PolyDos

INTRODUCTION

! microcenter

PolyDos is copyrighted and all rights are reserved by PolyData
microcenter ApS. The distribution and sale of this product are
intended for use of the original purchaser only. Copying,
duplicating, selling, or otherwise distributing any part of this
system, in any form, is a violation of law.

Copyright (C) 1981, 1982 by PolyData microcenter ApS
Strandboulevarden 63, DK-2100 Copenhagen O
Tel 01-420705, Telex DK-FOTEX 16600 att POLYDATA

Th uals

Six manuals are supplied with your PolyDos disk operating

system. These are:
PolyDos Users Guide

The Users Guide describes to you how to operate PolyDos,
e.g. the power-up procedure, the concept of a file, and
the commands recognized by PolyDos. It is suggested that
you read this manual before using the system.

PolyDos System Programmers Guide

The System Programmers Guide describes all programming
aspects of PolyDos. It assumes that you are familiar
with the system, and that you have read the Users Guide.
The following subjects are discussed: The system
workspace, the file system, system subroutines, the
overlay mechanism, file formats, and printer
interfacing. In addition the System Programmers Guide
includes assembly listings of some essential system
programs. The System Programmers Guide is meant as a
reference guide to assembly language programmers.,

PolyDos Utilities Guide

The Utilities Guide is a manual to the utility programs
included on your system disk. The utility programs are
FORMAT, BACKUP, and SuperZap.

PolyEdit Users Guide
This manual describes to you how to operate the system
editor. It is recommended that you read this manual
before approaching PolyEdit.

PolyZap Users Guide
This manual describes the PolyZap disk assembler. The
syntactical rules of assembly language programming are
discussed, as well as the pseudo operations supported by
PolyZap, and the assembly options you may use.

PolyDos DISK BASIC Guide

The DISK BASIC Guide describes the DISK BASIC supplied
with PolyDos.

The PolyDos documentation was created on a NASCOM 2 computer,
using the PolyText word processing system running under PolyDos,

and printed on a NEC 3515 Spinwriter.

Installing the Controller EPROMs

The PolyDos Controller EPROMs are supplied as two 2708s,
suitable for installation on the NASCOM 2 main PCB, on a NASCOM
RAM A card, or on a Gemini G813 EPROM card. Before installing
the EPROMs check that they match your hardware configuration:
"EPROMs marked G809 should be used in connection with a Gemini
G809 floppy disk controller card, and EPROMs marked G805 should
be used in connection with a Gemini G805 floppy disk unit. The
EPROMs should be origined in memory at address ODOOOH (PD2A
EPROM) and 0D400H (PD2B EPROM). Below is shown some examples of
installation:

NASCOM 2 main PCB, block A

On LKB1 and LKB2 connect pins 8-12, pins 7-11, pins
6-10, and pins 5-9. On LKS1l connect pins 4-7 (BLOCK A -
XROM), and pins 4-10 (BLOCK A - DOOO-DFFF). Insert EPROM
marked PD2A in socket Al, and PD2B in socket A2.

NASCOM 2 main PCB, block B

On LKBS and LKB6 connect pins 8-12, pins 7-11, pins
6-10, and pins 5-9. On LKSl1 connect pins 6-7 (BLOCK B -
XROM) , and pins 6-10 (BLOCK B - DOOO-DFFF). Insert EPROM
marked PD2A in socket B5, and PD2B in socket B6.

NASCOM RAM A card

On the decode pad connect P5-10. Insert EPROM marked
PD2A in socket IC27, and PD2B in socket IC28.

Gemini G813 EPROM card, bank 1

Fit links for 2708 type EPROMs on decode pads for ICl3
and ICl4. On SKT1l connect pins 23-14 (BANK 1 SELECT -
DOOO0~DFFF). Insert EPROM marked PD2A in socket ICl13, and
PD2B in socket ICl4.

Once installed, check that the EPROMs are addressed properly,
e.g. executing '"TD000 DO08' in NAS-SYS, which should display:

D000 C3 03 DO 31 00 10 CD OD
The final step is to set the RESET address. LSW1/1, LSW1/3, and

LSW1/4 should be in position UP, and LSW1/2 should be 1in
position DOWN. This completes the installation. '

®
PolyDos
USERS GUIDE
®
N J
® /
. //’
e ! microcenter

PolyDos Users Guide -1-

TABLE QOF CONTENTS

1 . IntrOduction tO POIYDOS ® 0 6 0 0 0 8 S P S O PSS OO E S E PSS EOEs TSN
l.l The manual ® & & 8 5 2 8 5 9 5 0 0 8 S 0 GG S PSP S S S E O LSS VSIS EE O SCCES
1.2 Notations ® 5 5 8 5 56 5 & 55 55 9 95 0 SIS SIS LSS0 SRS SSRGS

W ww

2. General system informationceeeeecscecccrcscscosasscnnsnns
2.1 PolyDos memory O0rganizationceesecescccssscsssccscsns
2.2 Disk fOrmMatsS teeeeeseecsscsososssncsacseosssssscssssncss

2.2.1 Single density formatceccececccessacsccnccns

2.2.2 Double density format ...cieeeecceccccccaccencccsns

Replacing diSKS ceeeeeroessosccrssonsscsascassnssssansse

TAB ChaAractersS ..ieesesescccctcsscesssssscsssscssssssaasne

The BREAK functioneeseececccccccsccscossacsconsasssnss

U U B b b

2.
2.
2.

O W

3. PolyDos disk file€S ..eeveecsccsocsscccaccscsssosssscasacscsns
3.1 File speCifierS ..eeeeceescccosssscsassoessasssscsassccs
3.1.]1 File NAGMES .vevecvvsssosvoscscsssosnnsssassosscsssoss

3.1.2 File eXtenSiONsS ceeeesssvossccsssenssssssoscsscsns

3.1.3 Drive NUMDErS .ivveesenscscsoscsscccecssasscccsas

3.2 File attributes ..eeeeecscccocccoossrssnsoossscsssssasoacse
3.3 Family file speCifiers ..iceceeccecesssccascccecsnsannss

4, POlyDOS OpPeration .sceieessececccsascccssssssssssssssnssssscaes
4.] POWEIL=UP cevvacoosoosennsosnsssasssosncsosssssasnssnssssnsesnaas
4,2 Command 1inesS ...eceeeressssssassescossssssnssccssonnsnses

4.2,1 Command OpPtiONS ..ceevecaccssocseossnsonsocsassas 10
4.2.2 NAS-SYS CcOMMANAS ceovevesccascesscsnsscnaccsacsss 10
4.3 PolyDos commandS ...ceeeeosesosssccsssosocsssesscasses 10
4,3.1 DIR - List QireCtoOrY .eesveecesnscessscssasnsaoes 11

COPY — Copy fileS .eveevesessccssossonssssnneas 12

REN —~ Rename fileS ...cceecsccssccesssssssscasce 13

DEL = Delete fileS cvveeeescocssscasacncssnsess 13

UNDEL - Undelete file .iieeeescccsncanscsssesss 14

LOCK = LOCK fil€S .eeeeesceccosessssnccssnncesss 14

UNLOCK = Unlock fileS .suieeceoescnvscccecaseececss 14

PACK — PacCk diSK c.essevecsecscscssoscassanssness 14

SAVE — Save file ...ceeeeeecsccsssovssssccccece 14

LOAD — Load file ..c.ceeceeosssscscssnoscnsasnseacss 15

ATTRIB - Change file attributes .ceeeceeeseaeee 15

LIST ~ List file .sieecececescsacsoccsnesncecssess 15

SKIP - Print blank 1ineS ..eeseeeccesssensssass 15

BUFFER - Define RAM buffer ...ceccscecssssscese 16

NAME - Rename diSK .ceveeeecoccsscosscaccassaas 16

READ — Read SeCtOIS ..cceeeescosccasaccscacesass 16

WRITE ~ Write SeCtOrS ..ceecectcessnssnscacscsss 16

NEW - New disk(s) inserted ...ccceceeccecccosees 17

.19 BOOT = ReboOt POlYDOS sveeseccosssccccsssanceas 17

ecial commandsS ..cescccoscocscsscscossosscssoosencee 17

4.1 EDIT - Invoke POlyEdit ..ecceveecoccncacsoscceas 17

4.2 BASIC - Invoke DISK BASIC ..ieevensscccsasocases 17

ecuting filesS .eeereevcvcccsecososcssasooensssssssssee 18

.5.]1 Standard file tYPeES teivevecccencccosocesscssnses 18

4.5.1.1 Machine code program fileS ..eceevececess 18
4.5.1.2 Text £i1€S civeiencesssesancencnsassasases 18
4.5.2 User defined file typeS .teeeecesscsccessncncceaa 19

\O WO \O O N~NJHhONDN

et et b e e e s 0 00~ OV U i W N

OB WNHOHO

WWWWwWWwWwWwWwWwiwwWwwWwwwwwww

5- The boot process ® & 9 9 5 0 6 O & 8 O @O T OO S OSSO eSS OSSN 20
5.1 Creating a turn—-key SySteém ..c.eeesececsssccscscssccsss 20

-2- PolyDos Users Guide

TABLE OF CONTENTS

6. System Files 2 6 8 8 8 ¢ 8 8 00 8 O 0P O L S O S S S S0 OSSP L LSS NS SN NESee s 21

7. Error messages ' EEEEEEEEIT I I A I A A R R Y RN I B B A B N A A 23

PolyDos Users Guide -3-

Section 1

Introduction to PolyDos

PolyDos is a high-level disk operating system designed specially
for the NASCOM 1 and 2 with NAS-SYS ¢r NAS-SYS 3 monitor. The
basic concept of PolyDos is that it is totally compatible with
exsiting software written for NAS-SYS and the NASCOM ROM BASIC.
The PolyDos package includes the PolyDos controller ROM, the
PolyDos system files, the PolyEdit on-screen editor, the PolyZap
disk assembler, the PolyDos DISK BASIC expansion to the NASCOM
ROM BASIC, and a number of utility programs for formatting,
editing and copying disks.

1.1l The manual

This manual describes how to operate PolyDos. In programming
matters you should refer to the PolyDos System Programmers
Guide. Section 2 <contains some general system information.
Section 3 discusses the concept of a file, how to name a file,
and what kinds of files the system will handle. Section 4
describes the commands recognized by PolyDos, and tells you how
to execute files. Section 5 is a detailled description of what
happens when you boot the system. Section 6 describes the system
files. Section 7 1lists all error messages along with a
description.

1.2 Notations

Throughout this manual the following notations are used to
describe syntactical elements (e.g. commands and file names):

[e..] Contains an optional element. If the element is selected
it may only be specified once.

{eea} Contains an optional element. If the element is selected
it may be specified any number of times.

<ewa? Contains an element name. The meaning of the element 1is
explained in the text.

As an example of these notations, consider the following line,
which describes the format of a command 1line wusing the COPY
command: :

SCOPY <fsl> <fs2>{,<fs1> <fs2>}[;[Y][S]]

The command 1line starts with the command word COPY, which must
be specified exactly as is, i.e. using upper case letters. The
command word 1is followed by a blank and two file specifiers
separated by a blank. Optionally more file specifiers may be
given in pairs, each pair separated from the others by commas.
The last element on the line is an option list consisting of any
combination of the letters 'Y' and 'S'. If selected, the option
list must be preceded by a semicolon.

-4~ PolyDos Users Guide

Section 2

General System Information

P S m ization

When operating under PolyDos your memory is organized in the
following manner:

0000-07FF NAS-SYS 1 or NAS-SYS 3 monitor
0800-0BFF Video RAM

0C00-1000 System stack and NAS-SYS workspace
1000-BFFF 44K of user RAM

CO000-C3FF PolyDos workspace

C400-C7FF Disk directory buffer

C800-CFFF PolyDos overlay area

DO00-D7FF PolyDos controller ROM

D800-DFFF User RAM/ROM

EO00-FFFF NASCOM ROM BASIC

2.2 Disk formats

The PolyDos G809/G815 version and the PolyDos G805 version both
support single density format. In additiom the G809/G815 version
supports double density format. Both formats are double sided
(35 tracks per side), with a sector length of 256 bytes. To
minimize head movements and to increase system performance the
software accesses first side 0 of the disk on a particular
track, and then side 1 before stepping to the next track.

in nsi t

The single density format 1is supported by both versions of
PolyDos and is therefore suitable for data transfers between the
two systems. Each track is divided into 10 sectors, giving a
total storage capacity of 175K bytes. To access a single density
disk you should refer to drive numbers 0-3 in the G805 version,
and drive numbers 4-7 in the G809/G815 version.

Dou d i rmat

The double density format is only supported by the G809/G815
version. Each track of the disk holds 18 sectors, giving a total
storage capacity of 315K bytes. To access a double density disk
you should refer to drive numbers 0-3. Note that drive 0 and
drive 4 are physically the same drive, but with different
formats.

R acin isks

To allow fast command processing the directory of a disk is not
read into memory each time the drive is accessed, but only at
the first access. Each time the memory copy of the disk
directory is updated, it is written to the disk, thus allowing

PolyDos Users Guide -5~

you to remove the from the drive, whenever it stops, without
loosing any information. However, inserting a new disk without
telling PolyDos about it, can cause strange things to happen and
may very well cause irreparable damage to the directory of that
disk, as PolyDos continues to use the directory of the disk you
have replaced. Therefore, the only times you are allowed to
replace a disk in one of the drives are:

1) At power-up, or when RESET has been pressed.

2) Just prior to executing a NEW or a BOOT command.
3) When PolyDos asks you to insert/replace a disk.

2.4 TAB characters

In addition to the usual NAS-SYS control characters (e.g. BS,
ENTER, ESC), PolyDos supports TAB characters. TAB has the ASCII
value 09, and can be produced from the keyboard by pressing
CTRL/I. When printed, a TAB character moves the cursor to the
next character column which is a multiple of 8. Thus, it expands
into between 1 and 8 spaces, depending on the cursor position.
Printing a TAB when the cursor is in columns 0-7, will move the
it to column 8. When the cursor is in columns 8-15, it will move
to column 16, etc. TAB characters are especially useful for
setting up assembly language programs.

2.5 The BREAK function

At any time when a program is scanning the Kkeyboard you may
BREAK by pressing CTRL/SHIFT/@, which will interrupt whatever is
going on and return you to the command level.

-6- PolyDos Users Guide

Section 3

PolyDos disk files

Disk files are groups of data. The data can be anything you want
it to be - words, numbers, programs, etc. Each file has a name
which enables you to recignize it, and an extension which tells
you and PolyDos the type of the file.

The name/extension of each file on a disk 1is recorded in the
disk directory. The directory holds up to 50 file entries,
theoretically allowing you to create 50 files on each disk.
However, as the storage capacity of a disk is limited (please
refer to section 2.2 for the exact figures), 50 files of an
average size will usually consume more sectors than available on
a single disk.

When a file 1is deleted it is not removed from the directory
until the disk is packed, using the PACK command. Often this a
an invaluable advantage, as a file can be recovered even if it
has been deleted. The DIR command with an E option will tell you
the number of files in use, deleted, and free 1in the selected
directory.

1l Fj specifiers

Files are accessed through file specifiers. A file specifier
consists of a file name, which enables you and PolyDos to
recognize the file, an extension, which defines the type of the
file, and a drive number, arranged in the following manner:

<name>.<extension>:<drive>

3.,1.1 File names

File names may contain upper and lower case letters, digits, and
special symbols. The symbols that a file name may not contain
are control characters, graphic characters, a comma, a space, a
period, a colon, or a semicolon. A file name can be from 1 to 8
characters in length. Some examples of legal file names:

MYFILE
TFOR2
letter
2001
X&Y-5

Some examples of illegal file names:

STOCK-CONTROL (file name too long)
data:99 (colon in file name)

You <cannot have more than one active (undeleted) file with the
same name and extension on a disk. If you try to save a file
under a file name that already exists on that disk, the old file
will be deleted, or an error message will be produced, depending

PolyDos Users Guide -7-

on the type of command.

File nsion

When you display a disk directory you will notice that all file
names end with a two-character extension after a period, e.q.
ACCOUNTS.TX. These extensions give additional information to
PolyDos and to you about file contents. Standard file types
(extensions) are:

.TX Text file

.GO Machine code program file
OV Overlay file

.BS BASIC program file

.DT BASIC data file

.IN Information file

Whenever you create one of the above types of files, PolyDos
automatically affixes the proper extension to the file name.
However, PolyDos does not enforce the use of the above
extensions. Actually any two character extension of letters
and/or numbers seperated from the file name by a period is
acceptable.

Dri numbers

If you don't specify a drive number when you are working on a
file, PolyDos normally assumes that the file resides on the
master drive, 1i.e. the drive that was booted at power-up. To
access other drives than the master drive, you must add a drive
specification to the file name. A drive specification consists
of a colon followed by the drive number. Some examples of file
specifiers with drive numbers:

TEST:1
Game.BS:0
0&X:5

2 Fi attributes

Apart from its name and extension, each file has 10 bytes of
attributes, which holds some 'technical information' on the
file. The file attributes are:

System flags (1 byte)

User flags (1 byte)

Sector address (2 bytes)
Length in sectors (2 bytes)
Load address (2 bytes)
Execute address (2 bytes)

The system flags byte holds two one-bit flags indicating the
status of the file. If bit 0 is set the file is locked, and if
bit 1 1is set the file is deleted. The user flags byte is never
used by the system, and may contain any one-byte value. The
sector address 1is the number of the first sector the file
occupies. The length in sectors gives the number of sectors

-8- PolyDos Users Guide

occupied by the file. The load address holds the memory address
at which the file is to be loaded. The execute address holds the
entry point address of the file. The execute address is only
used by PolyDos when executing a machine code program file
(extension .GO).

Files are always stored sequentially, i.e. as one contiguous
block of sectors. When a file is locked it «cannot be deleted,
renamed, or edited, and it will not be displayed in a directory
list unless you request it (using the 'L' option). Normally, the
system files are locked to prevent accidental deletion.

3 Fami i specifier

Some PolyDos commands supports family file specifiers. A family
file specifier 1is constructed as any other file specifier,
except that it has its name and/or extension missing. Instead of
producing an error the command (or program) will include all
files in the specified directory that matches the family file
name. Some examples:

TEST will include all files on the master drive that has
the name TEST, regardless of their extension.

.GO:1 will include all machine code program files on drive
1.

:0 will include all files on drive 0.

Note that ‘commands that do not support family names will often
allow you to omit the extension, and instead supply the
extension of the first file found in the directory.

PolyDos Users Guide -9-

Section 4

PolyDos operation

Power-—
Upon power-up, or when RESET is pressed, PolyDos prompts:
Boot which drive?

Insert a system disk in one of the drives, and type the number
of that drive, or, to return to NAS-SYS, type 'N'. The number
you typed now becomes the number of the master drive, i.e. the
drive that 1is selected if you don't specify anything else, and
the drive from which system files are loaded. Normally the
master drive is drive 0. Assuming that the disk is of a correct
format and that it contains the system files, the screen will be
cleared, and a prompt message will be output:

PolyDos x.x [yyyyl
Copyright (C) 1981
PolyData microcenter

where x.x is the version number, and yyyy is the implementation
name ([G809/G815] for Gemini G809 FDC card with G815 floppy disk
unit, and [G805] for Gemini G805 floppy disk system). If
something goes wrong, PolyDos outputs:

(Error ee)

and transfers control to NAS-SYS. ee is one of the error codes
explained in section 7.

