the current program on tape. The command
prompts for a filename under which to save the program and then
immediately dumps the program to tape in 256 byte blocks with
a checksum at the end of each block.

Note that the tape should be running before you enter
the filename to give sufficient blank leader on the tape.

The filename may be up to 10 characters in length.

wiDTH [X]

This sets the width of the lines of text that BAS12K
works on i.e. the maximum number of characters per line of
text. 'X' may be any integer value between 14 and 255 inclusive.
This command is especially useful when IF,.THEN..ELSE
are used with multiple statements between the IF and the THEN
and the THEN and the ELSE - this technique makes for clear,
concise code but does lead to rather lengthy lines, hence the

need for WIDTH,
Note that WIDTH sets the length of lines sent to the

video screen,

LWIDTH [x]

Exactly the same in function as WIDTH except that
this command sets the width of the lines of BAS12K text sent
to the serial port. The same restrictions on 'x' apply.

NULL < X >

This sets the number of nulls to be printed on the
video screen after the end of each line. X must be in the
range 0 - 49 inclusive.

LNULL € X >

This has the same effect as NULL except that it
sets the number of nulls sent to the printer at the end of
each printed line. As in NULL, X must be in the range 0 - 49
inclusive,

NASMON

This command returns control to NASMON's extended
screen editor. However, unlike CTRLC, this command also resets
the editor vectored jump 'J' so that it now has the same effect
that it had before BAS12K was initialised in this session. This
is useful if you want to go back to NASMON permanently or if you
wish to use NASGEN, our 3K assembler which also uses the]
command within the editor. Re-entering BAS12K at 4300H or 4303H
will set the 'J' vector again so that its future use from within
NASMON will convert NASMON text to BAS12K compacted text and enter
BAS12K.

If you wish to leave BAS12K but not alter the 'J' vector then
use CTRLC.,

~2!-

SCREEN

This is used to convert the compacted text aof BAS12K to
a format suitable for the NASMON extended screen editor,

The command first prompts with 'Text:' and you should
respond by entering the hexadecimal address at which you wish
the NASMON text to reside. This text should obviously not reside
on top of the interpreter or on top of the compacted text (which
lies immediately after the interpreter) or, if you wish to keep
the NASMON ASCII text as a backup, on top of the BAS12K variables
(which lie immediately after the compacted text). Use FRE to find
out how much space is available after the compacted text.

While SCREEN is converting the text to NASMON format,
which may take some time for a long program, the message
'Converting text' will be displayed. When finished you will
be left in NASMON's editor mode - see the NASMON Programmer's
Manual for details of the screen editing facilities available.

342

Statements.

caLL <€ (X)>

This statement is used to call up a machine code
routine whose start address (in decimal) is given by the
expression X, Unlike USR there is no need to POKE this address
into a location within BAS12K.

Note, houever, that no parameters may be passed to
or returned from the machine code program - although it is
simple to call a machine code routine this way, it is not as
flexible as USR. You might use CALL to output titles quickly
or to erase part of the screen quickly without having to
POKE into locations COOH - CO2H (see NASMON manual).

Example:

You might have set up the following machine code at

EOCH:

E00 111000 LD DE,16
E03 210A09 LD HL,D090AH
EQ06 0605 LD 8,5

E08 CS BLOCK PUSH BC

E09 0630 LD B,48

EOB 3620 LINE LD (HL),'
EOD 23 INC HL

EOE 10F8B DINZ LINE

E10 €1 POP BC

£11 19 ADD HL,DE
E12 10F4 DINZ BLOCK
E14 C9 RET

The above code will erase five lines from the video
screen starting at lines. It can be invoked from a BAS12K
program by CALL(3584) - EOOH being 3584 decimal,:

The above will run tuice as fast as POKEing locations
COOH - CO2H and then using CLS and many, many times faster than
actually POKEing the screen with spaces.

Note that, to return to your BAS12K program from the
machine code routine, you simply execute a RET (C9H) instruction.

cLear [<x >]

This statement has two functions; with no argument
it simply clears all variables - numerics set to zero,
character strings set null - however, if X is a valid numeric
expression then this statement allocates space for string
variables - the number of bytes that it allocates being
equal to the value of X. Initially, on cold start, BAS12K,
allocates no string space and the message NO STRING SPACE will
be issued if any attempt is made to assign a value to a
character variable. So it is up to the user to reserve as much
space as he thinks he needs by using CLEAR X,

Examples:

CLEAR clears all variables,

CLEAR 100 reserves 100 bytes of memory
for string variables.

(@)
—
w

A very straightforwuard statement, this simply clears
the video screen., Normally, this will clear 16 lines starting
from 080AH i.e. the entire screen, However parts of the screen
may be cleared by POKEing the number of lines to be cleared in
location 0COOH and the address from which clearing is to start
in locations 0CO1H and 0OCO2H (low order in 0CD1H)vand then
issuing a CLS - see the NASMON manual for full details of this
partial screen clearing feature,

Example:

POKE 3072,4 : POKE 3073,74 : POKE 3074,9
CLS

This will clear four lines .starting from line 6.