2 Command lines

Whenever you see the PolyDos prompt '$', you are talking to the
part of the operating system called the executive (Exec). Exec
handles all communications between PolyDos and you - it
processes your input and responds to it with either the
appropriate action or an error message.

Command 1lines are entered using NAS-SYS editing facilities. An
entry is terminated by pressing <ENTER>. If you enter a 1line
with no 'S' as the first character it is considered a NAS-SYS
command line (see section 4.2.2) and normal NAS-SYS syntactical
rules apply to it. If the '$' is followed by one or more spaces,
the line is considered a comment line, and thus ignored.

If the input 1line is not a NAS-SYS command line or a comment
line, Exec it looks at the first word typed (the command word)
and compares it to the list of legal commands in its command
table, If a match occurs, Exec takes the appropriate action in
responce to the command. If no match occurs, Exec decides that
you are trying to execute a file, an it moves on to 1looking up
the file specifier in the directory. If Exec does not find a
file of the given name on the disk specified, it outputs an
error message. If such a file does exist, Exec tries to execute

-10- PolyDos Users Guide

it. The process of executing a file is described in section 4.5.
Some examples of command lines:

$DIR

Show on the screen an unextended directory listing of the master
drive.

SLIST LETTER:1;P
List the file called LETTER on drive one to the printer.
SSTARTREK

Execute the program called STARTREK on the master drive. Note
that as STARTREK is not a PolyDos command, Exec automatically
assumes that it is a file to be executed. What actually happens
when STARTREK is executed, depends on the type of the file as
well as the file itself.

$Hello.BS:1

Execute the BASIC program file called Hello on drive one.

4.2.]1 Command options

Most PolyDos commands will respond to one or more command
options. Command options are always the last element of a
command 1line, and must preceded by a semicolon ';'. The
semicolon need not be preceded by a space. Each option consists

of a single upper case character. Some examples:

DIR;ELD
LIST GAME.BS;P

In the description of each command you can see what options the
command will allow, and how it will respond to them.

4,2.2 NAS-SYS commangs

If you delete the '$' prompt output by Exec your inpat line will
be handled as a NAS-SYS command line. Once you execute a NAS-SYS
command Exec stops outputting 'S$' prompts until you type one
yourself. Note that some NAS-SYS commands are not available
using this method. These are the 'B' and the 'S' command. If you
try execute one of them, you will get an error. The only way to
make 'B' and 'S' response properly 1is to enter 'EO', which
restores normal NAS-SYS operation.

4.3 PolyDos commands

On the following pages the PolyDos commands are described. Note
that all commands must be typed in upper case letters. Each
description is headed by a line defining the syntax of the
command.

PolyDos Users Guide -11-

4,3.1 DIR - List directory
$DIR <fspec>[;[E][L][D][P]]

The DIR command will display the all files that match the family
file specifier <fspec> given on the command line. If the drive
number is not specified, the master drive will be selected. The
'E' option specifies that the directory display should be in its
extended form, which means that all data relating to the -'disk
should be displayed, as well as the attributes of each file. 'L'
requests that locked files be included in the display. Similary,
'D' requests that deleted files be included. 'P' requests that
the directory display be sent to the printer instead of the
screen, Some examples:

$DIR

Display the name/extension of all active and unlocked files on
the master drive.

$DIR .GO:1;L

Display the names of all machine code files on drive one,
including the ones that are locked.

SDIR TEST;P

List to the printer all files that are active and undeleted and
named TEST, regardless of their extensions.

$DIR ;ELD

Display an extended directory list of all files on the master
drive.

A normal directory list, i.e. a non-extended list, will display
three file specifiers on each line, e.g.:

Exec,0OV Emsg.OV Dfun.OV
Ecmd.OV Edit.0oV Info.IN
GAME.BS LETTER.TX FORMAT. GO
BACKUP.GO ZYPT.X1

An extended directory list will display one line for each file,
giving its sector address, its length in sectors, its load
address, its execute address, its flags, and its file specifier.
A flag value of 'D' means that the file is deleted, and a flag
value of 'L' means that it is locked. If nothing is displayed in
the flag column, the file 1is neither locked nor deleted. In
addition, an extended directory display will output the name of
the selected drive, and the number of files/sectors in use,
deleted, and free:

Drive 0: PolyDos 2.0 SYSTEM

6 files in use, 1 deleted, 43 free.

34 sectors in use, 2 deleted, 1224 free.
Sect Nsct Load Exec F Name

0004 0008 0000 0000 L Exec.OV

000C 0004 0000 0000 L Emsg.OV

0010 0008 0000 0000 L Dfun.OV

-12- PolyDos Users Guide

0018 0001 C200 0000 L Info.IN
0019 0006 1000 107A Invader.GO
001F 0002 0000 0000 D LETTER.TX
0021 0003 0000 0000 LETTER.TX

If the screen is used for output, the DIR command will stop and
blink the cursor each time 15 lines has been written. Pressing
CTRL/SHIFT/@ aborts the command, any other key continues the
command.

COPY - Co files
SCOPY <fsl> <fs2>{,<fsl> <fs2>}[;I[Y]I[S]]

The COPY command will copy the contents of a file into a new
file. <fsl> is a family file specifier giving the name/extension
of the source file(s). <fs2> defines the name/extension of the
new file(s) to be created. Elements omitted from <fs2> will be
taken from <fsl>. If a drive number is not specified in <fsl>,
the master drive 1is assumed. When <fsl> 1is a family file
specifier, 1i.e. the name and/or extension is missing, COPY will
prompt you each time a match is found, e.g:

Copy DELTA.BS:0 to GAMMA,.TX:1?

Typing 'Y' <causes COPY to copy the file. The 'Y' option
supresses prompting. If you are running on a single drive
system, the 'S' option will be of use to you when you want to
copy files from one disk to another. Instead of creating a new
file on the same disk as the source file, COPY will ask you to
swap disks during the duplication. The COPY command will always
include locked files, and always exclude deleted files. Some
examples of COPY command lines:

SCOPY TEST1.TX TEST2,Wakeup.GO :1

Copy the file <called TEST1.TX on the master drive into a new
file called TEST2.TX also on the master drive, and copy the file
called Wakeup.GO on the master drive into a file of the same
name/extension on drive 1.

SCOPY :1 :0;Y

Copy all files on drive one to drive zero. As neither name nor
extension of the destination files are specified, the they will
have the same names and extensions as the source files. The 'Y'
option causes COPY to copy all files with no prompting.

SCOPY TEST.GO;S

Copy the file called TEST.GO on the master drive, to a new file,
also called TEST.GO, on another disk. The 'S' option causes COPY
to ask you to insert a new disk before it creates the
destination file.

PolyDos Users Guide -13~

4,3,3 REN - Rename files
SREN <fsl> <fs2>{,<fsl> <fs2>}[;Y]

The REN command will change name and/or extension of the files
selected. <fsl> is a family file specifier giving the
names/extensions of the files to be renamed. <fs2> defines the
new names/extensions. Elements omitted from <fs2> will be taken
from <fsl>. If a drive number is not specified 1in <fsl>, the
master drive 1is selected. You should never specify a drive
number in <fs2>, as the REN command cannot rename across drives,
If the name and/or the extension is omitted from <fsl>», it |is
considered a family file specifier, and all files matching the
elements given are taken into account. When <fsl> 1is a family
file specifier, the REN command will prompt you each time a
match is found, e.g.:

"Rename ZYPT.TX:0 to ZOT.BS:07?
Typing 'Y' causes REN to rename the file. The 'Y' option will
supress prompting. REN only includes files that are active
(undeleted) and unlocked. Some examples of REN command lines:

SREN Alhpa.SY Beta,GAME.TX:1 .BS

Rename the file called Alpha.SY on the master drive to Beta.SY,
and rename the file called GAME.TX on drive one to GAME.BS.

SREN APPLE:1 PEAR;Y

Rename all files on drive one called APPLE to PEAR, without
changing their extensions, and without asking you before each
rename.

4 4 DEL - Delet i
SDEL <fspec>{,<fspec>}[:Y]

The DEL command will delete all files that matches one of the
file specifiers given on the command line. Pamily file
specifiers will cause DEL to prompt you each time a match is
found, for example:

Delete INTRO.GO:17?
Typing 'Y' causes DEL to delete the file. The 'Y' option ' will
supress prompting. DEL only includes files that are active
(undeleted) and unlocked. Some examples of DEL command lines:

SDEL MYSTERY.XY,Invader.GO,FIFO:1

Delete the files called MYSTERY.XY and Invader.GO on the master
drive, as well as all files called FIFO on drive one. When the
FIFO files are processed, DEL will prompt you each time a file
is found, as FIFO:1 is a family file specifier.

SDEL :1;Y

Delete all files on drive one with no prompting.

-14- PolyDos Users Guide

5 UNDEIL, - Und ile
SUNDEL <fspec>{,<fspec>}

UNDEL will undelete (recover) files. Note that you cannot
undelete a file which has the same name and extension as an
already undeleted file. Also note that if there are more deleted
files with the name you specify, the 1last file will be
undeleted. UNDEL does not support family file specifiers. If the
extension is omitted from <fspec>, the last file of the name
given will be undeleted. Some examples of UNDEL command lines:

SUNDEL TEXT.TX,BYTE.BS

Undelete the file called TEST.TX and the file called BYTE.BS on
the master drive.

SUNDEL FlipFlop:1l
Undelete the last file called FlipFlop on drive one, regardless
of its extension.
LOCK - ck
SLOCK <fspec>{,<fspec>}[;Y]
The LOCK command is identical to the DEL command (see section
4.3.4), except that the files specified are locked.
NLOCK - Unlock files
SUNLOCK <fspec>{,<fspec>}[;Y]
The UNLOCK command is identical to the LOCK and the DEL command

(see section 4.3.4), except that the files specified are
unlocked.

4,3.8 PACK - Pack disk
SPACK <drive>

The PACK command will physically remove all deleted files from
the drive specified. This is done by erasing the deleted files
and moving the rest of the files 'up', i.e. moving them towards
the beginning of the disk, so that no empty areas are left
between the files. If the drive number is omitted, the master
drive is selected.

AVE - Sa i

SSAVE <fspec> <from> <to>[<load>[<exec>]]

The SAVE command will save the memory block starting at address
<from> up to, but not including, address <to> under the file

PolyDos Users Guide -15-

name <fspec>. <load> and <exec> are the 1load and execute
addresses of the file. If <load> and <exec> are omitted, the
value of <from> is used. If <exec> is omitted, the value of
<load> is used. <fspec> must define both name and extension of
the file. However, the drive number may be omitted, in which
case the master drive is assumed. An Example:

$SAVE PingPong.GO 1000 1F56 1000 1321

The above command line will create a file called PingPong.GO on
the master drive, and save in it the memory block between 1000H
and 1F56H. When executed, PingPong will be loaded into address
1000H and runned at address 1321H.

4,3,10 LOAD - Load file
SLOAD <fspec>{ <addr>]

The LOAD command will 1load into memory, starting at address
<addr>, the file given by <fspec>. If <addr> 1is omitted, the
load address of the file will be used. If the extension is
omitted from <fspec>, the first file with a matching name is
loaded.

4,3 ATTRIB - an e_attributes
SATTRIB <fspec> <load> <exec>

The ATTRIB command will change the attributes of the file given
by <fspec>. <load> is a hexadecimal number giving the new load
address, and <exec> is a hexadecimal number giving the new
execute address. If the extension is omitted from <fspec> the
first file with a matching name is used. An example:

SATTRIB EXTRA.GO 1000 1E74

The above command line will change the load address of the file
called EXTRA.GO on the master drive to 1000H and the execute
address to 1E74H.

4 IST - List fi
SLIST <fspec>[;P]

The LIST command will list the file specified. If the screen is
used for output (i.e. if the 'P' option 1is not present), 15
lines are output at a time, whereafter LIST blinks the cursor
awaiting a key to be pressed. Pressing CTRL/SHIFT/@ aborts the
list, any other key continues. If the 'P' option is present, the
printer is wused for output. If the extension is omitted from
<fspec>, the first file with a matching name is listed.

4,3,13 SKIP - Print blank lines
SSKIP[<lines>]{;P]

-16- PolyDos Users Guide

The SKIP command will print <lines> blank 1lines (i.e. <lines>
carriage returns), or, if <lines> is omitted, a form-feed. The
'P' option causes the printer to be used for output. Normally
SKIP is only used in connection with the 'P' option.

4 BUFFER - Defj RAM fer
SBUFFER <start> <length>

The BUFFER command will redefine the parameters of the RAM
buffer used by the COPY, PACK, and LIST commands. <start> and
<length> are hex numbers, <start> giving the start address of
the buffer, and <length> giving the length in sectors, i.e. in
100H-byte blocks. At power—-up PolyDos deafults to the largest
buffer possible, i.e. a buffer starting at address 1000H of
length BOH bytes.,

4,3,15 NAME - Rename disk

SNAME <drive>

The NAME command will change the name of the disk specified.
When activated, NAME prompts:

New disk name?

Type the new name (max. 24 characters) and press <ENTER>,
whereafter the new name is written to the disk. If <drive> is
omitted, the master drive is selected.

4,3,16 READ - Read sectors

SREAD <addr> <sector> <numsec>[<drive>]

The READ command will read <numsec> sectors starting at sector
<sector> on drive <drive> into memory starting at address
<addr>. If <drive> 1is omitted, the master drive is selected.
<addr>, <sector>, and <numsec> are hex numbers.

4,3,17 WRITE - Write sectors

SWRITE <addr> <sector> <numsec>[<drive>]

The WRITE command will write <numsec> sectors starting at sector
<sector> on drive <drive> from memory starting at address
<addr>. If <drive> 1is omitted, the master drive is selected.
<addr>, <sector>, and <numsec> are hex numbers.

WARNING: Do not use the WRITE command unless you are absolutely
sure of what you are doing, or otherwise you may cause
irreparable damage to the data on the disk.

PolyDos Users Guide -17-

NEW - N isk(s) inserted
SNEW

The NEW command informs PolyDos that you have inserted one or
more new disk(s) in the drive(s), thus making it necessary to
reread the directory. Always use this command when a new disk is
inserted.

BOOT - R PolyDo
$BOOT <drive>
The BOOT command may be compared to a 'soft' RESET. It reboots
PolyDos, making the drive you specify the master drive. If

<drive> 1is omitted, the master drive is rebooted. Read more
about the boot process in section 5.

4.4 Special commands

Apart from the system commands described in section 4.3, PolyDos
has two special commands, one which will inkove PolyEdit (the
system editor), and one which will invoke the DISK BASIC.

EDIT - Invo P Edit
The EDIT command will invoke PolyEdit, the system editor, if it
is present on the master drive. Read more about this in the
editor manual.
4 BASIC - Invoke DISK BASIC

The BASIC command will invoke DISK BASIC if it is present on the
master drive. Read more about this in the DISK BASIC manual.

-18- PolyDos Users Guide

4.5 Executing files

A file is executed by entering its file specifier when PolyDos
wants a command. The actions taken when a file is executed is
entirely defined by the type (extension) of the file.

tapdar

Machine code program files (extension .GO) and textfiles
(extension .TX) are immediately recognized by PolyDos when they
are executed.

5 Machi r a iles

When a mahcine code program file is executed, it is read into
memory starting at its load address, and executed at its
execution address.

4.5.1.2 Text fil

When a text file is executed, PolyDos enters command file mode.
In this mode, the system will obtain its input from a text file
instead of the keyboard. What actually happens is that the
NAS-SYS routine called BLINK, which normally provides a blinking
cursor during input, will fetch input characters from the
command file. Assume that the following text £file has been
created using the editor, and saved under the name CMDFILE.TX:

Now creating system disk in drive one
COPY Exec.OV :1,Dfun.OV :1,Emsg.OV :1
COPY Ecmd.OV :1,Edit.OV :1,Info.IN :1
CorPY BSfh.OV :1,BSdr.BR :1

kkhkkkkkk Copy Complete kkkkkkkk

If you execute the above file, by entering its name on the
command line, the following happens:

SCMDFILE
$ Now creating system disk in drive one
$

SCOPY Exec.OV :1,Dfun.OV :1,Emsg.0OV :1
Copying Exec.0V:0 to Exec.OV:l.
Copying Dfun.OV:0 to Dfun.OV:l.
Copying Emsg.0V:0 to Emsg.OV:l.

$COPY Ecmd.OV :1,Edit.OV :1,Info.IN :1
Copying Ecmd.OV:0 to Ecmd.OV:l.
Copying Edit.OV:0 to Edit.Ov:l.
Copying Info.IN:0 to Info.IN:l.

$COPY BSfh.OV :1,BSdr.BR :1

Copying BSfh.0V:0 to BSfh.OV:1l.
Copying BSdr.BR:0 to BSdr.BR:l.

$ khkkkkkkk Copy Complete kkhkkkkkk

$

PolyDos Users Guide -19-

Note that a line is considered a comment line if it starts with
a blank. This may be used to provide comments to the operator
when a command file is executing. The command file mode remains
in effect until one of the following events occur:

1) End-of-file is reached.

2) CTRL/SHIFT/@ is pressed on the keyboard.
3) An error occurs.

4) A PACK, NEW, or BOOT command is executed.

If the command file mode is aborted before the command file
ends, the message:

(Cmdf abort)

is displayed. Command files cannot be nested. If a command file
executes another command file, the first command file 1is not
reactivated when the second command file ends.

4.5.2 User defined file types

Other file types than machine code program files and textfiles
cannot be executed immediately, as PolyDos does not know what to
do with such files. However, the system will not just output an
error message if you try executing a file of non-standard type.
Instead it will try locate a file handler for that specific file
type. A file handler is an overlay file (extension .0OV) which
contains the code to be executed when a file of its associated
type is executed from the command level. The name of the file
handler overlay tells PolyDos what type of files it will handle.
For instance, a file handler overlay capable of executing files
of extension .AB would be named ABfh,0V. The first two
characters of the file handler name defines the extension of its
associated file type. The next two characters are always 'fh' to
indicate that it is a file handler, and the extension is .0V to
indicate that it is an overlay.

An example of a file handler overlay is the overlay file called
BSfh.OV on your system disk. This overlay is activated whenever
you execute a file of extension .BS. As you know from a
discussion earlier in this manual, .BS files are BASIC program
files. So what actaully goes on, when you execute a BASIC
program, is that PolyDos loads the BASIC file handler overlay
(BSfh.OV) into the overlay area (C800H-CFFFH) and executes it.
The actions taken hereafter is entirely defined by the file
handler overlay. In this specific case, BSfh colstarts the ROM
BASIC, loads the DISK BASIC routines file, loads your BASIC
program file, and starts executing it.

If you try to execute an existing file of non-standard type, and
the disk does not contain a file handler overlay for that
specific file type, PolyDos responds:

I can't find that file
The file that PolyDos cannot find is not the file you tried to

execute but its file handler. The process of <creating a file
handler overlay is described in the System Programmers Guide.

-20- PolyDos Users Guide

Section 5

The boot process

When PolyDos 1is booted, it prompts you for the number of the
master drive. After this, and until you see the sign-on message
on the screen, several things happen.

First, the controller ROM initializes the system workspace,
loads the directory of the master drive, and 1loads the file
called Exec.0OV into the overlay area. If no errors occur,
control is then transferred to Exec.

When Exec is invoked, it is told to continue the boot process.
To do this, it 1looks up a file called Info.IN on the master
drive. Info is the system information file which holds all data
relevant to the printer attached to your system, as well as a
definition of the cursor character, the cursor blink rate, and
the keyboard repeat rates. If Info is present, it is loaded into
the slot reserved for it in the system workspace. If Info is not
present, some default values are inserted 1in the proper
locations to satisfy the above system parameters. Read more
about the information file in the System Programmers Guide.

The next thing Exec does is to look up a file called Init on the
master drive. If Init is there, it is executed, just as if you
typed Init as a command line. If 1Init is not present, Exec
outputs the sign-on message, and enters the command processing
loop, which prints a '$' prompt and awaits input.

Creati a _turn-k system

Creating a turn-key system as actually very simple - just rename
the file you want executed at power-up to Init. Init can be of
any type (exten51on) you wish - a command file (extension .TX),
a machine code program file (extension .GO), a BASIC program
file (extension .BS), etc. Just remember that every time you
boot a disk with a file called Init on it, 1Init 1is executed
automatically.

PolyDos Users Guide -21-

Section 6

The system files

From earlier discussions you already know some of the system
files (Exec.OV, Info.IN, etc.). On a system disk the following
files are normally present:

Exec.0OV

Dfun.OV

Emsg .0V

Info.IN

Ecmd.OV

Edit.OV

BSfh.OV

BSdr.BR

FORMAT.GO

BACKUP.GO

SZAP.GO

The system executive, which gains control when the
system is booted and when you exit a program or a
command. Exec evaluates your command lines and
decides which actions to take 1in response. In
addition, Exec contains the code for the following
commands: DIR, DEL, UNDEL, SAVE, LOAD, LIST, SKIP,
READ, WRITE, NEW, and BOOT.

The Dfun overlay contains the code for a number of
PolyDos commands. These are: COPY, REN, LOCK,
UNLOCK, ATTRIB, PACK, BUFFER, and NAME.

The system error message writer. Each time an error
occurs, Emsg is invoked to print an error message.

The system information file. Info contains all
parameters relevant to the printer attached to your
system, as well as the cursor character, the cursor
blink rate, and the keyboard repeat delays. If Info
is not present, PolyDos will supply some suitable
values for the above paremeters.

The Ecmd overlay handles the EDIT command. It is of
no use unless the Edit overlay is present as well.

The PolyEdit editor. The Edit overlay is normally
invoked by the Ecmd overlay, but may also be invoked
from elsewhere, i.e. from one of your own programs.
Read more about this in the PolyEdit manual.

The BASIC program file handler. Apart from handling
execution of BASIC program files, BSfh also handles
the BASIC command. It is of no use unless the BSdr
file is present as well.

The DISK BASIC routines file. This file is loaded by
BSfh before control is transferred to the ROM BASIC.
It contains the code for the DISK BASIC commands.

The PolyDos Disk Format Program. This program is
used to format new disks. Read more about it in the
PolyDos Utilities Guide.

The PolyDos Disk Backup Program. This program is
used to make backup copies of disks. Read more about
it in the PolyDos Utilities Guide.

The PolyDos SuperZap Program. SuperZap is used to
edit disk sectors and may be used by experienced
programmers to recover crashed disks. Read more

-22- ‘ PolyDos Users Guide

about it in the PolyDos Utilities Guide.

PZAP.GO The PolyZap Z-80 Disk Assembler. PolyZap is used to
translate assembly language source files into
executeable Z-80 machine code. Read more about it in
the PolyZap Users Guide.

SYSEQU.SY The PolyDos Equate File. This files contains an
assembled symbol table giving symbolic names of all
PolyDos and NAS-SYS routines, etc. SYSEQU is of no
use unless PolyZap is present as well. Read more
about SYSEQU in the System Programmers Guide.

From the above 1list of system files you can construct system
‘disks to suit special purposes. A minimum system disk need only
include Exec and Emsg. The facilities provided by such a disk
are however very restricted: The commands supported by Dfun are
not available, printer communications has been cut off, and you
cannot EDIT files, FORMAT disks, BACKUP disks, translate
assembly langauge programs, nor run BASIC programs.

PolyDos Users Guide -23-

Section 7

Error messages

Error messages are output by the error message writer overlay
called Emsg.0OV. Internally, each error message is identified by
a two-digit error code. Normally you don't have to bother with
these error codes, but in some extreme error conditions, when
PolyDos is unable to invoke Emsg, they will appear. All error
codes are listed below along with their associated error
messages and a description. The error codes 20 through 25 will
only occur when 8 retries has proven useless.

01 Syntax error

The command 1line contains a syntactical error, e.g. an
invalid hex constant.

02 Too many/few parameters
You are specifying too few or too many command parameters.
03 Bad parameters
The command parameters passed to the command’ are
symtactically correct, but conflicting, e.g. a start address
is higher than an end address,
10 Illegal character in filename
The following characters are not allowed in file names and
extensions: Graphic characters, control characters, a
period, a comma, a colon, a semicolon, a blank or a TAB
character.
11 Filename too long
A filename may not be more than 8 characters in length.
12 Bad drive identifier
The drive identifier is not a valid drive number.
13 Filename missing
The filename is missing from a file specifier.
14 Extension missing
The extension is missing from a file specifier.

15 Drive number missing

The drive number is missing from a file spevifier.

-24-

20

21

22

23

24

25

26

27

28

29

PolyDos Users Guide

Drive not ready

You are trying to access a drive with no disk in it or with
the door open. The drive not ready error will only occur if
PolyDos has previously accessed the drive.

Disk write protected

You are trying to write to a write protected disk. Remove
the write protect tab.

Write fault

This message is caused by a signal from the disk drive
itself, and should never occur where Pertec FD250 drives are
used.

Record not found

The disk controller is unable it locate an error free sector
header or an error free data block. If this error occurs it
is strongly advisable that you copy the disk to another one
using the BACKUP program. If the error persists the
information in that sector will have been lost. Provided you
have an idea of the original contents of the secter it «can
however be reconstructed on the new disk using the SuperZap
program. Once copied, reformat the disk that caused the
error.

Checksum error

A checksum error occurred when reading a sector. For
comments on this error see above.

Lost data error

This error should not occur. If it does it implies that the
CPU clock rate is too slow. The minimum clock rate PolyDos
can run with is 2MHz without any wait states.

Bad disk address

The sector address passed to the 1low-level sector 1/0
routines is out of range.

No disk or wrong format

You are trying to access a drive with no disk in it or with
the door open or the disk in the drive is of a wrong format.

Illegal drive number

You are trying to access a non-existing drive.

Disk is full

During a block read/write the sector I1/0 routine was
requested to access a sector beyond the end of the disk. If

this error occur it indicates that there is no more room oOn
the disk. Pack the disk and retry.

PolyDos Users Guide -25-

30

31

32

33

40

I can't find that file

The file you are trying to access does not exist on the disk
specified.

That file already exists

You are trying to create a file with the same name and
extension as an already existing file.

Directory is full

There 1is not enough room in the directory to create new
files. Pack the disk and retry.

I can't do that to a locked file

You are trying to delete or rename a locked file. Unlock the
file or use another name.

I can't rename across drives

The drive numbers of the current file specifier and the new
file specifier does not agree.

®
PolyDos
SYSTEM PROGRAMMERS GUIDE
®
N R,
/
/

° /

o / B]]:yﬂah
microcenter

PolyDos System Programmers Guide

TABLE OF CONTENTS

l. Introcuction ® % 4 0 0 8 8 5800 e *« s 8 00 8 " o8 0 000

2. POlyDOS WOIKSPACE +s.cseceracenscssssvocsncses

2.] System variables (.c.ccevecccsrrcccnsnanse
SCAL address table ...cceeceecenccccssons
Information file area ..ceesveses cesences
Sector buffer ...ccccccceccns csseeacses e
Directory buffer ...cceeeeeccceccccns se e
Overlay area ceesaenen creccecs cson e

NN DNN
e o o o o
WU WD

PolyDos file SYStem .eccecessesscccccsnnns
Disk fOIMAtS .ececeescasserosovscassnance
FileS ceeeessscccesssscossosnnnas ceasesene
3.2.]1 FNAM - File NAQmMe .iccesescssasoocssss
.2 FEXT - File extension ...cecececoscs
.3 FSFL - System flags cevsses
4 FUFL - User flagsS .eacsvccees secenn
5 FSEC - Sector address .ceveeecesssone
6 FNSC - Length in sectors ..c.ecceee
7
8
d

w w3
SO (]

FLDA - Load address ceesesnsae
FEXA - Execute addresSs .ecesecensese
isk directory .ceceee.. ceeessceseanene
1 DNAME - Disk name ...c.ceceses ceaes
2 NXTSEC - Next free sector address .
3 NXTFCB - Next free FCB address
cating file and directory space
1 Accessing the directoryecccee

3.3

3.4

e e o e Te o s

e O e o

4. System subroutines esecesscsssenastan e
4.1 PolyDos routines ..ceeeecccccces cccsacses
4.1.1 DSIZE .ieeecennccasnns cessssenesss .

DRD .eceececovcncs cecccscassne ceene

RDIR 9 & 0 P 0 89 00 888 S S s LI I I I A
WDIR e @ o e % 00 00 0000 ® & 50 8 2 08 08 2o

LOOK e o o 00 0w ® 6 0 0 @ ¢ 0@ 9 s s e8P e e .
ENTER ® 0 0 ® O S G SO G E S S O T O LSOO SN SE LD
COV 2 8 6 08 8 5 60 s e s ® o 9 0 0 0 060 000

CKER 0 8 6 0 8 8 8 O E S S B E U PSP O E O ee

JUMP .. .ceeeeersocsesosrssnsasnsacnsss

POUT (e ceecacancsosnsse csececasacssoss
S routines ceeeveese cesescecsscsesa
MRET .o ceoessesssssscssascsscscncsssss
CRT ,svececoscossssccoosscscs cses s sesacce
NNIM ... cececcacssnanssscsosnsasscsoce
BLINK (veceeeceasans ceeeveesssesasase
REKBD tveececconns cesocssassensssas s

SP2 8 9 € 6 8 5 B 2 2 O O P OSSP E 0 E TS S LN eSS N

SNV W)) bt b e ped d b e \O 0D SO O WO

0
1
2
3
4 SSCV ..vieeeecncnnens Ceesseereenes
5
6
Y

O A I - A A I A

e & 8 s s s e YIe e s s e e s s s s s 0 0+ e

PO R R R R N N D - b b bt b bl bt e et bt et ed et

5. overlays ® & 9 5 5 8 5 6 6 & & ¢ 8 & O P S P S O F S OB S "SSP SN S s L N J
5.1 File handler overlaysS ..s.cceececnens ceease

DWR ®© 6 2 6 9 0 P P S S SO S S G S eI P PP PSS LI A

CFS @ 9 & 2 8 2 9 ¢ 0 0N S G S B E PR EE S SS ¢ s 0 0 @

COVR. ------- ¢ e e 000 ® e 2 0 00 0 008 8 e85 0000

CKBRK ooooo ¢ ¢ s e 000 88 00580 LI I I R N)
CFMA 8 9 9 0 5 €6 8 4 8 0 0 S S S B S S0 60 Pe eI

SCALI ® 0 0 0 B 00 * 0 0 VS B S S G S A S SIS S ST

e 4 3 8 2 8 0 800 00 0

¢ 0 @ s 0 008060

@ 9 9 0 00 e e 00 080

® 5 5 00 ¢ 8 ey
® 5 6 8 60008 .
o o v 0 » e e e o .
------ L] * s v o0
L I) LI I L]
® @« ¢ @0 0 0 0 00 .
e o 0 0 00 8 80
* 00 ¢ e 8 00 @ .
¢ o0 e ¢ 08 8 0 e

. e LR R B B A

-------- ¢ s 0 a »

¢« ¢ 0 85 50 0800000

W

WWWWOWWWWo oo ~J OOV OV

21

21
21
22
22
22
22
22

23

PolyDos System Programmers Guide -2-

TABLE_OF CONTENTS

6. File fOIrMALS +veeececsoncecscosososcssnsscsscsoscsossncanaaa 25
6.1 Machine code program fileS seeeseesscccescssosssassass 23
6.2 TeXt £ileS vvoveeeeceasoeansscscovsssssassnassosnsasecasss 25
6.3 Overlay fileS ..ceveececescsncossescacnssnssssesnnsens 25

7. The command file MOAE ...eeeeecesenosesaccscssossosssaassas 26

8. The information file ..eeeeeesscassssssacacscnassccssscses 27
8.1 Information file parametersceesescsossscccconcscaes 27
8.1.1 Cursor characteristiCsS .vieesesececsooscnscaccaas 27

8.1.2 Repeat keyboard delaysS ...seeceececcsccsccssanass 27

8.1.3 Printer forms parametersS ..ceceecscscoconcaacccocs 27

8.1.4 Printer initialization stringecececeecececcs. 28

8.1.5 Low level printer output routineccceecee0.. 28

8.2 A sample information file ...ceveeeeeeccoccscevccsases 28

Appendix A: SYSEQU listing
Appendix B: PolyDos Controller ROM listing
Appendix C: PolyDos Emsg overlay listing

PolyDos System Programmers Guide -3-

Section 1

Introduction

This manual describes all programming aspects of the PolyDos
disk operating system. The manual assumes that you are familiar
with the system and that you have read the PolyDos Users Guide.
Furthermore it is required that you have some knowledge of
assembly language programming.

Section 2 describes the system workspace and each of the
sections it is divided into. Section 3 describes the PolyDos
file system. Section 4 describes the system subroutines
available to the system programmer. Section 5 discusses the
overlay mechanism, and how to create overlays. Section 6
describes the internal format of standard file types. Section 7
discusses the command file mode, and provides a method of
activating it. Section 8 describes the information file.

Throughout the manual a lot of symbolic names are introduced as
identifiers for various system locations and subroutines. The
SYSEQU file, which is listed in appendix A, provides a way of
referencing these symbols. It is included as a symbol table file
(SYSEQU.SY) on your system disk. SYSEQU.SY contains an assembled
symbol table which can be referenced from your assembly language
source programs using the REFS and REF pseudo-ops supported by
the PolyZap assembler (for further details on REFS and REF,
please refer to the PolyZap Users Guide).

PolyDos

uses

Addresses

PolyDos System Programmers Guide

Section 2

PolyDos workspace

addresses CO000H through CFFFH as workspace. The
workspace area is divided into 6 sections:

Name

CO000H-COFFH WORKSP System variables
Cl00H-C1FFH SCTB SCAL address table
C200H-C2FFH INFOFA Information file area
C300H-C3FFH SECBUF Sector buffer
C400H-C7FFH DIRBUF Directory buffer
C800H-CFFFH OVAREA QOverlay area

2.1 System variables

The system variables area may be compared to an extension of the

NAS-SYS workspace,

address
Name

MDRV

DDRV

DRVCOD

FIRST

ERRFLG

ERRCOD

BREAK

BRAM

BNSC

CFFLG

CFDRV

CFSEC

The descriptions that follow gives the

and symbolic name of each system variable.

Addr

C000

Co01l

C002

C003
C004

C005

Coo06

coo8

cooa

CO0B

coocC

Co0D

Size

1
1

Description

Master drive number.

Directory drive number. Contains the number
of the drive whose directory 1is currently
held within the directory buffer. A value of
OFFH indicates that no directory 1is
currently within the buffer.

Drive code. Contains a drive code for the
currently selected drive. Writing OFFH to
this location deselects all drives.

Power-up flag. A value of =zero indicates
that the system is being booted.

Error flag. A non-zero value indicates that
the CKER routine 1is in the ©process of
calling the Emsg overlay.

Error code., Contains the error code of the
most recent error.

Break address. Contains the address of the
routine to jump to when CTRL/SHIFT/@ is
detected from the keyboard by either CKBRK
or RKBD. '

RAM buffer start address. The RAM buffer is
used by the COPY, PACK, and LIST commands.
RAM buffer length in sectors. Contains the
length of the RAM buffer in 100H-byte
blocks.

Command file flag. A non-zero value
indicates the the command file mode |is
active.

Command file drive. Contains the drive
number of the command file.

Command file sector address. The disk
address of the next sector to be loaded from
the command file.

PolyDos System Programmers Guide -5-

CFNSC

CFSBP

RKROW

RKBIT

RKVAL

RKCNT
BLINKF

PLCT

PPOS

CLINP

CLIN

OVFCB

S1FCB

S2FCB

DSKWSP
SYSWSP

USRWSP

COOF

C010

Co011
C012
Co13

C014
Cole

Col7

cols

C019

C01B

C04B

C055

C069

CO07D
Co83

CoCo

=N

48

10

20

20

64

Command file sector counter. The number of
sectors remaining to be loaded from the
command file,

Command file sector buffer pointer. Points
to the next character to be loaded from the
command file sector buffer (SECBUF, address
C300H~-C3FFH) .

Keyboard row number (1-8) of the currently
repeating key. Zero indicates that no Kkey is
repeating.

Keyboard bit mask for the currently
repeating key.

ASCII value of the currently repeating key.
Delay counter for repeat keyboard routine.
Blink routine flag. Contains the ASCII value
of the character overlayed by the cursor.
The BLINK routine sets this flag. It is
checked by the CKBRK routine when a break
occurs to see if a character 1is to be
restored. Zero indicates that no cursot is
on the screen,

Printer line counter. Contains the number of
lines printed on the current page. The first
line has the value 0. ,

Print head position. Contains the print head
position of the printer, i.e. the number of
characters printed on the current line. The
first position has the value 0. By OR-ing
the contents of PPOS with the contents of
PLCT vyou can determine if the printer is at
the top of a form.

Command line pointer. CLINP points to the
next non-blank character in the command-line
buffer when a command or a program is
invoked.

Command line buffer. When a command line is
input it 1is copied to this buffer. The 'S$'
prompt is not included. The command line is
ended by 0.

Overlay file controller block. This FCB is
by the routines COV and COVR to 1look up
overlay files.

First system file controller block. S1FCB is
used by the system commands to 1look up
files. You are allowed to use it from your
own programs.

Second system file controller block. S2FCB
is used by some system commands to look up
files. You are allowed to use it from your
own programs.

Disk I/0 routines workspace,

Miscellaneous system workspace., This area is
used by some system command handlers.

User workspace. This area 1is not used by
PolyDos.

-6- FolyDos System Programmers Guide

2.2 SCAL address table

The SCAL address table contains the addresses of the SCAL
routines. Upon power-up PolyDos copies the NAS-SYS SCAL table
(routines 41H to 7CH) and the PolyDos SCAL table (routines 7DH
to B8FH) to this area, and loads the logical start address into
STAB (0C71H-0C72H) in the NAS-SYS workspace. The first address
contained in the table is the address of routine number 41H
(NAS-SYS 'A' command). Thus, the logical start address is SCTB
less 82H bytes. The size of the SCAL address table far exceeds
the number of routines defined by NAS-SYS and PolyDos (128
routines are possible, numbered from 41H to COH). You may wish
to take advantage from this by defining new SCALs. If you do so,
you should not use routines 90H-9FH, as these might be defined
in future versions of PolyDos.

2.3 Information file area

This chapter only defines the memory layout of the information
file area. For a functional description, please refer to section
8.

Name Addr Size Description

CURCHR C200 1 Cursor character. Contains the ASCII wvalue
of the character used to provide a blinking
cursor.