DATA <list >

Specifies the data that can subsequently be read
by a READ statement. Elements in the list may be numeric or
string data - the elements must be separated by commas,

DATA statements may occur anywhere in your program.

Example:

DATA 5,10,=5,7,"A", "HENRY",79.6

DEF FNV <(1ist of parameters)>

Defines a user-defined function V (V can be any of
the 26 alphabetic characters)., Unlike 8K Basic user-defined
functions, those supported by BAS12K are not restricted to
occur on single lines or to pass only single parameters.

The list of parameters may be any number (greater
than zero) of variables, numeric or character, that will fit
on a line. The list separator is the comma,

The function is not defined on the line of the DEF
statement as with smaller Basics but on subsequent lines. To
indicate the value of which local variable (10cal to the
function) is to be passed back to the code calling the function
the FNRETURN X statement is used., The end of the function
definition is indicated by the FNEND statement,

Two examples will help to explain the use of these
statements, The first example is a function which returns
the ARCSIN of a number, giving the result in radians, This
function can be approximated by the expression:

ARCSIN(X) = ARCTAN(x/J 1-xI) result in

radians.

Fvaluation of this expression may generate an error
in BASIC since X mayiPe greater than 1, resulting in an
error when the SQR(1-X") is evaluated, Also, if SQR(1-X) is
zero then a 'CAN"T / O' error will be generated on evaluation
of the expression whereas the value P1I/2 should actually be
returned,

In BAS12K one can get round all these problems in
the follouwing manner:

Example 1,

5 REM Function to return ARCSIN of a number X,

10 DEF FNS(X)

20 IF X*X > 1 THEN A =0 : GOTO SO

30 IF X*X = 1 THEN A = 11,5708 : GOTO 50
40 A = ATN(X/SQR(1=X*X))

S0 FNRETURN A

60 FNEND

70 REM Code to call function,
100 INPUT M
110 N = FNS(M)
120 PRINT "The ARCSIN of "j;M;" = ";N

Note that the variables X and A are local to the
function and these labels may be used outside of the function
definition with no ambiguity.

The second example shows the use of recursion in
BAS12K function calls, This example is a function to evaluate
the factorial of a number. :

Example 2.

5 REM Function to calculate the factorial of Y.
10 DEF FNF(Y)
20 IF Y <€ 1 THEN Y=1
30 IF Y = 1 THEN F=1 ELSE F =
40 FNRETURN F
S0 FNEND
100 REM Code to call the function,
110 INPUT 1
120 J=FNF (1)
130 PRINT " The factorial of "j;I;" = ";3J

Y*FNF (Y=1)

Note that line 30
the parameter supplied is 1
exited - in other words the
Line 20 is needed

calls FNF again and again until
at which point the function is
function calls itself - recursion.
since the factorials of numbers

less than 1 are arbitarily defined as being equal to 1.
Note that type integer is assumed for Y.

DIM < V(€I>[¢,3, vee®])>[, veveees]

Used to set aside space for arrays (numeric or
character). Arrays may be of any dimension and size provided
sufficient memory exists to hold them, More than one array
may be listed in one DIM statement, the names being separated
by commas. The smallest allowable subscript is Q.

If a DIM satement is not issued for a particular
array then any reference to the elements of the array must
not be outside the range 0 - 10 i.e. the default size of any
dimension is the first 11 elements. So, without a previous
DIM statement, the following references are valid:
F$(10,10,10) =

A(9,5) = 6 : "chip"

whereas the following will generate errors:

s = x(20) : u(3,11) = 45.7
0f course, all these references are valid if a

suitable DIM statement has been issued for the arrays.

—_—25—

END

Used to signify the end of program execution - it
results in a return of control to the BAS12K 'direct' or
' command! mode. A CONT command may be issued after program
execution has been terminated by END.

EXCHANGE < V,U >

As its name implies this statement exchanges the
values of the variables U and V, assuming that they are of
consistent type. The variables exchanged may be numeric or
character but note that you cannot use this statement to
exchange whole arrays, only their individual elements.

FNEND

The statement used to signify the end of the
definition of a user-defined function (see DEF).

FNRETURN [X]

Signifies what value is to be returned from a
user-defined function - must be type-consistent with the
variable that the function is being assigned to. for more
detail see DEF.,

R <V>= <x1> T0<x2>[<5TER X3 >]

Enables a body of code to be repeated many times
without having to use IF and GOTO statements which make the
understanding of the flow of the program more difficult.

Initially V is set to the value of X1 and then the
statements below the FOR are executed until a NEXT V
statement is encountered. X3 is then added to Vand the test:

(X3<0)AND(U>=X2)OR(X3>0) AND(V<=X2)

is evaluateds If the result of this test is TRUE then control
is passed back to the statement after the FOR statement.
Otherwise program execution continues at the statement
immediately following the NEXT.

Note that, if STEP is omitted then the default on
X3 is +1.

50suB €line number >

Causes an unconditional call of the subroutine at
the line number given., The statements at and following this
line number will be obeyed until a RETURN statement is found,
at which point control will be passed back to the statement
immediately after the GOSUB.