CURBLR C201 1 Cursor blink rate. The value contained in

this 1location defines the number of times
the BLINK routine should scan the keyboard
before blinking the cursor,

RKLON C202 2 Keyboard initial repeat delay.

RKSHO C204 2 Keyboard repeat speed.

PLPP C210 1 Lines per page on printer.

PBMG Cc211 1 Bottom margin on printer. PBMG is included
in PLPP,.

PCPL c212 1 Characters per line on printer.

PLMG C213 1 Left margin on printer. PLMG is included in
PCPL.

INSLEN C214 1 Length of initialization string (maximum is

43 characters).

INSTR C215 43 Initialization string.

PCHR C240 192 Entry point of routine to output A to the
printer.

2.4 Sector buffer

The sector buffer is used by PolyDos only when the command file
mode is active. Should you wish to use this area from one of
your programs, call the CFMA routine to make sure that no
command file is executing.

2.5 Directory buffer

The directory buffer contains a memory image of the directory of
drive DDRV. For more details on directories, pelase refer to
section 3.3.

PolyDos System Programmers Guide -7-

2 erlay area

The overlay area is the area into which overlay files are loaded
when they are invoked. The first four bytes of an overlay
(C800H-C803H) contains the overlay name. An overlay is always
invoked at address C804H. For more details on overlays, please
refer to section 5.

-8- PolyDos System Programmers Guide

Section 3 .

The PolyDos file system

3.1 Disk formats

The G809/G815 and the G805 versions of PolyDos both support
single density format. In addition the G809/G815 version
supports double density format. Both formats are double sided
(35 tracks per side) with a sector length of 256 (100H) bytes.
Sectors are accessed through 16-bit sector addresses, starting
with address O0000H. PolyDos automatically translates sector
addresses into track/sector numbers,

Single density disks divide each track into 10 sectors, giving a

total storage capacity of 700 sectors. Thus, sector addresses
should be within the range O0000H-02BBH. To access a single .
density disk you should refer to drives 0-3 in the G805 version i
and drives 4-7 in the G809/G815 version.

Double density disks divide each track into 18 sectors, giving a
total storage capacity of 1260 sectors. Thus, sector addresses
should be within the range 0000H-04EBH. To access a double
density disk you should refer to drives 0-3.

3.2 Files

A file is a group of contiguous sectors on a disk. It must be
totally contained on a single disk, and files may not overlap or
share sectors. The internal format of the file is determined by
the file extension and by the programs that read and write the
file.

A file is defined by a File Controller Block (FCB) in the disk
directory. The FCB contains all information required to locate, "
access, and delimit the file data on the disk. An FCB consumes

20 bytes, arranged in the following manner:

Name Offset Contents

FNAM 0 File name (8 bytes).

FEXT 8 File extension (2 bytes).
FSFL 10 System flags (1 byte).

FUFL 11 User flags (1 byte).

FSEC 12 Sector address (2 bytes).
FNSC 14 Length in sectors (2 bytes).
FLDA 16 Load address (2 bytes).

FEXA 18 Execute address (2 bytes).

where offset is the offset from the start address of the FCB.

3,2,.1 FNAM - File name

The FNAM slot contains the file name. The maximum length is 8
characters. The characters are stored in the same order as they
are typed, and unused characters are blank filled, i.e. set to

PolyDos System Programmers Guide -9-

20H., A file name should not contain graphic characters, control
characters, blanks, colons, semicolons, periods, or commas.

3,2,2 FEXT - File extension

The file extension is a two-byte field following the file name.
The characters in the extension field are stored in the same
order as they are typed. An extension should not contain graphic
characters, control characters, blanks, colons, semicolons,
periods, or commas.

FSFL - S flags

The system flags byte 1is used to store two one bit flags
defining the status of the file:

Bit 0 Lock flag.
Bit 1 Delete flag.

If bit 0 is set the file is considered locked. If bit 1 1is set
the file is considered deleted. Bits 2-7 are reserved for future
expansion.

3,2.4 FUFL - User flags

The user flags byte is never accessed by PolyDos, except when a

file is created, which stores a zero in FUFL.

3,2,5 FSEC - Sector address

FSEC contains the 16-bit sector address of the first sector
occupied by the file.

FNSC - ngth in sectors

FNSC contains a 1l6-bit value giving the length in sectors of the
file.

3.2.7 FLDA - Load address

For machine code program files (extension .GO) FLDA defines the
16-bit memory load address. For other file types this field is
normally zeroed, but any value is allowed.

3,2.8 FEXA - Execute address

For machine code program files (extension ,GO) FEXA defines the
16-bit memory execution address. For other file types this FCB
field is not used, and may contain any value.

-10- PolyDos System Programmers Guide

3,3 The disk directory

The disk directory is a collection of FCBs and control data used
to allocate and retrieve files. The directory is always stored
in sectors O0000H to 0003H of a disk. Since the directory is a
fixed 1024 bytes in length, the number of FCBs it may contain is
limited to 50. The disk directory consists of the following
fields:

Name Addr Size Description

DNAME C400 20 20 character disk name.
NXTSEC C414 2 Next free sector address.
NXTFCB C416 2 Next free FCB address.

FCBS C418 1000 FCB list,
The addresses referred to above are the addresses at which the

related field will reside when the directory is read into the
directory buffer (DIRBUF, address C400H-C7FFH).

3.3,1 DNAME - Disk name

The disk name 1is a twenty-character field 1located at the
beginning of the directory. If the disk name 1is 1less than 20
characters in length, the remaining bytes are blank filled, i.e.
set to 20H.

3,3.,2 NXTSEC - Next free sector address

NXTSEC contains the sixteen-bit disk address of the next free
sector on the disk. Since files are allocated sequentially
NXTSEC is also the number of sectors in use on the disk. When a
disk is formatted NXTSEC is set to 0004H, thus reserving 4
sectors for the directory.

3,3,3 NXTFCB — Next free FCB address

NXTFCB contains the sixteen-bit memory address of the first
unused FCB in the directory. Note that NXTFCB points to a
location within DIRBUF. If the directory is not loaded into
DIRBUF you must add an offset to obtain the correct address.
When a disk is formatted NXTFCB is set to point at FCBS (C418H).

3.4 Allocating file and directory space

PolyDos allocates space on the disk sequentially for files and
FCBs. NXTSEC always points to the first free sector past the
used area of the disk. NXTFCB always points past the end of the
last FCB in use in the directory. When a file is written to the
disk, the data is written starting at the disk address contained
in NXTSEC, and NXTSEC is changed to point beyond the last sector
of the file. When the FCB is entered into the directory, it is
stored at NXTFCB, and NXTFCB is updated to point past the new
entry.

Files may not overlap or share sectors, and the order of FCBs in

PolyDos System Programmers Guide -11-

the directory must correspond to the order of the files on the
disk. When files are deleted, the corresponding FCB is marked
deleted, but the space in the directory, and the data on the
disk, is not reclaimed until a PACK command is executed.

3,4,1 Accessing the directory

Accessing the disk directory in memory (in the DIRBUF area)
involves the system cell DDRV, which is the drive number of the
directory «currently in DIRBUF. To access the directory you
should follow these steps:

1) Read the directory into DIRBUF by calling the RDIR routine.
To force a read even if the directory is already contained
within DIRBUF, load a OFFH into DDRV before calling RDIR.

2) Access the directory, preferrably using the system routines
LOOK and ENTER. Note that ENTER automatically writes the
updated directory to the disk.

-12- PolyDos System Programmers Guide

Section 4

System subroutines

4,1 PolyDos routines

PolyDos provides an extensive set of system subroutines to the
assembly language programmer. All routines are called using
SCALs. Thus, a system routine call only consumes 2 bytes: A
RST 18H instruction (DFH) followed by the routine number.
PolyDos routines are numbered from 80H to 8FH. None of the
system routines uses the alternate register set (AF', BHL', DE',
and BC') or the index registers (IX and 1Y). The only registers
used are AF, HL, DE, and BC. Errors are reported using the
zero-flag and the accumulator (A). If no errors occurred, the
zero-flag is set (Z) and the accumulator is zero. Otherwise the
zero-flag is clear (NZ), and the accumulator contains a
two-digit error code.

4,1,1 DSIZE
Routine number: 80H
Purpose: Return disk size
Entry: C: Drive number
Exit: HL: Disk size in sectors
DE: Unchanged
BC: Unchanged
AF: Status

DSIZE will check that C contains a wvalid drive number, and
return the disk size in sectors in HL. Keep your programs
implementation independant by using this routine. If the drive
number is invalid, a 28 error cocde will be returned.

4,1,2 DRD
Routine number: 81H
Purpose: Read sectors
Entry: HL: Memory address
DE: Disk address
B: Number of sectors
C: Drive number
Exit: HL: Unchanged
DE: Unchanged
BC: Unchanged
AF: Status

DRD will read B sectors from drive C starting at sector DE into
memory starting at address HL. Possible error codes are 20, and
23-29.

PolyDos System Programmers Guide -13-

4.1.3 DWR
Routine number: 82H
Purpose: Write sectors
Entry: HL: Memory address
DE: Disk address
B: Number of sectors
C: Drive number
Exit: HL: Unchanged
DE: Unchanged
BC: Unchanged
AF: Status

DWR will write B sectors to drive C starting at sector DE from
memory starting at address HL. Possible error codes are 20-29.

4.1.4 RDIR
Routine number: 83H
Purpose: Read directory
Entry: C: Drive number
Exit: HL: Unchanged

DE: Unchanged

BC: Unchanged

AF: Status

RDIR will read the directory of drive C into the directory
buffer (DIRBUF) and store the drive number in DDRV. However,
RDIR first checks to see if the directory is already in DIRBUF,
by comparing C to the contents of DDRV. If so, RDIR returns
without accessing the disk. To force a read, load OFFH into
DDRV. Possible error codes are 20, and 23-29,

4.1.5 WDIR
Routine number: 84H
Purpose: Write directory
Entry: No parameters required
Exit: HL: Unchanged

DE: Unchanged

BC: Unchanged

AF: Status

WDIR writes the directory contained in DIRBUF to the disk
directory sectors (0000H-0003H) on drive DDRV. WDIR should only
be called when changes has been made to the directory. Possible
error codes are 20-29,

4.1.6 CFS
Routine number: 85H
Purpose: Convert file specifier

Entry: HL: Address of FCB

-14- PolyDos System Programmers Guide

DE: Address of text buffer

B: Flags:
B0=1: Name optional
Bl=1: Extension optional
B2=1: Drive number optional

Exit: HL: Unchanged
DE: Address of next character in text buffer
B: Flags:

BO0=1: No name
Bl=1: No extension
B2=1: No drive number
C: Drive number
AF: Status

CFS converts a file specifier to FCB format. It is called with
HL pointing to an FCB and DE pointing to the first character in
the file specifier in the text buffer. CFS will only load values
into FNAM and FEXT of the FCB., Hence, the FCB need only be 10
bytes long. Upon entry B contains three flags: If bit 0 is set,
the file name is optional. If bit 1 is set, the extension is
optional, and if bit 2 is set, the drive number is optional. If
elements are missing from the file specifier which are not
optional, an error code will be returned. If no drive number is
specified, and the drive number is optional, the master drive
number (MDRV) will be returned in C. If no name and/or no
extension is specified, FNAM and/or FEXT will remain unchanged,
allowing you to load default values into these slots before
calling CFS. The following characters are considered delimiters:
A blank, a comma, a semicolon, a carriage return, a TAB, and a
zero. Upon exit, DE points to the next non-blank character in
the text buffer following the file specifier, and B contains
three flags: If bit 0 is set, no file name was given. If bit 1
is set, no extension was given, and if bit 2 is set, no drive
number was given, in which case the master drive number has been
loaded into C. Possible error codes are 10-15.

Below is shown the code needed to input a file name and convert
it to FCB formet:

START: RST PRS ;:Prompt user
DB 'Pile name? ',0
SCAL ZINLIN ;Read input line
LD HL,11 ;Point to first character
ADD HL,DE
EX DE,BL :Pointer to DE
LD HL,'T'+'X'*256 ;Insert default extension
LD (S1FCB+FEXT) ,HL :
LD HL,S1FCB :Point to FCB
LD B,110B :Extension/drive optional
SCAL ZCFS ;Convert file specifier
SCAL ZCKER ;Check for error

If no errors occur C contains the drive number and SI1FCB
contains file specifier converted into FCB format.

4.1.7 LOOK

Routine number: 86H
Purpose: Lookup file in directory

PolyDos System Programmers Guide -15-

Entry: HL: Lookup FCB address
DE: Previous directory FCB address
B: Flags:

BO0=1: Don't match name

Bl=1l: Don't match extension

B4=1: Copy directory FCB to lookup FCB
B5=1: Include locked files

B6=1: Include deleted files

B7=1: Not first look

Exit: HL: Unchanged
DE: Directory FCB address
: Bit 7 is set to 1
C: Unchanged
AF: Status

LOOK will look up a file in the directory currently contained in
DIRBUF. Upon entry HL contains the address of a lookup FCB with
FNAM and FEXT initialized to the name and extension of the file
you want to look up. B contains six one-bit flags:

Bit O If set, LOOK will not attempt to match the file name.

Bit 1 If set, LOOK will not attempt to match the file
extension.

Bit 4 If set, LOOK will copy the matching FCB from the
directory to the lookup FCB. In this case 20 bytes
should be reserved for the lookup FCB (otherwise 10 will
do) .

Bit 5 If this bit is set it indicates that LOOK should include
locked files.

Bit 6 If this bit is set it indicates that LOOK should include
deleted files.

Bit 7 If this bit is clear LOOK will start the lookup from the
first FCB in the directory. If not, LOOK will start at
the FCB following the one pointed to by DE. This bit is
always set to one by LOOK before it returns.

If a matching FCB is found in the directory, DE is set to point
at the first byte of that FCB. Bit 7 in B provides a way of
looking up family file specifiers through multiple calls to
LOOK. At the first call bit 7 should be cleared, telling LOOK to
start at the beginning of the directory. Before returning LOOK
sets to one bit 7 in B. Provided that B and DE are left
unchanged the next call to LOOK will continue from the next FCB
instead of the first PCB. When LOOK returns an error, all files
matching your input parameters have been processed, and the
calls should be discontinued. Note that if bit 0 in B as well as
bit 1 are set to one LOOK will include all files in the
directory. The only possible error code returned by LOOK is 30.

Below in shown a program which will input a file specifier, look
it up in the disk directory of the drive specified, and, if no
errors occur, read it into memory starting at its load address:

START: RST PRS ;Prompt user
DB 'L.oad which file? ',0
SCAL ZINLIN ;Read input line
LD HL,17 ;Point to first character
ADD HL,DE

EX DE,HL sPointer to DE

-16-

LD HL,S1FCB
LD B,110B
SCAL ZCFS
SCAL ZCKER
SCAL ZRDIR
SCAL ZCKER
SET 4,B

SET 5,B

SCAL ZLOOK
SCAL ZCKER

LD HL, (S1FCB+FLDA)
LD DE, (S1FCB+FSEC)
LD A, (S1FCB+FNSC)
LD B,A

SCAL ZDRD
SCAL ZCKER

PolyDos System Programmers Guide

:Point to FCB
;Extension/drive optional
;Convert file specifier
;Check for error

;Read directory

:Check for error

;Copy directory FCB
sInclude locked files
sLookup

;Check for error

;Pick up load address
;Pick up sector address
;Get number of sectors
s;Put in B

sRead the file

;Check for error

Here is antoher program that will input a drive number and count
the number of deleted files on that disk.

START: RST PRS
DB 'Which drive?
SCAL ZINLIN
LD HL,13
ADD HL,DE
LD A, (HL)
SUB Q!
LD C,A

SCAL ZRDIR
SCAL ZCKER

LD B,01100011B
LD C,0
COUNT: SCAL ZLOOK
JR NZ,DONE
LD HL ,FSFL
ADD HL ,DE
BIT 1, (HL)
JR Z,COUNT
LD A,C
INC A
DAA
LD C,A
JR COUNT
DONE: RST PRS
DB 'Files deleted:
LD A,C

SCAL ZB2HEX
SCAL ZCRLF

;s Prompt user

"0

;Read input line
;Point to drive number

;Get drive number
sAdjust

sPut in C

;Read directory
:Check for error
:Initialize flags
s;Clear counter
;Lookup

sError => done
sPoint to FSFL

;Deleted file?
;No => skip
;Increment counter

;Try next

;Now print result
', 0

14

Note that as LOOK is requested to include all files (bit 1 and
bit 0 in B are ones), HL need not point to an FCB upon entry
(the name and the extension are never checked anyway).

4.1.8 ENTER

Routine number: 87H

Purpose: Enter FCB into directory

Entry: HL: FCB address

PolyDos System Programmers Guide -17-

Exit: HL: Unchanged
DE: Directory FCB address
BC: Unchanged
AF: Status

Call ENTER to enter a new FCB into the directory currently in
DIRBUF. At the time of the call HL should point to a copy of the
FCB to be entered. ENTER first calls LOOK to see if the file
already exists. If so, it returns with DE pointing to the
existing FCB in the directory and an error code 31 in A. Your
program may now decide to print an error message, or to delete
the file, by setting high bit 1 of FSFL in the FCB pointed to by
DE, and call ENTER once more. Once ENTER's call to LOOK results
in an error (indicating that there are no active files of the
name you specify within the directory) ENTER moves on to
entering the FCB in the directory. If the directory is full
ENTER reports an error. Otherwise it copies your FCB to the next
free directory FCB. Next it picks up the value in FNSC and adds
it to NXTSEC, making NXTSEC point to the next free sector on the
disk. ENTER then calls WDIR to write the updated directory to
the disk, and returns.

when you create a file it should always be written to the disk
starting at the sector address contained in NXTSEC in the
directory of that disk.

Below is shown a subroutine which will enter into the directory
the FCB pointed to by HL. If active files exist of the same name
and extension they will be deleted, unless they are locked, in
which case an error 33 is returned.

ENTR: SCAL ZENTER ;Try enter the file
RET Z :0k => return
CcP 31H ;Existing file error?
RET NZ sNo => return
PUSH HL ;Save FCB address
LD HL ,FSFL ;Point to system flag
ADD HL ,DE ;byte of directory FCB
BIT 0, (HL) ;Locked file?
LD A,33H s;Error 33 if so
JR NZ,SKIP ;Yes => return
SET 1, (HL) ;Delete the file
POP HL ;Restore FCB address
JR ENTR 1Go retry

SKIP: POP HL ;Restore FCB address
RET :Return

The program shown below will save the contents of memory between
1000H and 2000H.(10H sectors) in a file using a file name input
by the user. The above routine is used to enter the file in the
disk directory.