GOT0 €1ine number >

Results in an unconditional transfer of control to
the statement at the line number given,

~26-

If <condition> THEN <statement>[<:statement>][:.........]
[ELSE-<statement>E<:statement>]£:.........]]

Allows different paths through ihe program to be
taken depending on the evaluation of tconditiont', If the result
of the condition is TRUE then the statement(s) after the THEN
and before the ELSE (if it is present) are exscuted. On the
other hand, if the condition evaluates to FALSE, then control
is passed immediately to the statement following the IF
statement or, should the ELSE clause be invoked, then control
is passed to the statement(s) after the ELSE, Assuming that
tha statement(s) after the THEN or the ELSE do not produce a
transfer of control {GOTO0) then after executing the statement(s)
control will be passed to the statement immediately after the
ir.

Note that, if more than one statement is to follow
the THEN or the ELSE then these statements must be separated
by a colon ':'.

Examples:
IF A=1 THEN PRINT"Heads" ELSE PRINT"Tails"

IF FLAGS="DN" AND TEMP>CRITICAL
THEN GOSUB 1000 : PRINT nx*xTEMP**%w ; GOTO 90
ELSE IF FLAG$="ON" THEN PRINT "***ARNING*®*

Note that the second example is set out on more
than one line - this is simply for clarity - you would, of
course, type this in on only cone line in your program.
Remember that although the names of variables can be as long
as you like (starting with an alphabetic) BAS12K only takes
the first tuo characters as the label for the variable so
you must be careful so as to avoid duplication.

iNpUT L€1iteral j>]evsfe,vi> ,.....]

This statement is used to assign values to variables
¥V, V¥t etc. from the keyboard. You have the option of printing
out a literal (say asking for a particular range of values
after which BAS12K will prompt for a value to be fed in from
the keyboard by issuing a question mark on the screen,
Obviously you must feed in values which are type compatible
with the variables to which they are to be assigned or errors
will be generated.

You can break out of an INPUT statement by hitting
£5Cape (SHIFT CR), However you cannot re-enter an INPUT
statement using CONT; instead you must use a GOTO statement
in the 'direct' mode.

KILL £ array name »»

A most useful statement - this allows you to
initialise an array without having to use FORses..NEXT looOps.
A1l elements of the array addressed by 'array name' are set
to zero if the array is of type numeric or to tnull' if the
type of the array is character,

Note that this statement only works on arrays - to
try and 'KILL' a variable which doses not represent an array
will have no effect whatsoever.

2?.

LET < assignment >

This statemant allous you to assign variables, either
t5 other variables or to constanis {numeric or character).

Firstly note that the 'LET' is spticnal and, in Tact,
rarely used except when portability is important, 3o the
statement LET A(5,4) = 4.24 has exactly the same effect as
a(5,4) = 4.24,

Secondly note that using a tmultiple' assignment
statement has the following effect:

A=B=20 in some Basics this would cause
hoth 4 and B to be set to zero.
Howaver in BAS12K this statement
has a quite different effect -
only the first (from the left)
t=t is taken as an assignment
operator, any further '=' being
assumed to be logical comparison
operators. Sa, in the above
statement the condition 'B=0?
would be evaluated and the result
-1 (TRUE) or 0 (FALSE) returned,
This result would be assicned to A,

D =8=F =6 Here 'B=F' would first be
evaluated and either 0 or -1
returned; the returned value
would then be compared with the
constant 6., Since neither 0 or
1 is equal to 6 the result of the
comparison will be FALSE (D).

So in this case D will be assigned
the value O.

o
i
&£
il
—
)
il
h
—

This changes the order of the
comparisons; first F is compared
with the constant 63 0 or =1

is returned. Then B is compared
with either 0 or =1 depending

on the previous result and the
final result is assigned %o D.

LPRINT [‘)@ﬂ[separatcr} féliteraljlfseparatorj L eeverennenes]
| Exactly the same syntax and effect as PRINT except

that the output is sent to the serial port (printer) instead
of to the YT screen, See PRINT for full details.

LPRINT USING < stringdf¢, print list>]

Identical to PRINT USING except that the ocutput
is sent to the serial port {(printer), not the VT screen.
See PRINT USING for full details.

LTRACEL X >

Like TRACE but only sends its output to the serial
pcrt and not to the video screen (see TRACE).

— 22~

nexT[cv>]

Used in caonjunction with FOR as a test to see if
the loop has terminated (see FCR for details).

ON < X > GOTO <line number>{¢, line number>][.........]

This is a type of conditional GOTC statement. The
expression X is evaluated and if the result is 1 then a branch
is made to the first line number in the list, if the result
is 2 then the branch is to the second line number in the list
etc.

X may evaluate to a number less than 256 and greater
than or equal to 0, the integral part aluays being taken, If
X equals 0 or is greater than the number of line numbers in
the list then execution is continued at the statement after
the OGN ... GOT0 statement,

ON< X> GOSUB < line number>[¢, line number>] [..ocevend]

Similar to ON ... GOTO, this statement transfers
control to the subroutine at the first line number given or
at the second lime number given etc, depending on the value
of X. On exit from the called subroutine control is returned
to the statement after the ON ,,. GOSUB.

OuT € X1,X%2 >

This takes the byte reprasented by X2 and cutputs
it to the port represented by X1, Obviously expressions X1
and X2 must be numeric and both must be in the range 0 to
255 inclusive.

POKE < X1,X2 >

Enters the byte X2 into the location X1. This is
necessary when interfacing machine code programs to BAS12K

pPrograms.
D=<X24=255 0=4 X14=65,535

precisIon [ex>]

Sets the number of significant figures that numeric
variables will be displayed to although BAS12K always calculates
using the maximum - 11, This statement is useful if you want
all your results displayed tc the same precision without
having to use PRINT USING.

JedX4=11 0 has same affect as 11,
The default value on X is 11,
Example:

PRECISION (5) means that, until another
PRECISION statement is read,
all numerics will be displayed
to § significant figures e.g.
123458,9 will be printed as
1.2346 E+05.

PRINT [‘X’][‘separator’][‘litefal’][ﬁseparatar’l ceccev e

Directs output to the video screen. This output may
be a blank line {simsly PRINT), a literal, a numeric expression
or a character expression or a mixture of the last three.

If more than ane expression or literal is to be
gutput then they must be separated in some way; the separators
allowed and their effects are:

r,' {comma) causes the 'print-head' to be
moved to the next 14 character

tab position before printing

the next character., Allows neat

formatting of results althouagh

greater flexibility may be gained

by using TAB and PRINT USING.

t (semi colon) has the effect that the next
character printed will be printed
'hard-up! to the previous
character i.e. no spaces betueen
them.

Some examples will clarify the use of PRINT :

Ex. 1: 10 A = 89,3
20 PRINT "The value of 'A' is: "jAjHn.0

RUNning this program will cause the following to be
output to the video screen:

The value of 'A' is: 89,3 .

Note the use of single quotation marks since double
guotes cannot be used within a literal. Also note the space
generated between the B9,3 and the terminatina full-ston;
8A512K inserts a space after printing all numerics.

Cx, 2% 10 FOR 1 = 0 TO 1 STEP 0,2
20 PRINT I,s5IN(I),C0S(I)
30 NEXT 1

This will produce a tabulated set of numbers but on
a 48 character width screen you will need to set the PRECISION
to 10 heforehand because, with full PRECISION, the width of
a floating~-point numeric goes just over the boundary of the
next tab position of ','. Assuming that PRECISICON has indeed
been set to 10, the above program would produce the following:

o D 1

. 2 .1986693308 .9800665778
o4 .3894183423 .9321060994
+ 0 5646424734 .B8253356148
+ 8 . 7173560309 6967067093
1 .B8414709848 .5403023059

Beth ',! and ';' can be used alone in a PRINT
statement although this would not normally be advantageous.

Remember that PRINT will output lines of a
length previously set by WIDTH (default is 72) so that if a
short line lenath has been selected at any stage then the
cutput produced by PRINT may not be quite as you expected e.q.
if a line width of 20 had been selected before running the
above program then all the numbers would be printed on
separate lines.
LPRINT. The uyae of LWIDTH will be advantageous when using

—B30-

PRINT USING < string> <, print list

This statement is a highly flexible form of the
PRINT statement designed to give the user total control of
the printing of numerics., The string is an image of the
output line except for special characters that are used as
formatting instructions. The print list must contain only
numerics but otherwise is the same as in ths normal PRINT
statement where expressions are separated by either a comma
ar a semi-colon, PRINT USING normally ignores the meaning of
these separators unless they occur at the end of the statement
where they have their normal meaning. string may either
refer to a string variable previously assigned or it may be
a literal containing an allowed mixture of the following
formatting characters:

pPOUND SIGN ('£!')
The pound sign is used to denote a numeric field.

PRINT USING "E££££,£E", 124,555
124.56

1f the number to be printed will not fit in the field
defined then a percent sign will precede the number
and it will be printed as though no PRINT USING
statement had been used, Any character other than a
comma, period or up arrow will terminate the numeric
field.

PRINT USING "£,.£", 10.3
%10.3

PRINT USINGWE.E£ £.£", 1,5
1,00 5.0

1f the fra tional digits of a number do not fit into
the field defined then the number will be roundead
and then printed. If a number being rounded becomes
too large to fit in the field then a percent sign
will be printed before the number.

ORINT USINGYE£.£ divided by £.£ = £.£", 9.993;1.99,5.02
#%10.0 divided by 2.0 = 5.0

|
DOLLAR SIGN ('$1")

The dollar sign is used when printing amounts of
money - unfortunately because of the significance
of the pound sign it is not possible to print a
t£' hard up against a number., The field is defined
with the pound sign except that the first two
characters of the field must be dollar signs.

PRINT USINGMS$SEE£E,.£", 34,56
$34,6

|
PRINT USING "$£££.£", 4,56
$ 4.6

~2 -

Note that the use of this option adds an extra
character to the size of the numeric field besides
specifying the leading dollar, If allowing for this,
the number is still too large to fit in the field
then a percent sign will be printed before the dollar.
Negative numbers will have their sign printed before
the dollar sign.