START: RST PRS ;Prompt user
DB 'File name? ',0
SCAL ZINLIN ;Read input line
LD HL,1l1 ;Point to first character
ADD HL ,DE
EX DE,HL sPointer to DE
LD HL,S1FCB :Point to FCB

LD B,100B ;:Drive number optional

-18- PolyDos System Programmers Guide

SCAL ZCFS ;Convert file specifier
SCAL ZCKER s1Check for error
SCAL ZRDIR ;Read directory
SCAL ZCKER sCheck for error
LD HL,O0 ;Clear flag bytes
LD (S1FCB+FSFL) ,HL
LD HL, (NXTSEC) 1Get next free sector
LD (S1FCB+FSEC) ,HL ;Store as sector address
EX DE,HL ;Put into DE
LD HL,10H ;Initialize file length
LD (S1FCB+FNSC) ,HL
LD HL,1000H ;Initialize load and
LD (S1FCB+FLDA) ,HL ;execute addresses
LD (S1FCB+FEXA) ,HL
LD B,10H ;Write 16 sectors
SCAL ZDWR
SCAL ZCKER :1Check for error
LD HL,S1FCB sPoint to FCB
CALL ENTR sEnter FCB in directory
4,1.9 COV
Routine number: 88H
Purpose: Call an overlay

COV and COVR provide the mechanisms for invokind overlay
subroutines. These facilities are the cornerstones on which the
PolyDos operating system is built. The overlay you invoke may or
may not be in memory before you call it. Both the entering and
the exiting register contents are defined by the overlay. Commom
system conventions for overlays that process more than one
function suggest that the function code be passed in A. The
invokation of an overlay takes the form of the example below
(assuming that registers and other entry parameters have already
been set up to hold the proper contents):

SCAL cov
DB 'Emsg’

Overlay names are defined to be four characters long, and the
overlay name must follow the call to COV or COVR. If the overlay
is not currently in memory it is read into memory from the
master drive. The overlay is always entered at OVRLY (C804H).
When the overlay executes a return instruction (RET) control is
transferred to the code immediately following the overlay name
in the call.

If you try to invoke a non-existing overlay, PolyDos will call
Emsg to report the error, and return to the command mode.

Both COV and COVR invoke a function in an overlay, which may no
be in memory at the time, and both return control to the calling
program just after the overlay name following the call to COV or
COVR. The only difference between COV and COVR is that COVR
"remembers" the overlay currently in the overlay area (by
pushing its name onto the stack) and restores that overlay
before returning to the caller, while COV does not. Hence, COVR
can be used within one overlay to call a function in another
overlay, since the original overlay is restored when the called

PolyDos System Programmers Guide -19-

overlay returns. As COV does not restore the overlay currently
in the overlay area it should only be used from programs outside
the overlay area.

4.1.10 COVR
Routine number: 89H
Purpose: Call an overlay and restore

See COV for a description of this system service and how it
differs from COV., Also see section 5 on overlays.

4.1.11 CKER

Routine number: 8AH

Purpose: Check for error
Entry: A: Error status

Exit: All registers unchanged

CKER 1is called with an error status in A, First A is checked to
be zero. If so CKER returns immediately, as =zero indicates no
error. Otherwise the error code is stored in ERRCOD, CFMA is
called to abort the command file mode, and the Emsg overlay is
invoked to output an error message, whereafter control is
transferred to the MRET routine. If PolyDos cannot invoke Emsg
for some reason, it outputs:

(Error xx)

where xx is the error code, and returns control to NAS-SYS,

4,1.12 CKBRK
Routine number: 8BH
Purpose: Check for break

Entry: No parameters required
Exit: All registers but A unchanged

CKBRK does a fast scan of the keyboard to see if CTRL/SHIFT/@
are held down. If not, it returns immediately with all registers
but A unchanged. If CTRL/SHIFT/@ are held down CKBRK calls CFMA
to abort the command file mode and transfers control to the
address contained in the system variable BREAK.

4.1.13 CFMA
Routine number: 8CH
Purpose: Abort command file mode

Entry: No parameters required
Exit: All registers but A unchanged

CFMA examines CFFLG to determine if PolyDos is in the command
file mode. If CFFLG is zero, CFMA returns immediately. If not, a

-20- PolyDos System Programmers Guide

zero is loaded into CFFLG to abort the command file mode, and
the message:

(Cmdf abort)

is displayed followed by a carriage return.

4.1.14 SSCV
Routine number: 8DH
Purpose: Set SCAL vector
Entry: HL: New SCAL address
Exit: HL: Previous SCAL address
DE: Junk
BC: Junk
AF: Junk

Call SSCV to modify a jump vector in the SCAL address table. The
call must be followed by one byte giving the number of the
routine. Upon entry HL should hold the new routine address. Upon
exit HL contains the address that was replaced. Below is shown
an example of SSCV use:

LD HL ,XMRET :Get new MRET address

SCAL ZS8SCV :Insert in SCAL table

DB ZMRET

LD (MRETA) ,HL s1Save previous address

when the above code is executed all calls to the MRET routine
will be directed to XMRET.

4,1.15 JUMP

Routine number: 8EH

Purpose: Execute jump table .
Entry: A: Jump table key

Exit: All registers unchanged

The call to JUMP should be followed by a 1list of addresses
(words). The accumulator holds the number of the routine to jump
to, =zero corresponding to the first address. Consider the
following example:

SCAL ZJUMP

DW START
DW LBL1
DW STOP

If A contains 0 JUMP will transfer control to START. If A
contains 1 control is given to LBL1l, and if A is 2 JUMP jumps to
STOP. In this example A should never hold other values than 0,
1, or 2, as the table only defines addresses for these values.

PolyDos System Programmers Guide -21-

4,1.16 POUT
Routine number: 8FH
Purpose: Output A to printer
Entry: A: Character to be output
Exit: HL: Junk

DE: Junk

BC: Junk

AF: Unchanged

POUT outputs the character in A to the printer. It provides
extensive forms handling, through the user defined forms
handling parameters given in the information file (PLPP, PBMG,
PCPL, and PLMG, see section 8.1.3). To output a character POUT
calls the 1low 1level printer output routine (PCHR, see section
8.1.5) also contained in the information file. This enables you
to define the interfacing characteristics of your printer, POUT
will automatically supply a 1line-feed (LF=0AH) whenever a
carriage return (CR=0DH) is output. If printing a CR/LF sequence
causes the print head to be positioned at the bottom of a form,
a bottom margin, consisting of BMRG CR/LFs will be output to
PCHR. If a form-feed (FF=0CH) is output, POUT translates it into
a suitable number of CR/LFs, depending on the number of lines
already printed on that page. Tabulator characters (TAB=09H)
will be converted into enough blanks to move the print head to
the next multiple of 8 column. Other characters will be
transmitted directly to PCHR, unless PCPL characters have
already been printed on that line, in which case the character
is ignored. However, if the print head is at the first column of
a line when a character is to be output, LMRG blanks are output
at first to provide a left margin. POUT maintains two counters
in the workspace area giving the exact position of the print
head. PLCT (location C017H) holds the current line number, zero
being the first line on a page. PPOS (location CO018H) holds the
column number, zero being the first column on a line.,

4,2 NAS-SYS routines

In addition to the routines described in section 4.1 three
routines has been added to make NAS-SYS 1 compatible with
NAS-SYS 3. These are RKBD, SP2, and SCALI. Furthermore, the
routines MRET, CRT, BLINK, and NNIM will function slightly
different as described in this section.

MRET

A call to MRET (routine number 5BH) transfers control to the
system executive (the Exec overlay). If Exec is not in the
overlay area when MRET is called, it is read from the master
drive.

4.2.2 CRT

The CRT routine (routine number 65H) has been modified to
support TAB characters.

-22- PolyDos System Programmers Guide

4.2.3 NNIM

The input table activated by NNIM (routine number 78H) will call
RKBD instead of KBD to provide a repeating keyboard.

4,2.4 BLINK

BLINK (routine number 7BH) has been modified to support the
command file mode. Read more about this in section 7.

4.2.5 REKBD
Routine number: 7DH
Purpose: Input from keyboard with repeat
Entry: No parameters required
Exit: HL: Junk
DE: Junk
BC: Junk
A: If carry set, input character
F: Carry set if character

RKBD scans the keyboard once. If a key has been pressed since
the 1last scan, or if the delay counter times out, RKBD returns
with carry set and a character in A, The initial delay and the
repeat delay can be adjusted by modifying RKLON and RKSHO in the
information file area.

4,2.6 SP2
Routine number: 7EH
Purpose:; Print two spaces
Entry: No parameters required
Exit: HL: Unchanged

DE: Unchanged

BC: Unchanged

A: 20H (ASCII space)

SP2 outputs two spaces by calling the SPACE routine twice.

4.2.7 SCALI

Routine number: 7FH

Purpose: SCAL indirect
Entry: E: Subroutine number

Exit: Defined by subroutine

Call SCALI to execute an indirect call to a system subroutine.
The number of the routine you want to invoke should be contained
in the E register.

Section 5

Overlays

The internal structure and flexibility of the PolyDos disk
operating system is based on the overlay machanism.

The overlay area resides from C800H to CFFFH. Overlays should be
assembled for this area, and may not exceed 2K bytes in size.
Overlay names are defined to be four characters long. The first
four bytes (C800H-C803H) of an overlay should contain its name,
which must match the file name. An overlay may use portions of
the overlay area itself for buffers or data. Remember, however,
that such data is lost if another overlay is invoked.

As an example of an overlay the assembly listing of the system
error message writer overlay (Emsg) is given in appendix C.

5.1 File handler overlays

File handler overlays are a special type of overlays. They serve
to perform the functions that need to be done when a file of
their associated type 1is executed. File handler overlays are
invoked by Exec when you try to execute a file of an unknown
type (extension). The first two characters of the overlay name
are the two characters forming the extension of its associated
file type, thus defining which type of files the overlay will
handle. The last two characters of the name must be 'fh',
indicating that the overlay is a file handler. The extension is
OV indicating that the file is an overlay.

Let us assume that you have a file on your disk called GRONK.CM.
When you attempt to execute it, Exec does not know what to do
with it, as its extension is not among the standard file types
(TX and GO). Instead of giving an error message Exec tries to
locate an overlay called CMfh.OV. If CMfh exists on the master
drive it is loaded into the overlay area an executed.

When Exec invokes the execute file function in a file handler
overlay, the A register is =zero, CLINP points to the next
non-blank character following the file specifier, and S1FCB
contains a copy of the directory FCB of the file. The drive
number of the file in stored in the first byte of S2FCB. As the
accumulator is always cleared when the overlay is invoked to
execute a file, the accumulator should be use to distinguish
between the execute file function and other overlay functions.

Below is shown an example of a file handler overlay for files of
extension CM, thus called CMfh., Before loading and executing the
file you specify CMfh will 1load into memory a file called
CMfun.OB. In this case CMfun might be a collection of runtime
routines that need be present in memory to run files of type CM.

REFS SYSEQU ;Get symbols from SYSEQU
REF ;:Load all symbols

ORG OVAREA ;Define origin

-24-

IDNT
DB

LD
LD
SCAL
SCAL
LD
LD
LD
LD
LD
LD
SCAL
SCAL
LD
LD
LD
LD
LD
LD
SCAL
SCAL
LD
JP

CMFCB: DB
DS

END

PolyDos System Programmers Guide

$,0
'CMfh!

HL ,CMFCB
B,00110000B
ZLOOK

ZCKER

HL, (CMFCB+FLDA)
DE, (CMFCB+FSEC)
A, (CMFCB+FNSC)
B,A

A, (MDRV)

C,A

ZDRD

ZCKER

HL, (S1FCB+FLDA)
DE, (S1FCB+FSEC)
A, (S1FCB+FNSC)
B,A

A, (S2FCB)

C,A

ZDRD

ZCKER

HL, (S1IFCB+FEXA)
(HL)

"CMfun OB!
10

Note that as PolyDos always looks

drive,

up overlays on the
the directory of the master drive is contained in DIRBUF

;Define load address
;Overlay name

;Point to CMFCB

;Copy FCB from directory
:Look on master drive
;Check for error

;Pick up load address
:Pick up sector address
;:Pick up length

sPut in B

;Read from master drive

;Load CMfun

;Check for error

;:Pick up load address
;Pick up sector address
;Pick up length

;Put in B

;Pick up drive number
sPut in C

;Load the file

;Check for error

:Pick up execute address
:Go there

sName and extension
sAttributes buffer

master

whenever an overlay is invoked. Therefore, the CMfh file handler
shown above need not call RDIR before calling LOOK when it is to

look up CMfun.

PolyDos System Programmers Guide -25-

Section 6

File formats

This section defines the format of the following standard file
types:

GO Machine code program files
TX Text fikes
ov Overlay files

The above file types are 'known' to the system (and therefore
defineable in this manual), i.e. they need no file handlers to
be executed (remember though that you cannot execute an overlay
file).

5.1 Machi 3 £i]

The length of a machine code program file is given by the number
of sectors required to hold all of the code forming the program.
If the 1length of a program is 890H bytes the machine code
program file will be nine sectors long. The first eight sectors
and the 90H first bytes of the ninth sector contains the actual
code. The remaining bytes of the last sector are undefined (and
uninteresting).

5.2 Text £il

The 1length of a text file is given by the number of sectors
required to hold all of the text. Remaining bytes of the last
sector are set to zero. These fillers must be stripped of when
the file is processed.

6.3 Overlay files

The format of an overlay file is the same as that of a machine
code program file. Remember that overlay files may not exceed 2K
bytes in size, and that the build-in name (contained in the
first four bytes of the overlay) should always match the file
name.

-26- PolyDos System Programmers Guide

Section 7

The command file mode

When PolyDos is in the command file mode all input, normally
entered from the keyboard, will be taken from a text file
instead. The command file mode only affects the BLINK routine,
i.e. it only applies where you would normally see a blinking
cursor. When BLINK is called to input a character it tests the
value of CFFLG to see if the command file mode is active. If
CFFLG is zero, BLINK acts as usual, blinking the cursor until a
key 1is pressed. If CFFLG is not zero, BLINK will obtain its
input character from a text file on the disk. To obtain the
character BLINK uses the following procedure:

1) If CFSBP equals zero, thus indicating that the command file
sector buffer is empty, the sector counter CFNSC is loaded
and checked to be zero, in which case the command file mode
is terminated by loading zero into CFFLG. If CFNSC is not
zero it is decremented and a sector is loaded from drive
CFDRV sector CFSEC into the sector buffer SECBUF, whereafter
CFSEC is incremented.

2) The character pointed to by CFSBP (CFSBP is a one-byte
pointer within SECBUF) is loaded into the accumulator and
CFSBP is incremented. If the character is zero, it |is
considered a filler and skipped by repeating (1) and (2).

As you see from the above discussion PolyDos only knows the
sector address and the drive number of the command file being
executed, It does not know the name of the file and is tehrefore
unable to detect external events such as insertion of another
disk or overwriting of the file. It is up to you to make sure
that these events does not occur or to deactivate the command
file mode before they do. Below is shown the code needed to
activate the command file mode using a file called CMDFILE.TX on
the master drive:

CFCB: DB '"CMDFILE TX! ;Name and extension
DS 10 ;Attributes buffer
START: LD A, (MDRV) ;Get master drive number
LD (CFDRV) ,A ;Put in CFDRV
LD C,A ;Put in C
SCAL ZRDIR sRead directory
SCAL ZCKER ;Check for error
LD HL,CFCB ;Point to FCB
LD B,00110000B :Copy FCB from directory
SCAL ZLOOK ;sLookup
SCAL ZCKER ;ChecK for error
LD HL, (CFCB+PSEC) ;Pick up sector address
LD (CFSEC) ,HL ;Put in CFSEC
LD A, (CFCB+FNSC) ;Pick up length
LD (CFNSC) ,A ;Put in CFNSC
XOR A ;Indicate that the sector
LD (CFSBP) ,A ;buffer is empty
DEC A :Activate the command

LD (CFFLG) ,A ;file mode

PolyDos System Programmers Guide -27-

Section 8

The information file

As you have learned from the PolyDos Users Guide, a file called
Info.IN os brought into memory (i.e. the information file area,
addresses C200H-C2FFH) by Exec when PolyDos is booted.

8.1 Information file parameters

The information file contains various informations 1likely to
vary between different systems. These are:

Cursor characteristics

Repeat keyboard keyboard delays
Printer forms parameters

Printer initialization string
Low level printer output routine

The above parameters are described in the following sections,
which also define the values selected by default, 1i.e. the
values loaded into the variables if Info.IN is not present on
the master drive. For a quick reference refer to section 2.3.

rsor characteristic

Two information file variables define the cursor
characteristics. CURCHR (location C200H) holds the ASCII value
of the cursor character, and CURBLR (location C201H) holds the
cursor blink rate. The default values are CURCHR=5FH and
CURBLR=COH.

R at k oard a

Two information file variables define the repeat keyboard
delays. RKLON (locations C202H-C203H) hold the initial delay,
and RKSHO (C204H-C205) hold the repeat delay. Both values are
16-bit stored in standard byte reversed format. The default
values are RKLON=0200H, and RKSHO=0080H.

Pri L m ara LS

Four one-byte information file variables define the printer
forms. PLPP (location C210H) gives the overall forms length in
lines. PBMG (location C211H) gives the bottom margin, i.e. the
number of blank lines to print to skip perforations on fan-fold
paper. PBMG is included in PLPP. Thus, PLPP-PBMG lines of text
will be printed on each page, before skipping to the next page.
PCPL (location <C212H) gives the overall 1line length in
characters. PLMG (location C213H) gives the number of blanks to
print at the beginning of each line to provide a 1left margin.
PLMG is included in PCPL. Thus, PCPL-PLMG characters can be
printed on each line. The default values are PLPP=255, PBMG=0,
PCPL=255, and PLMG=0.

-28- PolyDos System Programmers Guide

Pri s s s . io t

When the information file has been loaded off the disk, the
initialization string is output to the printer. INSLEN (location
C214H) defines the length of the initialization string (maximum
is 43 characters), and INSTR (locations C215H-C23FH) contain the
actual string. Each character (if any) is output by a call to
the PCHR routine, which starts in 1location C240H. If INSTR
contains any characters they normally form a control sequence to
put the printer into another mode than its default.

rj t tin

The low level printer output routine has its entry point at PCHR
(location C240H). PCHR should contain the code needed to output
the accumulator to the printer. The routine should end with a
return (RET) instruction, and it need not save any registers
(except for the alternative registers and the index registers
which are never touched by PolyDos). The default value 1is a
return instruction.

tion

Below is shown an example of an information file. The low level
printer output routine will control a serial printer with a BUSY
(active HIGH) line connected to TP3 on the NASCOM 2 main PCB
(TP3 is bit 7 in port 0).