PRINT USING"$#££.££",5678,-12,355
%$5678,00-$12.36

ASTERISK ('#*1!)

The asterisk is used to fill leading blanks of any
numeric field with asterisks, This is especially
useful when printing a numeric field that should not
be easily altered (e.g. writing cheques). The format
is specified exactly as for the leading dollar and is
used in much the same way except that the asterisks
specify tuo extra printable characters, If room for
at least one asterisk is not available then a percent
sign will be printed.

The leading dollar and the asterisk fields may not

be defined together in the same field; instead a
literal dollar may be used,

PRINT USING"**££.££", 1,456
*%%1, 46

PRINT USING"S**ELEL,E££", -12,67
$%%_12,67

comma (*,')

The comma is used to insert commas in a numeric
field every three places to the left of the decimal
point., If at least one comma is embedded in a
numeric field and before the decimal point then
commas will be inserted appropriately. A comma
before the numeric field definition or after the
decimal point is considered to be a literal and
will simply be printed. If while filling the numeric
field, BAS12K runs out of field room then a percent
sign will be printed before the number although the
number itself will be printed correctly.

PRINT USING"ZE£££,.£E", 1234,56
1,234,56

PRINT USING"£,,,,,", 1E4
10,000

PRINT USING"£££,££", 1E6
%1,000,000

PRINT USING"S$£L£E,£.££", 3456,.36
43,4564.36

uP ARROW ('t')

The up arrow is used to denote scientific format

for numeric fields., Four and only four up arrows

are allowed and they must trail the numeric field,
They are used to denote the 'E+XX' notation used in
the scientific format. The final format of the output
will depend on the exact nature of the other special
characters in the numerie field.

PRINT USINGUEE.EEL£TMTr, 12,3456
1.235E+01

PRINT USINGUELELE.EEMPPT ™, 12,3456
1234,56E-02

PRINT USING"**£££.£££L££TM11 1, 'SIN(0.3)
*2955,202067£~04

LPRINT USING has exactly the same syntax as that
cutlined above - it simply outputs to the serial port instead

of to the video screen,
[]

RANDOMIZE

This is used in conjunction with the RND function.
Basically it provides a way of starting at a different point
in a particular series of pseudo-random numbers each time that
the program is run, Consult the function RND for full details.

READ € V>[¢,v1>) [<,¥2»] seevvenens]

Used to read data from a DATA statement; it assigns
to variable V, V1 etc. the next, next but one etc. available
entries in the DATA list. Remember that once an element of the
DATA list has been read it can only be read again by using the
RESTORE statement which resets the DATA list pointer to the
first element of data defined in the program., Obviously the
type of the entry in the DATA list must be compatible with
the type of the variable in the READ statement, Alsoc an attempt
to READ an element beyond the end of the DATA list will
generate an error.

REM [message]

Used to document your program, REM produces no code
and is, in fact, ignored by the interpretsr except that the
REM statement can be hranched to., The message can be any
combination of characters and can be left blank, REM statements
can appear on lines by themselves or can be compounded with
other statements on one line using ':', The ward REM can also
be replaced by the single quote ' .

Examples:

10 REM *%% TRIGONOMETRIC PACKAGE **¥*

20 PI=3,1416 ! fundamental definitions.
30 R=PI1/160
49 INPUT X : REM number in degrees.

-33_..

RESTORE [< 1line number>ﬂ

When a READ statement is first encountered within a
program then the first element of data from the first DATA
statement is read; the next READ statement reads the next
element of data and so on (assuming there is only one argument
per READ statement). This arrangement is rather inflexible
since once an element of data has been read there is no way
(using READ alone) that it can be re-read. RESTORE enables
you to skip back and read elements of data previously read.

Using RESTORE without <line number> resets the data
pointer to the beginning of the program so that, on a
subsequent READ, data will be read from the first element of
the first DATA statement in the program, then the second etc.,

If a line number is included after RESTORE then the
data pointer will be reset to the first DATA statement after
the line number given - this allows for greater flexibility.

When using RESTORE with the line number option
remember that an error will be returned if the data pointer
is beyond the end of the last DATA statement in the program.,

RETURN

This is used to return to the calling routine from
a subroutine. It should be the last statement in the subroutine
and will cause control to be passed back to the statement after
the GOSUB or ON.... GOSUB that called the subroutine.

Obviously a RETURN should not be encountered without
a previous subroutine call - an error will be generated if
this happens.,

STOP

When a STOP statement is executed, program execution
is terminated and a message is printed, informing the user
where the break in execution occurred, The program can then
be restarted using CONT and execution would resume at the
statement follouing the 5TOP, In short, STOP works just like
END except that a message is printed,

Example:

30 STOP
40 GOsSuUBs 2000

If the above is executed then the program would be
halted and ‘'*BREAK @ LINE 30! would be printed,
A CONT command would cause execution to continue
from line 40,

TRACE < X >

This allous you to trace the path that your program
is taking by enabling you to print out the line numbers of
the statements that are being executed, If the expression X
is grater than or equal to 1 then the TRACE function will be
turned ON until another TRACE statement with X less than 1
is encountered, at which point TRACE will be turned OFF.

When TRACE is ON then as statements are executed
their line numbers will be printed out betueen < >.

LTRACE sends the line numbers to the serial port
but otherwise works identically to TRACE.

-y -

wair < x1, x2>[<¢, x3>]

This causes the status of port X1 to be XOR'd with
X3 and AND'd with X2, If the result is non-zero then execution
continues, otherwise the program halts until the result

becomes non-zZerg,
The default value on X3 is zero,

Example:

WAIT 4,5 Execution stops until either bit O
- or bit 2 of port 4 are equal to 1.

WAIT 6,255,7 Execution will halt until any of

the most significant bits of
port 6 are 1 or any of the least
significant three bits are zero.

CLR TOP

Causes the top line of the video screen to be filled
with spaces. Useful since the standard NASMON scrolling is
15 lines and not 16,

COPY <line number [,line increment] = 1line number-line number 3>

This copies the range of statements specified by the
line range ('line number-line number') to the destination
specified by the first argument and renumbering the block of
lines according to the given line increment. If no line increment
is specified then an increment of 10 is assumed,

The line range should be in the same format as that
specified under LIST.

If an attempt is made to overurite statements then
the error message 'ILLEGAL FUNCTION' will be displayed.,

Example:

COPY100,2=30-50 copies all the statements betueen
lines 30 to 50 inclusive to lines
100, 102, 104 etc. assuming no
statements exist there already.

LINE INPUT [literal ;] < A$ [,A1$..ce0d] >

Like INPUT this statement prompts, at execution time,
with '? ' but, unlike INPUT, it then reads the whole of the line
input up to, but not including, the end-of-line character.

Example:

Execution of '10 LINE INPUT X$' will prompt with '? ';
if you now enter the string 'SIN(1.54)' followed by ENTER/NEWLINE
then X$ will now be set to that string and may be processed by
the string functions detailed in Section 3.3

-35-

-—36_

3.3 Functions.

ABS(X)

ASC(X$)

ATN(X)

CHRE(X)

cos(x)

EXP(X)

FRE(X)

INP(X)

INSTR(X$,Y$,X)

The absolute value of X is returned by this
function, If X is positive, then the value
returned is X; whereas if X is negative,
then the value returned is =X,

The argument X$ is a string expression. The
value returned by the function is the ASCII
numeric value of the first character within
the string. If the string is null then an
error will be returned.

Returns the arctangent of the expression X,
in radians. The value returned will be
between -pi/2 and pi/2 , where pi/2 is
approximately equal to 145707963268,

This returns a single ASCII character (a
one character string) whose ASCII value is
the argument X,

0<= X<= 255

Determines the cosine of the angle X; X is
assumed to be in radians,

The mathematical operation e X (e raised to
the Xth power) is performed and the result
returned. 'e' is the base of natural logs
and is approximately equal to 2.7182818285,
The maximun allowable value of X is
88-029691931 and a value greater than this
will result in an overflow error being
issued,

X may be either a numeric or character
expression, If it is numeric then this
function returns the number of free bytes
left to the programmer within memory, If
X is a character expression then the
function returns the number of bytes left
available to hold character variables.
Remember that this character space may be
extended using CLEAR.

This returns a byte read from port X.
0 <= X =X£255

The INSTR function searches for sub-string
Y$ in string X$. The last argument, X,
specifies the first character of X% at
which to start the search, INSTR returns
an integer value specifying at which
character the sub-string started. If the
sub-string was not found then zero is
returned,

...-57__

INT(X) The value returned is the largest integer
that is not greater than X. A feuw examples
are shouwn below:

INT(S.Q) = 5 INT(45,0) = 45
INT(-6.01) = =7 INT(0,54) =
LEFT$(X$,X) A character function that returns a string

that is the X left-most characters of the
string X4. The value of X must be positive
and less than 256 to avoid an error.

Af = "NASCOM COMPUTERSY
LEFT$(AB,5) = "NASCO"

LEN(X$) X$ is a string expression and this function
returns the number of characters (including
spaces and non-printables) within the
string X$.

LOG(Xx) This returns the natural logarithm (to the
base 'e') of the number X, X must be greater
than zero,

To translate to logarithms of other bases,
where the log to the base A is desired, the
following formula may be used:

logarithm of X to base A = LOG(X)/LOG(A)

The most commom use of this formula will be
to convert to base 10 when A will be 10.

LPOS(X) Returns the current position of the print-
head of the printer, X is only a dummy
argument and can have any value, including
character values, Numbering starts at zero,
so that if the printer is ready to start a
new line then zero will be returned.

LPRINT "This is a test.";
A = LPOS(5)

If the above tuo statements are executed,
A will then be assigned the value 15 since
that is the position of the print-head
after printing the message above (note the
presence of the semi-colon).

MIDE(XB,X,Y) This function returns a character string
that is a sub-string of the string X$.
The returned string starts at position X
within the string X$ and has a length Y.

0 € X ={255 D =< Y =<255
NID$("abcdefgh",4,3) = "def!
A¢ = "Lunch time"
MID$(A$,7,10) = "time"

Note: MIDS may also be used on the left hand
si1de of an assignment statement.