REFS SYSEQU :Get symbols from SYSEQU

REF :Get all symbols
ORG INFOFA ;Define origin
IDNT $,0 :Define load address
DB 5FH,0COH ;s CURCHR, CURBLR
DW 200H,80H : RKLON, RKSHO
ORG INFOFA+10H
b2 o P e
DB 72,8,122,10 ; PLPP, PBMG, PCPL, PLMG
DB 2,ESC,14H s INSLEN,INSTR
ORG INFOFA+40H s PCHR
PUSH AF ;Save char
BUSY: IN A, (0) s;Read port 0
RLA :Bit 7 high?
JR C,BUSY :1Yes => busy
POP AF :Restore char
SCAL ZSRLX ;Print it
RET

END

PalyZap V2.0

080A
1000
1000
Co00
DOOO

0000
0008
0010
0018
0020
0028
0030
0038

000D

005B
005C
003D
005E
O0SF
Q060
0061
0062
0063
00464
Q063
0066
0067
00468
0049
0064
Q04K
006C
006D
QO6E
006F
0070
0071

PolyDos 2.0 Egquate File

PolyDos 2.0

SYSEQU
The system equate file

By Anders Hejlsberg
Copyright (C) 1981
PolyData microcenter ApS

WP S WE R RS AN e RS WP AR R A

sMemory organization equates

YRAM: EQU Q0BOAH ;Video RAM addr

STACK: EQU 01000H ;Addr of program stack

RAM: EQU 01000H ;Addr of program RAM

TOP: EQU OCO00H j;Highest RAM addr

PDCROM: EQU 0DOOOH ;Addr of PolyDos Controller

;NAS-5YS restarts

RESET: E@RU OOH s System RESET
RIN: EQU 08H ;Input A

RCALH: EQU 10H ;Relative call
SCALH: EQU 18H ; Subroutine call
BRKPT: EBRU 20H : Breakpoint

PRS: EGU 28H sPrint string
ROUT: EQU 30H :Output A

RDEL : EQU 38H ;:Delay

; NARS-8YS subroutines
STMON: EQU QOQODH

s NAS-5YS SCAL subroutines

IMRET: EQRU SBH ;Return to system

ZSCALJ: EQU SCH :SCAL routine nbr A
ITDEL: EGU SDH :Delay apx 2 seconds
IFFLP: EBQU SEH sFlip/flop bits in port O
IMFLP: ERU SFH ;Flip motor bit

ZARGS: EQU 60H ;:Get arguments

ZKBD: EQU 61H ;Scan keyboard

ZIN: EQU 62H 3Scan input devices
ZINLIN: EQU 43H :Input a line

ZNUM: EQU 64H :Convert hexnumber

ZCRT: EQU &65H s Output to CRT

ZITBCD3: EQU 4&6H ;Output HL in hex with cksm
ZTBCD2: EQU 6&7H s0utput A in hex with cksm
IB2HEX: EQU 68H :0utput A in hex

ISPACE: EQU 69H s Output space

ICRLF: EQU 6AH ;Output CR

ZERRM: EGQU &BH itWrite error message
ITX1: EQU 6CH :Output HL and DE in hex
I50UT: EBU &DH :Output string to serial
IX0UT: EQU 6EH sOutput to external
ISRLX: EQU 6FH ;Output to serial

ZSRLIN: EQU 70H s Input from serial

INOM: EQU 71H iNew output table

PAGE Q1

PolyZap V2.0

0072
0073
0074
0073
0074
0077
0078
0079
007A
007B
007C
007D
007E
007F

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
00BA
Q0B8R
008C
008D
008E
00BF

0008
0009
000A
Q00C
000D
0011
0012
0013
0014
0013
0016
Q017
0018
001B

0000
0008
000A
O0Q0R
000C
000k
0010
0012

PolyDos 2.0 Equate File PAGE
INIM: EQU 72H ;New input table

IATE: EQU 73H sExecute routine table
IXKBD: EQU 74H ;s Input from external
ZUCUT: EBGU 79H $Output to user routine
ZUIN: EQU 76H ; Input from user routine
INNOM: EQU 77H sNormal output table
INNIM: EQU 78H sNormal input table

ZRLIN: EBU 79H ;Read and convert a line
IBRIHEX: EQU 7AH s Qutput hexdigit

ZBLINK: EQU 7BH s Input w. blinking cursor
CPCS: EQU 7CH sCalculate cursor pos
IRKBD: EQU 7DH ;Scan keyboard with repeat
I5P2: EQU 7EH sPrint two spaces

ISCALI: EQU 7FH :Call subroutine <E>

;PolyDos SCAL routines

IDSI1ZE: EQU 80H ;Disk size

ZDRD: EQU 81H ;Disk read

ZDWR: EQU 82H ;Disk write

ZRDIR: EQU 83H sRead directory

ZWDIR: EQU 84H sWrite directory

LCFS: EQU 85H iConvert file specifier
ZL00K: EGU 86H ;Lookup file in directory
ZENTER: EGU 87H iEnter file in directory
ICOoV: EQU 88H :Call overlay

ICOVR: EQU 89H ;:Call overlay and restore
ICKER: EBU 8AH ;Check for error

ZCKBRK: EQU B8BH ;Ckeck for break

ICFMA: EQU 8CH ;:Command file mode abort
I85CV: EQU 8DH ;Set SCAL vector

ZJUMP: EQU 8EH sJump table execution
IPOUT: EQU 8FH sPrinter output

$ASCII control characters

BS: EQU 08H ;Backspace

TAB: EQU O9H ; Tabul ate

LF: EQU 0AH ikbinefeed

FF: EQU OCH sFormfeed

CR: EQU ODH ;:Carriage return
CuL: EQU 11H ;Cursor left

CUR: EQU 12H jCursor right
Cuuy: EQU 13H ;Cursor up

Cub: EGU 14H ; Cursor down

CSL: EQU iSH sDelete character
CSR: EQU 16H s Insert character
CH: EQU 17H ;Cursor home

CCR: eQu 18H sNewline

ESC: EQU 1BH ;Clear line

;FCB offsets
’ S/ FED SAFCE

FNAM: EQU 0 sFile name coss coe?
FEXT: EQU 8 ;Extension co5p co#
FSFL: EQU 10 1System flags Lo 5F LOF3
FUFL: EQU 11 sUser flags Lo6o CoOPy
FSEC: EQU 12 ;Sector address coe! co?b
FNSC: EQU 14 sNumber of sectors c063 Co?#
FLDA: EQU 16 iLoad address 1713 co?*?

FEXA: EQU 18 ;Execute address coe? N

02

PolyZap V2.0

0CO0

0CQ0
0CO1
0COA
0COB
ocoC
0COE
0C10
0c12
0C14
0C1é
oCi8
OC1iA
oCiC
OCIE
0C20
0C21
0C23
0C25
0C26
oCc27
0cz28
0Cc29
0CZ2H
oc2C
0Cs61
0Cé1
0C63
0Ca5S
0C&7
0C4e9
OC4B
0C&D
OC&F
0C71
0C73
0C73
0C77
oc78
oC7A
OC7B
OC7D
0C7E

Co00

Cono
coot
Co02
£oo03
Coo4
CO0S
Coub
coo8
CO0A
CoOB
cool

EIE I T S S A TR I T T JEE S S A

SR IR IR T R I S S I I 2

RN EEEEEEE:

0001
0009
Q001
0001
0002
0002
0002
Q002
0002
0002
Q002
Q002
Q002
Q02
Q001
Q002
0002
Q001
0001
0001
Q001
0002
0001
0035

Qo2
0002
0002
0002
0002
0002
Q002
0002
0002
0002
0002
0001
0002
0001
0002
0001
Q002

0001
0001
0001
0001
0001
0001
Q002
0002
0001
0001
0001

PolyDos 2.0 Equate File PAGE Q3

1 NAS—-SYS workspace

ORG QCOOH
PORTO: DS ;State of ocutput port ¢
KMAP: D8 ;State of keyboard
ARGC: DS ;jLast processed routine
ARGN: DS iNumber of arguments
ARG1: DS jArgument 1
ARGZ: DS i Argument 2
ARG3: DS jArgument 3
ARG4: DS ;Argument 4
ARGS: DS jArgument 5
ARG6: DS ;Argument &
ARG7: DS sArgument 7
ARG8: DS ;Argument 8
ARGY: DS jArgument 9
ARG10: DS 1Argument 10
NUMN: DS sNbr of chars in value
NUMV: DS ;Converted value

BRKADR: DS
BRKVAL: DS
CONFLG: DS

;:Breakpoint address
;Breakpoint value
:-1 if E command used

PR R R R RINRMNRIR RN PR @S U b e o = R = RN R RN R R M R o D

KOPT: DS ;Keyboard options
XOPT: DS sExternal options
CURSOR: DS ;Cursor address
ARGX: DS sLast command letter

DS 3 s NAS—-SYS stack
MONSTE: EGU
RBC: DS ;Register BC save area
RDE: DS ;Register DE save area
RHL : ps tRegister HL save area
RAF: DS ;Register AF save area
RPC: Ds ;Program counter save area
RSF: DS ;Stack pointer save area
KTABL: DS sLength of keyboard table
KTAB: Ds ;1Address of keyboard table
STAB: D5 ;Start of routine table
QUTTA: DS ;Start of output table
INTA: DS ;Start of input table
UouTd: DS sJump instruction
UouTA: DS sUser output routine addr
UINJ: DS sJump instruction
UINA: DS jUser input routine addr
NMIJd: DS sJump instruction
NMIA: DS sNMI handler routine addr

sPolyDos workspace

WORKSF: ORG TOP+000H s WORKSPACE

MDRV: Ds 1 ;Master drive

DDRV: DS 1 sDirectory drive
DRVCOD: DS 1 ;Drive code

FIRST: DS 1 ;:Cold boot flag
ERRFLG: DS 1 sError process flag
ERRCOD: DS 1 sError code

BREAK: DS 2 ;Break handler address
BRAM: DS 2 ;RAM buffer address
BNSC: DS 1 ;RAM buffer size in sectors
CFFLG: DS 1 ;:Command file flag
CFDRY: DS 1 ;Command file drive

PolyZap V2.0 PolyDos 2.0 Equate File PAGE 04

CooD + 0002 CFSEC: DS 2 ;iCommand file sector addr
COOF + 0001 CFNSC: DS 1 ;Command file sector count
C010 + 0001 CFSBP: DS 1 ;Command file buffer ptr
Coil + 0001 RKROW: DS 1 ;KBD row of repeat char
C012 + 0001 RKRIT: DS 1 ;KBD bit of repeat char
Co13 + 0001 RKVAL: DS 1 3sASCII value of rpt char
Co14 + 0002 RKCNT: DS 2 i1Repeat KBD counter

Co16 + 0001 BLINKF: DS 1 sBLINK routine flag

Co17 + 0001 PLCT: DS 1 sPrinter line counter
€o18 + 0001 PPOS: DS 1 sPrint head position
CO19 + 0002 CLINP: DS 2 ;Command line pointer
CO1B + 0030 CLIN: DS 48 sCommand line buffer
CO4R + 000A OQvFCB: DS 10 sOverlay FCB

C0S3 + 0014 S1FCB: DS 20 ;System FCB number 1
CO6% + 0014 S2FCB: DS 20 sSystem FCB number 2
CO7D + 0006 DSKWSP: DS 6 sDisk routines workspace
€oB83 SYSWSP: EQU $ 31Misc system workspace
coco USRWSP: ORG TOP+OCOH ; USER WORKSPACE

C100 SCTH: ORG TOP+100H s SCAL TABLE

CO7E SCTBES: EQU SCTB-2%’A’ jActual start address
€200 INFOFA: ORG TOP+200H ;s INFO FILE AREA

€200 + 0001 CURCHR: DS 1 sCursor character

C201 + 0001 CURBLR: DS 1 ;Cursor blink rate

C202 + 0002 RKLON: DS 2 sKeyboard long delay
C204 + 0002 RKSHD: DS 2 iKeyboard short delay
C206 + Q00A DS 10 1Reserved

€210 + 0001 PLPF: DS 1 ;lLines per page

C211 + 0001 PBMG: DS 1 sBottom margin

C212 + 0001 PCPL DS 1 sCharacters per line
C213 + 0001 PLMG: DS 1 ibeft margin

C214 + 0001 INSLEN: DS 1 iLength of init string
C215 + 002B INSTR: DS 43 sInit string

C240 PCHR: EQU ;] ;Output routine

C300 SECBUF: ORG TOP+300H s SECTOR BUFFER

€400 DIRBUF: ORG TOP+400H 1 DIRECTORY BUFFER
C400 + 0014 DNAME: DS 20 ;Disk name

C414 + 0002 NXTSEC: DS 2 ;Next sector address
Ca16 + 0002 NXTFCB: DS 2 sNext FCB address

C418 + Q3ESB FCBS: DS 50x20 jFCBs

€800 OVAREA: ORG TOP+800H ; OVERLAY AREA

€800 + 0004 OVNAM: DS 4 ;Overlay name

£804 OVRLY: EBU $;0verlay entry point

C804 END

PolyZap V2.0

ARG1
ARG3
ARG6
ARGY
ARGX
BRAM
BRKPT
CCR
CFNSC
CH
CONFLG
CSR
CUR
CURGOR
DIRBUF
DSKWSP
ESC
FEXT
FLDA
FSEC
INFOFA
INTA
KTAB
MDRV
NMIJ
NXTFCB
OVAREA
OVRLY
PCPL
PLMG
PPOS
RAM
RDE
RHL
RKCNT
RKSHO
RPC
S2FCR
SCTRS
STACK
TAB
UINJ
USRWSP
XOPT
IBIHEX
ZCFMA
ICKER
ZCPOS
ZDRD
ZENTER
ZIN
ZKBD
IMRET
ZNNOM
IPOUT
IRLIN
sauT
ZSRLIN
ITBCDZ
ITX1
IWDIR

oCoC
QC10
OC14
0CiC
QC2R
Coog
0020
Q018
COOF
0017
OC246
001646
0012
QC29
C400
Co7D
001B
0008
0010
Q00C
C200
QC73
OC&F
Coo0
OC7D
Ca16
€800
€804
c212
£213
co18
1000
QCe3
QCaS
Co14
C204
0C&9
Coa9
CO7E
1000
0009
OC7A
CoCo
0C28
QO7A
Q08C
008A
Q07C
0081
0087
Q0462
0061
00SR
0077
QO8F
0079
Q0&D
Q070
Q067
Q06C
0084

PolyDos 2.0 Equate File

ARG10
ARG4
ARG7
ARGC
BLINKF
BREAK
BRKVAL
CFDRY
CFSBP
CLIN
CR

cup
CURBLR
cuu
DNAME
ERRCOD
FCBS
FF
FNAM
FSFL
INSLEN
KMAP
KTABL
MONSTK
NUMN
NXTSEC
OVFCB
PEMG
PDCROM
PLPP
PRS
RBC
RDEL
RIN
RKLON
RKVAL
RSP
SCALH
SECBUF
STMON
TOP
UoUTA
YRAM
ZARGS
ZB2HEX
ICFS
r{vs)
ZCRLF
IDSIZE
ZERRM
ZINLIN
ZLODK
ZNIM
ZNOM
ZRDIR
ZSCALI
ZSP2
ZSRLX
ZTBCD3
ZUIN
ZXKBD

OCl1E
0C12
ocis
QCOoA
Co16
COo0é
0C235
CooC
Co10
CoiB
000D
Q014
C201
0013
C400
COo0s
Cca18
Q00C
0000
Q00A
€214
0Co1
OC4D
0C61
0C20
C414
CO4B
€211
DOOO
C210
0028
0C61
0038
o008
c202
CO13
OC6B
0018
C300
Q00D
Co00
oc78
080A
0060
068
0083
0088
Q06A
0080
006B
Q063
0084
0072
0071
0083
Q07F
QO7E
QO&F
0066
Q076
0074

ARG2
ARGS
ARGB
ARGN
BNSC
BRKADR
BS
CFFLG
CFSEC
CLINP
CsL
CuL
CURCHR
DDRV
DRVCOD
ERRFLG
FEXA
FIRST
FNGC
FUFL
INSTR
KOPT
LF
NMIA
NUMVY
OUTTA
OVNAM
PCHR
PLCT
PORTO
RAF
RCALH
RESET
RKBIT
RKROW
ROUT
S1FCB
SCTR
STAR
SYSWSP
UINA
uouTya
WORKSP
IATE
ZBLINK
ICKBRK
ZCOVR
ICRT
ZDUWR
IFFLP
ZJUMP
IMFLP
ZNNIM
ZNUM
ZRKBD
Z5CALJ
Z8PACE
185CV
ZTDEL
ZUouT
Xour

OCOE
0C14
oC1A
QCOB
CO0A
QC23
0008
CooB
COo0D
coiq
00135
Q011
€200
Co01
€002
Co04
0012
Co03
Q00E
000B
C218
QC27
0Q0A
OC7E
oCc21
0C73
C800
£240
co17
Q€00
0Ch7
Q010
0000
Co12
Cottl
QO30
COs5
C100
0C71
coB3
QC7R
QC77
CooQ
0073
007B
Q08B
Q089
0065
0082
Q0SE
QO8E
QOSF
0078
Q064
Q07D
0035C
00469
008D
Q03D
0073
Q04E

PAGE 05

FolyZap V2.0

0007
0045

DOCO
DOOO

DOCO
DOO3
DOOs
DoOg
DOoOoA
DO1D
DOLF
D021
D023
D024
D026
Do29
DO2ZR
DO2D
DO2F
DO3L
DO32
D034
DO3S
DOZ8
DG3A
DO3C
DO3D
DOIF
Do4t
po4g
D047
Do4a
DO4D
DOS0
Do51
pos4
Dos7
DOS9

Z03D0
210010
CDODO0
EF
426FEF74
DF7m
FE4E
2006
EF
1RO
CZ0300
FEZO
38F0
FE3XB
30EC
F7
D&Z0
FS
2100C0
0600
34600
23
10FB
IEFF
2201C0
J202C0
3200C8
2R710C
118200
19
1100C1
017800
EDEO
211BDS

PolyDos 2.0 ROM (GBO9/G81S)

FolyDos 2.0 Ri
PolyDos Controller ROM

By Anders Hejlsberg
Copyright (C) 1981
PolyData microcenter ApS

MAXDRV:
FFLP:

PDC1:

PDC2:

PDC3:

REFS SYSEQU
REF

EQU 7

EQU 0045H
ORG PDCROM
IDNT %,$

JP $+7 sRESET jump

LD 8P, STACK 1Set SP

CALL STMON slnitialize NAS-8YS
RSTY PRS sPrompt user

DE *Boot which drive? 7,0

SCAL ZBLINK ; Get drive number
cr *N? : NAS-5YS7?

JR NZ,PDC2 sNo =3 skip

R8T FPRS ;Clear screen

DE ESC,0

JpP 5 ;6o to NAB-5YS

CP 0 ; Test drive number
JR C,PDCH

cp MAXDRV+ Q" +1

JR NC,FPDC1

RST ROUT sPrint it

SUB T’ s Adjust

PUSH AF ;Save on stack

LD HL, TOP sInitialize workspace
LD B,0

LD (HL), O .

INC HL

DJINZ PDCZ

LD A, -1

LD (DDRV) , A ;:No directory

LD (DRVCOD) ,A iNo drive selected
LD (OVNAM) , A ;No overlay

LD HL, (STAB) ;6et start addr of
LD DE, 82H s NAS-5YS SCAL table
ADD HL,DE

LD DE,SCTB :Copy to SCTR

LD BC, 3CHx2

LDIR

LD HL,PDSCTR :Get start addr of

PAGE 0O1

PolyZap V2.0

posC
DOSF
D061
DO&4
DO&7
DO&A
DO&C
DO&D
DO70
D72
pO73
D076
po78
DO79
po7C
DO7E
DOVF
D081
D084
Dog7
Do8sA
poab
DOSE
DO?1
Do92
D095
D097
DO%A

DoeD
DOAD
DOAL
DOAZ
DOA7

012600
EDBO
217ECO
22710C
219DD0
DFED
SH
21C7D3
DF8D
65
2119D4
DFBD
7B
2110D4
DFED
78
DF78
2138D3
22780C
21C4D2
2206C0
F1
JI200C0
4F
CD41DS
2806
3205C0
C3C8D2

310010
AF

DF88
457865675
18F4

DOA? AF
DOAA 1BOZ

PolyDos 2.0 ROM (GB09/G8135)

]

LD
LDIR
LD
LD
LD
SCAL
DB
LD
SCAL
DE
LD
SCAL
DR
LD
SCAL
DE
SCAL
LD
LD
LD
LD
FOP
LD
LD
CALL
JR
LD
JFP

BC, 13H%2

HL,SCTES
(STAR) , HL
HL, PDOSW
755CY
IMRET
HL,CRT
75SCV

ZCRT

HL, BLINK
78SCY
ZBLINK

HL , DNNIM
755CV
ZNNIM
INNIM

HL, POUT
(UDUTA) (HL
HL , DBREAK
(BREAK) ,HL
AF
(MDRV) , A
C,A

INIT
7,PDOSKW
(ERRCOD) , A
AERORT

PAGE 02

sPolyDos SCAL table
sCopy to SCTE
sActivate new SCAL table

;Modify MRET vector

;Modify CRT vector

sModify BLINK vector

;Modify NNIM vector

;Activate new input table
iMake printer user output
sdevice

:Initialize BREAK jump
;vector

;Restore drive number
iMake master drive

sPut in C

sInitialize controller
1Skip if no error

;:Save error code

iAbort PolyDos

FDOSW: LD

-

‘me wmE caa ma

s e e 'me

XOR
SCAL
DE
JR

Disk read

5P, STACK
A

icaov
Exec’
PDOSW

;Set 5P
;Clear A
; Invoke Exec

sLloop if Exec returns

Entry: HL:
DE:

Exits HL:

DRD: XOR

Disk write

Entry: HL:
DE:
B:

Memory address
Disk address
Number of sectors
Drive

Unchanged
Unchanged
Unchanged

Status

Memory address
Disk address
Number of sectors

PolyZap V2.0

DOAC
DOAE
DOAF
DORO
DOB1
DOR4
DOBS
DOBS
DOR7

DOB8
DOBR
DORC
DORD
DORE
DOC1
DOCZ2
DOLCZ
DOCA4
DOC7
DOCA
DoCC
DOCE
DOCF
DODO
DOD1
DoDZ2
DOD3
DOD6&
poDng
poDYS

DODA
DODR
popc
DoDD
DOEO

SEFF
D5

3

ES
€D&4DS
£l

Ci

D1

co

JACLCO
21

ca

79
320100
€35

D5

ES
2100C4
113000
0604
DF81
El

D1

Ci

€8

ES
2101C0
J6FF
El

Ce

S
D&
ES
2100C4
110000

PolyDos 2.0 ROM (GB09/G815)

H C: Drive
; Exit: HL: Unchanged
; DE: Unchanged
: BC: Unchanged
H AF: Status
R
DWR: LD A, -1
DRW: PUSH DE
PUSH BC
PUSH HL
CALL RWSCTS
FOP HL
POP BC
FOP DE
RET

Read directory

PAGE 03

jA=-1 =3 write
; Save

;Do read/write
;Restore

|
|
|

3
]
; Entry: C: Drive number
; Exit: HL: Unchanged
H DE: Unchanged
H BC: Unchanged
§
RDIR: LD A, (DDRV) ;Is directory already
SUR C ;there?
RET z ;Yes = return
LD A, C ;Save as new directory
L.D (DDRV) A ;jdrive number
FUSH BC :Save
FUSH DE
FUSH HL
LD HL., DIRBUF ;Read into DIRBUF
LD DE,C ;From sector O
LD B,4 ;14 sectors
SCAL ZDRD ;Do the read
POP HL jRestore
FOP DE
FOF RC
RET Z ;No error =i return
PUSH HL ;Save
LD HL, DDRV :Make directory invalid
LD (HL) , -1
POF HL ;jRestore
RET
y Write directory
b
; Entry: No parameters required
; Exits HL: Unchanged
3 DE: Unchanged
H BC: Unchanged
§ e e o e o e
WDIR: PUSH BC jSave
PUSH DE
PUSH HL
LD HL, DIRBUF sWrite from DIRBUF
LD DE, O 1 To sector O

PolyZap V2.0

DOEZ
DOES
DOESB
DOE?
DOER
DOEC
DCED
DOEE

DOEF
DOFO
DOF1
DOF2
DOF4
DOFS
DOFB
DOF9
DOFB
DOFD
DOFF
D101
D103
D105
D107
D109
D1OB
D10D
D1OF
1388
D113
D115
Dil6
D118
D11A
D1iB
Di1D
D11E
D11F
D120
D122
D124
D126
D128
D129
Di2A
D12C

0404
3A01C0
4F
DFB2
Et

D1

C1

c9

ES
78
2F
E&07
F3
010907
1A
FE20
282R
FEZE
2827
FEZA
2823
FE2C
281F
FE3R
2818
FECD
2817
FEQ9
28173
R7
2810
D7SF
oD
2807
77
23
13
CEBO
18D4
JE1L
184R
79
oD
2809
FEO9

PolyDos 2.0 ROM (GB0O9/6813)

LD B, 4
LD A, (DDRV)
LD C,A
sCAL ZDWR
POP HL

POP DE

FOP BC

RET

Convert a file specifier

PAGE 04

;4 sectars
;0On drive DDRV

:Do the write
;Restore

Entry: HL: FCH address

B: BO=1

Exit: HL: Unchanged

B: BO=1

WIS ABN WS WEE WP WS WV S WS W e e W

Cs Drive number

DE: Line buffer address
Name optional

Bi=1 Extension optional
B2=1 Drive optional

DE: Next line buffer address

No name

Bi=1 No extension

B2=1 No drive

(MDRV if B.B2=1)

-

CFS: PUSH HL

LD AR

crPL

AND 111B

PUSH AF

LD BC,709H
CFS1: LD A, (DE)

CP ? k-

JR Z,CFS3

cpP .

JR Z,CFS3

Cr g

JR Z,CFSZ

CP 7

JR Z,CFS3

CP ? ; 3

JR Z,CFS3

CP CR

JR Z,CF83

cP TAB

JR Z,CFS3

OrR A

JR Z,CF83

RCAL TSTCH

DEC C

JR Z,CFS2

LD (HL) , A

INC HL

INC DE

RES O,B

JR CFsi
CFS2: LD A, 11H

JR CFS9
CFS3: LD A,.C
CFS4: DEC C

JR Z.CFsS11

cp 9

;Save FCB addr
;:Compute flag mask

;8ave on stack

;Init flags and counter
;Get character

sJump to CFS3 if it is
;a delimiter

;: Test character

18 characters done?
;Yes => skip

;1Save in FCB

jFoint to next

iName specified
iError 1i

:Get counter
jFilling done?

1Yes =» skip
iWas name specified?

PolyZap V2.0

D12E 2802
D130 3620
D132 23
D133 18F4
D135 1A
D136 FEZE
D138 200B
D134 13
Di3IR D73A
D13D 77
D13E 23
DI3F D736
D141 77
D142 23
D143 CRrag
D145 3A00CO
D148 4F
D149 1A
Di14A FEZA
D14C 200E
D14E 13
Di4F 1A
D150 13
D131 D630
D153 381C
D135 FEOB
D157 3018
D159 4F
D15A CE?0
DISC 1A
DI1SD FE20
D1SF 2003
Dis6l 13
D162 18F8
D164 F1
D163 E1
D164 AO
D1&7 C8
D168 0612
Di16A 04
D16B 1F
D16C 30FC
Di&6E 78
D1&6F B7
D170 €9
D171 3E12
D17X E1
D174 E1
D175 R7
D176 C9

D177 1A
D178 13
D179 FE21
D17B 3803
D17D FEBO
D17F D8
D180 El
D181 3E10
D183 18EE

PolyDos 2.0 ROM (6B09/G815)

CFS12:

CFS11:

CFSS:

CFSé&:

CFS7:

CFS10:

CFS8:
CFS9:

GETCH:

TSTCH:

TCHL:

JR
LD
INC
JR
LD
cP
JR
INC
RCAL
LD
INC
RCAL
LD
INC
RES
LD
LD
LD
CcpP
JR
INC
LD
INC
SUR
JR
CF
JR
LD
RES
LD
cr
JR
INC
JR
FoP
POP
AND
RET
LD
INC
RRA
JR
LD
OR
RET
LD
POP
POF
OR
RET

LD
INC
cp
JR
cp
RET
POF
LD
JR

Z,CFS12
(HLY,7 7
HL

CFS4

A, (DE)

NZ,CFSS
DE
BETCH
(HL) , A
HL
GETCH
(HL) , A
HL

1,R

A, (MDRV)
C.A

A, (DE)
NZ,CFS&
DE

A, (DE)
DE

?0’
C,CFs8
MAXDRV+1
NC,CFS8
C,A

2,R

A, (DE)

NZ,CFS7
DE

CFS6

AF

HL

[s o BLax RV I a o
—
3]
x

NC, CFS10
A, B
A

A, 12H
HL
HL
A

A, (DE)
DE
21H

C, TCH1
8OH

C

HL

A, 10H
CFS9

sNo = skip
;Blank fi1l11
;Point to next
; Repeat

;Get character
;FPeriod?

3sNo =3 skip
jFoint to next
;Get and test
;Save in FEXT
;Point to next
;16et and test
;jSave in FEXT
;Point to next

;Extension specified

sDefault is MDRV

;Get character
;Colon?

iNo =3 skip
sPoint to next
:Get character
;Point to next
jAd just

iError = skip
;Too big?

iYes =3 skip

PAGE 05

sPut drive number in C

;:Drive specified
;8kip blanks

;Get flag mask
;Get FCB addr
;Flags ok?
sYes => return

;Compute error code

sPut in A
i Indicate error

sError 12

$ Ad just

;Get FCB addr

; Indicate error

;6et character
;Point to next

;sControl character?

sYes =X skip
1Braphic character
sNo =% return
$Adjust

sError 10

; Lookup file in current directory

PAGE 06

PolyZap V2.0 PolyDos 2.0 ROM (GB0OT/GB1S)

]

3 Entry: HL: Lookup FCB address

: DE: Previous directory FCE address

H R: BG=1 Don’t match file name

H Bi=1 Don't match extension

H B4=1 Copy dir FCB to look FCB

; BR%=1 Include locked files

H B6=1 Include deleted files

H B7=1 Not first look

s Exit: HL: Unchanged

H DE: Directory FCB address

H B: B7 set, B6-BO unchanged

H C: Unchanged

§ e
D185 CE78 LOOK: RIT 7,k jFirst look?
D187 20035 JR NZ, LK1 ;No => skip
D189 1104C4 LD DE,FCBS-20 ;Start with first FCR
D18C CBFB SET 7,B sNext time not first
D18E ES Lk1: PUSH HL sSave FCH addr
Di18aF 211400 LK2: LD HL, 20 ;Point to next directory
D192 19 ADD HL,DE ;FCB
D193 EB EX DE, HL jPut in DE
D194 2A16C4 LD HL, {(NXTFCB) ;Done all FCEs?
D197 37 SCF
D198 ED32 SEC HL,DE
Di9A E FOP HL ; {restore FCE addr)
D1I9B 3004 JR NC, LKZ ;No = skip
D19D ZE3O LD A, 30H ;Error 30
D19F B7 OR A
D1A0O C9 RET
DiAl ES LEZ: PUSH HL ;Save lookup FCE addr
D1A2 D5 FLISH DE 1Save directory FCE addr
D1A3 3EO8 LD A,8 ;:Compare names
DiAS D738 RCAL CMPS
D1A7 2804 JR Z,LE4 sMatch => skip
D1A% CB40 BIT G.B - :Should they match?
D1AR 2B80A JR Z,LES sYes => skip
D1AD 3E02 LK4: L A, 2 ;Compare extensions
D1AF D72E RCAL CMPS
DiBl 2807 JR Z,LEbL sMatch =3 skip
D1R3 CR48 BIT 1,R 1Should thay match?
D1iBS 2003 JR NZ,LKé6 sNo =r skip
DiEB7 D1 LKS: FOP DE ;Restore dir FCR addr
D1Bg8 18D5 JR LK2 sTry next
DiBA 1A LK6: LD A, (DE) sLocked?
DiBEB CB47 BIT 0,A
D1BD 2B04 JR Z,LE7 iNo => skip
D1BF CBé8B BIT 5,B s Include locked files?
DIC1 28F4 JR Z,LKS sNo =3 try next
DIC3 CR4F LK7: RIT 1,A ;Deleted?
DICS 2804 JR Z,Lk8 sNo =» skip
D1C7 CB70 BIT 6, B ; Include deleted files?
D1C9 28EC JR Z,LKS iNo =3 try next
DICB D1 LkB: FOP DE ;Restore dir FCB addr
Dicc E1 FPOP HL ;Restore lookup FCB addr
DICD CR&O RIT 4,B ;:Copy directory FCB?
DICF 280C JR Z,LK9 ;No = skip
DiD1 CS PUSH RC :Save
DiD2 D5 PUSH DE
D1D3 ES FUSH HL
DiD4 EB EX DE,HL ;Copy FCB

PolyZap V2.0

D1D5
D1D8
D1DA
DiDE
D1DdC
DiIDD
D1DE

DiIDF
DIEG
DiEL
DIEZ
D1E4
DIES
D1E7
DIiES
DIE?
DiEA
DIEC
D1ED
DiEE
D1EF

DI1FC
DiF1
DIF2
DiF4
DiF&
DiF8
DiFA
DIFC
D200
D203
D204
D20s
D208
D20A
D20R
D20C
D20F
D211
D215
p2i8
D219
D21A
D21E
D21
D21F
220

T
LD

011400
EDEOQ
El

D1

€1

AF

€9

CS
47
QEOQQ
1A
BE
2801
oD

~T
L

13
10F7
oC
oD
C1
ce

€S

ES
0620
DFB84
2004
IE3
1829
EDSB16C4
2100C8
z7
EDS2
IEZ2
I81EB
El

ES
011400
EDRO
EDS316C4
11FAFF
19

5E

23

56
ZA14C4
19
2214C4
DFg4

FPolyDos Z.0 ROM (GBO9/GB15)

LD BC, 20

LDIR

FOF HL

FOF DE

POP BC
LKD: XOR A

RET

FAGE 07

;Restore

sNo error

Compare string at DE to string at HL for

H
s A characters

CMPS: PUSH BC $Save RC
LD E,A ;Put length in B
LD €,0 ;Clear C
CPS1: LD A, (DE) ;Get character
cP (HL) sMatch?
JR Z,CPS2 sYes => gkip
DEC C sNo match
CPS2: INC HL ;Point to next
INC DE
DJINZ £rPsi sFall thru when done
INC C ;Status to I flag
DEC C
FOF RC iRestore RBC
RET
; Enter file in current directory
1]
;s Entry: HL: Address of FCR to be entered
; Exit: HL: Unchanged
H DE: Directory FCB address
H EC: Unchanged
§
ENTER: PUSH RC ;Save
FUSH HL
LD E, 001000008 sLook it up
SCAL ZLOOK
JR NZ,ENTL sNon-existing => skip
LD A, 31H iError 21
JR ENT2
ENT!: LD DE, (NXTFCRE) ;Is directory full?
LD HL,FCBS+50%20
SCF
SEC HL,DE
LD A, 32H ; (Error 32 if so)
JR CLENT2 iYes =i skip
POF HL ; Restore FCB addr
FUSH HL
LD RC, 20 ;:Copy 20 bytes
LDIR
LD (NXTFCB),DE ;Save new end addr
LD DE,FNSC-20 ;1Get FNSC into DE
ADD HL,DE
LD E, (HL)
INC HL
LD D, {HL)
LD HL, (NXTSELD) sAdd FNSC to NXTSEC
ADD HL, DE
LD (NXTSEC) ,HL
SCAL IWDIR sWrite directory to disk

PolyZap V2.0

D225 E1l
D226 C1t
D227 B7
D228 C9

D229 EZ
D22A CDF6D2
D22D EZ
D22E CDS3D2
D231 C304C8

D234 EZ
D235 CD9&DZ
D238 EZ
D239 ES
D2ZA 2A00CHE
D23D E3
D2IE ES
D23F 2A02C8
D242 EZ
D24% CDS3D2
D245 CDO4ACH
D249 EZ
D24A 224DCO
D24D E1l
D24E E3
D24F 224BCO

D252 E1

D253 F5
D254 CS
D255 DS
D256 ES
D257 Z214BCO
D254 11008
D25D 3EOQ4
D25F CDDFDI
D262 282D
D264 0604
D266 3620
D248 23
D249 10FH
D26B I64F
D2&D 23
D26E 3656
D270 3AGOCO

PolyDos 2.0 ROM (GB09/GB13)

ENT2: FOpP HL
FOP BC
ar A
RET

; Call an overlay

PAGE
;:Restore

;Status to 7 flag

H
3 Entry: Registers defined by overlay

;Get overlay name

;Read overlay

; Exit: Registers defined by overlay
§ o
cov: EX (SP) ,HL

CALL TROVN

EX {SP) ,HL

CALL GETOV

JP OVRLY

16Go to it

; Call an overlay and restore current overlay

1
s Entry: Registers defined by overlay
)

;Get overlay name

;Save return addr
;FPush name of current
soverlay onto stack

s1Read new overlay

16et previous overlay

Exit: Registers defined by overlay
§ e
COVR: EX {SF),HL
CALL TROVN
EX (SF),HL
FUSH HL
LD HL , (OVNAM)
EX (5P}, HL
FUSH HL
LD HL, (OVNAM+2)
EX (SP),HL
CALL GETOV
CALL OVRLY ;Call it
EX (SP),HL
LD (OVFCR+Z) (HL iname
FOFP HL
EX (5P),HL
LD (QVFCE) ,HL
FoF HL

; Read overlay in OVFCB into memory

GETOV: PUSH AF
PUSH EC
FUSH DE
PUSH HL
LD HL , OVFCB+FNAM
LD DE, OVNAM
LD A, 4
CALL CMPS
JR Z,60V2
LD E,4
GOVi: LD (HL),* °
INC HL
DJNZ GOv1
LD (HL), 0"
INC HL
LD (HL) , " V?
LD A, (MDRY)

;Save all

;Is it there already?

i1Yes =r don’t read
;Blank fill rest of name

s Insert extension

sRead from MDRV

08

FPolylZap V2.0

D273
D27

D276
D278
D27h
DZ27D
D27F
D281
D284
D283

D286 2

D287
D288
D289
D28A
D28Db
D28F
D291
D292
D29Z=
D294
D295

D296
D297
D298
D299
Dz29C
D29F
D2A1
D2AZ
D2AZ
D2A4

D2AS
D2A6
D2A7
D2A8
D2AA
D2AD
D2AE
D2RO
D2B1
D2E4
D2BS
D2R8
DZ2BA

2BE
D2CO
D2C1
D2C4
D2CA

4F
DF83
DFBA
214BCO
0620
DF86
DFBA
210C00
19

SE

-
LD

56

46
210008
DFB1
DF8A
El

Di

€1

Fi

c9

FS

£5

DS
114BCO
010400
EDROQ
D1

C1

F1

c9

B7

c8

47
DF77
JA04C0
R7
2018
3D
3204C0
78
J203C0
DF88

456D7367

DF&A
AF
J204C0
DF8C
DFSR

PolyDos 2.0 ROM (B6809/G6815)

LD C,A
SCAL IRDIR
SCAL ICKER
LD HL, OVFCE
[B, Q0100000R
SCAL ZLOOK
SCAL ZCKER
LD HL,FSEC
ADD HL, DE
LD E, (HL)
INC HL
LD D, (HL)
INC HL
LD B, (HL)
LD HL, OVAREA
SCAL ZDRD
SCAL ICKER
GOV2: FOP HL