—%R-

PEEK(X)

POS(x)

RIGHTH(X$,X)

RND(X)

Returns the value of the byte at the address
specified by X. The value returned will be
>= 0 and €256 and X must be in the range:

0 =< X < 65536

The value returned will be the current
position of the cursor on the video screen,
X is a dummy argument and may take any
numeric or character value,

The leftmost position on the screen is
taken as zero so that, on NASCOM machines,
POS will return a value between 0 and 47
inclusive,

Returns a character string that is the
rightmost X elements of the string X3,

If the value of X is greater than or equal
to the length of the string x$ then the
entire string will be returned. An error
will be issued if X is less than zero or
greater than 255,

This function returns a random number that
has a value between zero and one, but not
including one,

The argument X has an effect on the number
that is generated according to the following
rules:

X< 0 A neu series of random numbers
is started. For different negative
values of X, a different sequence
is started each time but if the
argument remains the same then the
function will keep starting the
same sequence so that the value
returned will be the same each
time the function is called.

X=0 Returns the last random number
that was generated.

X> 0 Generates a new random number in
the present series. This is the
argument that will be used most
frequently with RND.

Note that, although different negative
values of X will start different series of
random numbers, the same negative value
will always start the same series, This
may be undesirable and, if so, RANDOMIZE
can be used; this will 'randomise' the
point at which you enter the random series.

10 A=RND(-2) 10 A=RND(-2)
20 FOR I = 1 70 5 20 RANDOMIZE
30 A=RND(1) 30 FOR I = 1 70 5
40 NEXT I 40 A=RND(1)
50 NEXT I

-39-

SGN(X)

SIN(X)

sPC(X)

SQR(X)

STR$(X)

TAaB(X)

The program over the page on the left will
always return the same six random numbers;
7-17£-10, 0-457, 0-456, 0-208, 0-206 and
0.607 (with PRECISION set to 3).

The program on the right, however - although
it will always select the same series
(because of the -2) - will enter the series
at different points each time the program

is RUN because of the presence of RANDOMIZE.
For example three runs of this program
produced the following results (again with
PRECISION set to 3):

Run 1 ~Run 2 Run 3
1.17€£-10 1.17£-10 1.,17E-10
0576 0-385 1.74E-02
0-746 0-314 0.780
8.65£-02 0-683 2-11£-02
0195 0-620 3.48E-02
0-625 0.574 0.542

This is the t'sign' function. It returns
11t if the argument is greater than zero,
10! if the argument is zero and '-1' if

X is less than zero.

Returns the sine of the angle X where X is
assumed to be in radians. ’

This function may only be used in a print
statement., It causes 'X' spaces to be
printed either on the video screen (if
used in a PRINT statement) or on the
printer (if using LPRINT).

0 =< X <256

Returns the square root of the argument X,
An error will be issued if X is negative,

This will return a character string that
represents the numerical expression X. In
other words, the function takes a number
and transforms it into a character string.
The string is constructed just as it would
be output, that is with a leading space or
minus sign and no trailing space.

May only be used in print statements. Its
function is to move the cursor to column

X on the video screen (if used in a PRINT
statement) or to move the print-head to
column X on the printer (with LPRINT).

If the cursor or print-head is already at
this position then no action is taken, The
argument must be positive and less than 256,

-Lo-

TAN(X)

USR(X)

Returns the tangent of the angle X where X
is assumed to be in radians.

This is a function that allows you to
interface BAS12K with a machine code
routine. It returns the value passed back
by the machine code and the value of X is
passed to the machine code on entry to it,.
Details of how to use USR follow:

1.

Set up the machine code. Say you want

to write a very small routine to output

the character passed to the routine and

then input a character from the keyboard
and pass it back to the BAS12K program.

A flowchart for this routine might look

like this: C g D
|

get value passed

from BAS12K
|

print value

|

read keyboard

pass this value
back to BAS12K

T

return to

BAS12K
To turn this into machine code we need
to know how to pick up narameters passed

by BAS12K and how to pass back values.
This is achieved as follous:

To pick up a passed value.

Call address 4527H. The twos complement
of the passed value will be returned
in register pair DE (E low, D high).

To pass a value back,

The number that you wish to pass back
should be converted to two's complement,
the low order part placed in register

B and the high order part in register A.
Having done this you should then call
address 452AH which will assign the
value to the appropriate variable,

To return to BAS12K,

To return to BAS12K from your machine
code routine, simply execute a RET (c9)
instruction in your routine,

—Ll-

WJe are now in a position to write the
machine code required for this routine,
Assume that we are gcoing to place the
code at address EOQOH; then what we need

is:

CD2745 CALL GETPAR (E0QH)
7B LD A,E

F701 SYS 1

F702 GET SYS 2

30FC JR NC,GET

47 LD B,A

AF X OR it

CD2A4S CALL PUTPAR

c9 RET (ECFH)

Note that this very simple routine simply
outputs the low order half of the number
that is passed to it and passes back a
single number in the range 0 - 255 i.e.

no attempt is made to form the tuo's
complement and cater for negative numbers,

2. Interface the routine to BAS12K. The
above machine code may be entered into
memory either by using CTRLZ and then
entering it directly or by using POKE
statements in the BAS12K program which
calls the routine., Once it has been
entered at EOOH onwards then BAS12K must
be told where to find this routine so
that, when USR is invoked BAS12K knows
to which location to transfer control.

To set up address of routine.

Ta tell BAS12K where your machine code
resides simply POKE the low order half

. of the address (in this case O0OH) in
location 4507H (17671 decimal) and POKE
the high order half of the address
(here OEH) in location 4508H (17672
decimal).

If USR is invoked without first setting
up locations 4507H and 4508H then an
error will be issued.

The above gives you all the information that
you need in order to use USR within your
BAS12K program, To further clarify its use,
a BAS12K program (simple and rather trivial)
that calls the above machine code is listed
below:

10 REM To illustrate the use of USR.

20 REM Define the machine code as data,
30 DATA 205,39,69,123,247,1,2&7,2

40 DATA 48,252,71,175,205,42,69,201

50 REM Enter the m/c into memory.,

60 FOR I =09 170 15

VAL (x$)

70 READ DUM
80 POKE 14%256 + I, DUM ' at EOOH etc.
90 NEXT I

100 REM Set up the address of the m/c

110 REM within BAS12K,

120 POKE 17671, 0 : POKE 17672, 14

130 REM We are ready to use USR now.

140 REM A simple routine to read a

150 REM character from the keyboard

160 REM and display it with its ASCII
170 REM wvalue, neatly tabulated.

180 REM _

190 WIDTH 40
200 CLEAR 50

for tabulation.
string space.

340 PRINT USING A , Z3;
350 GOTO 280

print the ASCII.
back to print

\
1
210 A =" ££E M ' format for
220 ' PRINT USING.
230 CLS ' clear screen.,
240 A=8 ' first argument
250) ' is a backspace
260 ' to keep screen
270 ' clear.
280 Z = USR(A) ' Z is ASCII no.
290 IF Z=1 THEN gOTO 370' exit on CTRLA,
300 A = Z ' will print the
310 ' character whose
320 t ASCII value is
330 ' Z on next USR.
1
]
360 ' the character,
370 WIDTH 48 ' reset width,.
380 END

With careful study of all the above you
should be in a position to use USR with
confidence.

You can, of course, interface more than one
machine code routine with your program -
but you must remember to set locations
4507H and 4508H for each new routine,

This function does just the opposite of
sTR$(X) . VAL(X$) takes a numerical
character string and converts it to its
numerical value, ‘

Zero is returned if the first non-space
character is anything other than a digit or
a decimal point, plus sign or minus sign.

Examples:

VAL ("= 45,7") = =457
VAL (" 540") = 540
VAL ("+2345 ") = 0-2345
vaL(» ,10.05") = 0

AOBENDIX _1. ERROR_MESSAGES.

— . —— — o ———— o —— ——— ————— —— T ———

BAS12K issues full error messages which are usually explicit
enocugh in themselves to enable you to detect exactly what the
error was. If the error occurs within a program then the phrase
'@ LINE nnnnn' will follow the error message enabling you to
identify in which line the error occurred. The following is a
list of the possible error messages that could occur.

*EXTRA LOST
ARITHMETIC OVERFLOU
CAN'T CONTINUE

CAN'T /O

FILES DIFFERENT

FNRETURN W/0 FUNCTION CALL
ILLEGAL DIRECT

ILLEGAL EOF

ILLEGAL FUNCTION

INVALID INPUT

MISSING STATEMENT NUMBER
NEXT W/0 FOR

NO STRING SPACE

OUT OF DATA

OUT OF MEMORY

RD ERROR

RE-DIMENSIONED ARRAY
RETURN W/0 GOSUB

STRING TOO LONG
SUBSCRIPT OUT OF RANGE
SYNTAX ERROR

TOO COMPLEX

TYPE MIS-MATCH

UNDEF INED STATEMENT
UNDEF INED USER CALL

ON 1SSUIvE A NEw |
LoChTion S

. €
73523 zr@e} _sheuld, poink fo nat .

\'4,4‘;_[3_,5*:‘575“::@@ Tev

: {li.hl‘b 2 TuRd 2TRo
Netee - '
® ER €D Be (aST Liwé P$4

— UG-

——-_——_-_.__—___———.—_——__———_..—_.___--—_
_-..-.__...__——-———.—————.—_-.———_————_——.—.—_—

The follouwing is a list of useful addresses within BAS12K:

4000H start of BAS12K.
7354H end of BAS12K.
4300H cold start entry point - clears all

variables and program, re-initialises.

4303H warm start entry point - used to re-
enter BAS12K without destroying the
program or variables.

4507H louw order half of address of machine
code routine called by USR.

4508H high order half of address of machine
code routine called by USR.

4527H address to call to pick up a value

passed to 2 machine code routine by
by USR - the value is returned in
register pair DE (E low, D high).

452AH address to call to pass a value back
to the program from a m/c routine called
by USR - low order half of value should
be in register B, high order in A.

....l_‘_:}_