: POP DE
FOP BC
POP AF
RET

1+ Transfer overlay name to OVFCH

TROVN: FUSH AF
PUSH EC
FUSH DE
LD DE, OVFCR+FNAM
LD BC, 4
LDIR
POP DE
FOP EC
POP AF
RET

: Check for error

PAGE 09

iRead directory
;Check for error
;book it up

sInclude locked files

;Check for error
sPoint to FSEC slot

;Get FSEC into DE

;1Get FNSC into B
;Read into OVAREA
1Do the read
:Check for error
;Restore all

; Entry: A: Error code (Q = no error)
; Exit: If no error, all registers unchanged
H otherwise CKER never returns
e
CKER: orR A iError?
RET z iNo => bye
LD B.A ;Put code in B
SCAL INNOM sNormal output
LD A, (ERRFLG) ;Second error?
OR A
JR NZ,ABORT ;Yes =* trouble
DEC A ;Set error flag
LD (ERRFLG), A
LD AB i1Save error code
LD (ERRCOD), A
SCAL ICOV iCall Emsg to print the
DE "Emsg’ 1error message
SCAL ZCRLF
XOR A ;iClear error flag
LD (ERRFLG),A
DBREAK: SCAL 1CFMA ;Abort command file mode
SCAL IMRET ;:Back to Exec

PolyZap V2. PolyDos 2.0 ROM (G809/G815) FAGE 10

; Abort FolyDos, print error code, and return
;3 control to NAS-S5YS

p2Cc8 CDhGDOO ABORT: CALL STHMON sInitialize NAB-SYS
D2CB EF RST PRS sPrint error message
D2CC 28457272 DB "{Error 7,0

D2D4 3A0QSCO LD A, (ERRCOD)

D2D7 DF&8 SCAL IRZHEX

D2D9 EF RST FRS

D2DA 220D00 DR)7L CR,0

D2DD DFSE SCAL IMRET ; Back to NAB-GYS

Check +or break

-

s If CTRL/SHIFT/? is pressed, abort any
; operation, and return to via MRET

D2DF 3EO2 CEBRE: LD A, 2 ;Reset KED pointer
D2EL CD4500 CALL FFLF

D2E4 DROO IN A, (D) sRead first row
D2ES F680 Or 80H ; Ighore bit 7

D2E8 FEC7 cr ~1-Z8H 1CTRL/SHIFT/@7

D2EA CO RET NZ sNo => bye

D2ER 3A14CO LD A, (BLINKF) ;Aborted from BLINK?
D2EE B7 OR A

D2EF 2808 JR Z,CKB1 sNo =: skip

D2F1 2R290C LD HL, (CURSOR} ;Reinsert character
D2F4 77 LD (HL) (A ;at cursor

D2FS AF XOR A ;Clear BLINK flag
D2F& 3216C0 LD (BLINKF) ,A ‘

D2F9 2A06CO CrB1: LD HL, (BREAK) :Go to BREAK handler
D2FC E9 JF (HL)

; Abort command file mode

;3 If command file mode is active, abort it and
; display (Cmdf abort)

D2FD 210BRCC CFMA: LD HL,CFFLG ;Is CFFLG set?
300 AF XOR A
301 BE CF (HL)
D302 €8 RET z iNo = bye
DXOZ 77 LD {HL) (A ;Clear it
DI04 EF RBT PRS ;Display message
D305 284346D64 DR "(Cemdf abort)’,CR,0
D13 C9 RET

; Set SCAL vector

L] .
; Entry: HL: New jump vector address

H Call is followed by routine number
i

1

Exit: HL: Previous jump vector address
DE: Junk

BC: Junk

FolyZap

D314
D315
D314
D17
D318
D319
DI1R
D31E
DELF
D320
D321
D322

D32F

D324
D325
DI26

-y
327

D328
D32

DIZA
D3ZB
Di2

D3ZE
DI2F
D330

D332

TITIT
ot

D334
D335
D334
D337

D338
D339
D33

DI3

D340
D343
D245
D46
D347

£Z
SE
23
E3
ES
1600
2A710C
19
19
C1
SE
71
56
70
EE
ce

EZ
D&
FS
SF
1600
19
19
SE
23
56
ER
Fi
Di
E3
C9

FS
2118C0
FEOD
2021
CDE7DZ
3600
2R

34
in11c2

V2.0

FolyDos 2.0 ROM (GB0O9/GB15)

SSCV: EX
LD
INC
EX
PUSH
LD
LD
ADD
ADD
POF
LD
LD
INC
Lo
LD
EX
RET

(8P, HL
E, (HL)

HL

(SP), HL
HL

D, 0

HL, (STAE)
HL, DE

HL, DE

BC

E, (HL)
(HL) ,C
HL

D, (HL)
(HL), B
DE, HL

sExecute jump table

; Entry: A:

Jump vector number

Jump vectors follow call as DW's
Jumps to selected routine with all
registers intact

FAGE 11

;Get routine number

:Save HL

;:Clear D
;iCalculate addr in
;SCAL table

;Get new vector

;Read old

;Save new

;Point to next byte
tRead old

;S5ave new

;Put old vector into HL

JUMP: EX
FUSH

FUSH

LD
LD
ADD
ADD
LD
INC
LD
EX
FOFP
POP
EX
RET

; Output character to printer

]

; Entry: A:
3 Exit: HL:
H DE:
H BC:
H AF:

POUT: FUSH
LD
cpP
JR
CALL
LD
DEC
INC
LD

(SF) , HL
DE

aF

E,A

D,0

HL, DE
HL,DE
E, (HL)
HL

D, (HL)
DE, HL
AF

DE

(SPY HL

;Foint to jump tahble
;Save .

;Calculate vector addr
;6et vector into DE

sFut into HL
;Restore

;6o there

Holds character to be printed

Junk
Junk
Junk
Unchanged

AF
HL,FPOS
CR
NZI,PD4
PRCH
(HL) , O
HL

{HL)

A, (FBMB)

;Save char
:Foint to PPOS
;Is it CR?

iNo =3 skip
;Print it
;Clear FPOS
;Foint to PLCT
s Increment it
;Get PBMG

PolyZap V2.0

D34A
D3I4E
D34E
D34F
D350
D352
D353
D354
D354
D358
D3SRE
D38C
D35E
D3SF
D361
D363E
D365
D367
D348
D3&B
D3&C
D3&D
D3I6F

D372

D373
D375
D376
D377
DI79
p37C
D7D
D37E
D3I7F
D380
D382
D85
D3B6
D387
D388
D38A
D38C
D38F
D391
D392
D393
D395
D397
D399
b39C
D39D
DI9E
D3A0
DZAl
D3AZ
D3A4
D3A7
D3AT
D3AA

DZAR

47
IA10C2
QQ

s
2057
04

05
2808
JEOQD
CDR7D3Z
iq
18FS
70
18448
FEOC
2008
3600
2R
JA10C2
95

47
18E3
IAL12C2
BE
2009
CS

ES
ZEOD
CD38D3
E1l

Ci

7E

B7
200F
IAL3C2
47

04

09
2807
JEZ0
CDAED:
18F&6
F1

FS
FEO9
0601
200B
IAL3CE
5

3D
E&0D7
3C

47
JE20
CDABDZ
10F9
F1

ce

4F

FolyDos 2.0 ROM (GB0O9/GB13)

FO1:
PO2:

FO&:

PO7:

FO8:

FO9:
FO10:

FO11:

; Print

PRCHT:

LD
LD
SUH
SUB
JR
INC
DEC
JR
LD
CAaLL
INC
JR
LD
JR
cr
JR
LD
DEC
LD
SUR
LD
JR
LD
CF
JR
FUSH
FUSH
LD
CALL
FoP
rFOF

i
1

OR
JR
LD
LD
INC
DEC
JR
LD
CALL
JR
FOP
FUSH
CF
LD
JR
LD
SUE
DEC
AND
INC
LD
LD
CALL
DJINZ
FOF
RET

B, A

A, (PLFP)
B

(HL)
NZ,PO11
B

B

1,P0O3
A,CR
PRCH
(HL)

PO2
(HL) , B
PO11

FF
NZ,F0S
(HL) , O
HL

A, (PLFP)
(HL)

E,A

PO1

A, (PCPL)
(HL)
NZ,PO6
EC

HL

A,CR
POUT

HL

EC

A, (HL)

A
NZ,F08
A, (PLMG)
B, A

B

E

Z,FP08
A T
PRCHT
PO7

AF

AF

TAR

B, 1
NZ,PO10
A, (PLMG)
(HL)

;Put into B
; Get FLPF

;Subtract PBMBG
;Subtract PLCT

tNot zerc =>x
1Adjust B

skip

;Decrement count

slero =
sPrint CR/LF

skip

i Increment FLCT

:Clear FPLLCT
; Done

;Is it FF?
iNo => skip
;Clear FPOS

;Point to FLCT

;Calculate number of

:CR/LFs to print

;Fut in B

1Go print them
1Are we at right margin?

sNo =» skip

iMove to next line

iIs PFOS zero?

iNo = skip
;Get PLMG
tPut in B

1 Ad just

;Decrement count

;lero ==
;Print blank

;Restore char

:Is it TAR?

skip

PAGE

;{(Print 1 char if not)

iNo =3 shkip

;Calculate number of

:blanks to expand the.

:TAB into

sFut in B

sPrint blank{s)
sPrint character

;Fall thru when done
;Restore char

character with right margin test

LD

C,A

sPut char in

C

PolyZap VZ.0

DIAC 3A12C2
D3AF BE
DZRC €8
D3B1 79
DZR2 CDR7DI
D3BS 34
DIRe C9

DIBE7 C5
D3B8 ES
DIB? F3
D3BA CD4OLC2
DIRD F1i
DIBE E1
D3IBF Ci
D3CO
D3ICZ Co
DICT 3E0A
D3CS

D3C7 FE20
D3CY? Z02E
D3CB R7
DZCC C8
D3CD F3
DZCE FEOQ9
D3DO 280D

bz 47
DIDI ZAROLOO
DZDé FEFE
D3ID8 78
DID9 C25201
D3IDC C393M
DIDF ZAZ90C
DIE2 E&TF
DZE4 ZF
D3IES C4&0A
DIE7 E&07
DIEY ZC
DIEA 47
D3ER CS

JEC 3EZ20
D3IEE CDF&DZ
DIFL C1
DIF2 10F7
DIF4 Fi
DIFS C9
DIF& FS
D3IF7 2A290C
DIFA 77
D3FE 23
DIZFC 7E

PolyDos 2.0 ROM (GB09/GB15)

LD A, (FCFL)
c (HL?

RET z

LD A,C
CALL FRCH

INC (HL)

RET

FAGE
1Still room on line®

:No =& return
;Get char
sPrint it

i Increment PPOS

;: Transfer character to user defined output

;s routine, and add a LF in

PRCH: FUSH EC
FUSH HL
PUSH AF
CALL PCHR
FOP AF
POP HL
POF EC
cF CR
RET NZ
LD A,LF
JR PRCH

;3 Dutput to CRT

H
; Dutput character in A to
: are expanded into one or

CRT: cP
JR NC, CRTC
OR A
RET 4
FUSH AF
cP TAH
IR Z,CRT1
LD E,A
LD A, (&)
CF OFEH
LD A B
JP NZ, 152H
JF 197H
CRT1: LD A, (CURSOR)
AND ZFH
CPL
ADD A, 10
AND 7
INC A
LD B,A
CRT2: PUSH BC
LD a,’
CALL CRTC
FOP BC
DINZ CRT2
FOP AF
RET
CRTC: PUSH AF
LD HL, (CURSOR)
LD (HLY, A
INC HL

LD A, (HL)

case of CR

:Save

;Call user routine
;Restore

iWas 1t CR?
iNo = return
:Supply LF

the CRT. TAER chars
mOre spaces

;:Cantral char

sNo => go print
slero?
;Yes => bye

;Save char

:Is it TAR?

iYes => skip

sFut char in B

; Get NAS-5YS byte
1 NAS-5YS 37

; (Restore char}
;Yes =X jump

;Must be NAS-5YS |
;Expand TAR

yFut count in B
;Save RC
sFrint blank

yRestore BC
;Fall thru when done
;Restore char

;5ave char
;Store at cursor

1Move cursor right
:Is there a margin?

17

Polylap V2.0

D3FD
D3FE
D40O
D402
D404
D405
D408
D40A
D40OD

D41a
D413
D415

D416

D419
Da1c
D41D
Da1F
D422

D4zZ

D426
D429
D42A
D42C
D42D
D430
D4T1
D432
D435
D434
D437
D439
D4ZE
D43C
D43

D440
D442
D443
D444
D444
D447
D444

B7
2805
22290C
Fi

ce
JADGQO
FEFE
C20E02
C34F02

21156D4
DF72
ce

7D7000

ZAORCO
R7
2028
2A290C
7E
I216C0
ZA00OCZ
77
D71¢C
FS
JA16CO
77

AF
I216C0
F1

D8
D703
ZODE
ce
JA0ICE
SF
DF&2
D8

1D
20FA
ce
CDDFD2
ZA10CO

PolyDos 2.0 ROM (GBOZ/GB19)

CR

DN

IN

OoRr
JR
LD
FOF
RET
TC1: LD
CF
JF
JF

A
7,CRTC1
(CURSOR) , HL
AF

A, (&)
OFEH
NZ,20EH
24FH

Normalize input table

Restores normal input channels,
REEBD and SRLIN.

of previous input table

NiM: LD
SCAL
RET

TBL.: DB

L, INTBL
INIM

IREBD, ISRLIN, O

FAGE

iYes => skip
:Save new cursor
;:Restore char

{NAS-SYS 37

1Yes => jump
;Must be NAS-5YS 17

i.e. routines

On exit HL contains address

Input from keyboard or command file

If command file mode is active, get the

character from the command file,

else input

it with a blinking cursor as normally.
Pressing CTRL/SHIFT/9 will warm-boot the

system

BL

RI

BI

BL

INK: LD
Or
JR
i1 Lp
LD
LD
LD
LD
RCAL
FUSH
LD
LD
XOR
LD
FOoFP
RET
RCAL
JR
RET
Ne LD
LD
Nis SCAL
RET
DEC
JR
RET
3: CALL
LD

A, (CFFLG}
A

NZ, BL3

HL, {CURSOR)
A, (HL)
(ELINKF) (A
A, (CURCHR)
(HL) , A

BIN

AF

A, (BLINKF)
(HL) , A

A
(BLINEF) A
AF

c

BIN

NC, BLINE

A, (CURELR)
E,A

ZIN

C

E

NZ, BINI

CKERK,
A, (CFSEF)

;Command file mode?

;¥es =» skip
;:Get character at cursor

;iSave in BLINEF
;Put cursocr on screen

;Scan KED
18ave char
iRestore char at cursor

;Clear BLINK flag

;jRestore input char

sCharacter =3 return
;Scan KERD
sNo char =» repeat

;Get blink rate
sPut in E

1Scan inputs
iChar = return
;Decrement count
sloop until done

;Check for break
;Get sector buffer ptr

14

FolyZap V2.0

D44D
D44E
DASC
D4SZ
D456
pas7
D459
D4SA
D45D
D4a&0
D444
D455
D4s&7
DA4&A
D4&E
D4&D
D4&F
D470
D471
D475
D477
D478
D479
D4a7C
D47D
D47E
D4BO

D481
D484
D4g7
D488
D489
D48B
D48D
D48F
D492
D473
D494
D495
D496
D498
D494
D49B
D49C
D49E
D49F
D4A0
D4AZ
D4AS
DA4A7
D4A8
DaA?

R7
2025
JAOFCO
320BCO
R7
28C4
D
IZ20FCO
2100C3
EDSBODCO
CS
0601
ZA0OCCO
4F
DFB1
DF8A
C1

13
EDS3I0ODCO
2603
&F

IC
3210C0
7E

RB7
28C7
Cc?

BL4:

OR
JR
LD
LD
OR
JR
DEC
LD
LD
LD
PUSH
LD
LD
LD
SCAL
SCAL
FOP
INC
LD
LD
LD
INC
LD
LD
GR
JR
RET

PolyDos 2.0 ROM (G809/G8135!)

A
NZ,BL4

A, (CFNSC)
(CFFLB) , A
A

7,BL1

A
(CFNSC) A
HL, SECBUF
DE, (CFSEC)
EC

B, 1

A, (CFDRV)
C.A

ZDRD

ICKER

BC

DE
(CFSEC),DE
H, HIGH (SECBUF)
L.A

A
(CFSEF) , A
A, (HL)

A

7,BL3

: Scan keyboard with repeat

PAGE

;Buffer empty?
:No => skip

;Get sector count
15ave as flag
ylero?

iYes => skip
iDecrement count
iSave it

jRead into SECRUF
sFrom CFSEC

;Save BC

;Read one sector
;From CFDRV

1Do the read

;Check for error
;Restore RC
;Increment sector addr
sSave it

:5et MSB of address
;1Set LGSR

; Increment pointer
;1Save 1t

;Get char

iFiller?

;Yes =3 repeat

I1f character is available it is returned in A

; Registers HL, DE, and BC ares modified.

L]
i
; with carry set. Otherwise carry is cleared.
1
H

Pressing CTRL/SHIFT/9 warm-boots system.

CDDFDZ
2A11C0
2C

2D
2817
0608
IEOL
CD4500
F5

F1

7D

Bg
2004
DROO
2F

4F
10EF
7C

Al
204F
21010C
DBOO
2F

77
0608

Rl

RE2:

RKZ:

CALL
LD
INC
DEC
JR
LD
LD
CALL
FUSH
FOF
LD
Cr
JR
IN
CPL
LD
DJINZ
LD
AND
JR
LD
IN
CPL
LD
LD

CKBRE
HL, (REROW)
L

L

7,RK3

B,8

Al

FFLP

AF

AF

A,L

B

NZ,RKZ

A, (O)

C.A
RK1

A H

C
NZ,RK11
HL , KMAF
Ay (O)

(HL) , A

;Check for break
;Get bit/row inte HL
iIs row zero?

sYes =» no repeat char
sDo all 8 raws
sMove to next row

:Delay
1Repeat key row?

s1No = skip

;Read row status
;Complement

sFPut in C

;Fall thru when done
:1Is repeat key down?

sYes =: skip
;Point to KMAP
;Read first row
;:Complement
;Store in KEMAP
;Do B rows

13

FolyZap V2.0

D4AR FEOL
D4AD CD4AS00
DABO 23
D4R{ DBOO
DARZ 2F
D4R4 ELTF
D4R& AE
D4R7 2007
DART 10F0
D4ARE AF
DARC ZFZiiCo
DARF 9
Daco OEFF
DACZ 1&00
D4C4 7
D4CS CR1Z
p4c? oC
D4C8 {F
DAC? IOFA
DACE 7R
D4CC AE
D4cp 77
D4CE 7R
DACF AL
DADO 28E7
D4Dp2 2111C0O
D4DRS 70
D4D& 23
pap7 72
D4DB ZFAQL00
D4DE FEFE
D4DD 20035
DADF CD1301
DAEZ 1803
D4E4 CDCF00
D4E? Z0D2
DAE? 3F213C0
D4EC 2A/02C2
DAEF 180R
DAF1 Z2A14C0
D4AF4 2B
DAFS 7C
D4F& BS
DAFT7 Z00O7
DAF? ZAOACZ
DAFC ZAL3CO
D4FF 27
DSOO 2214C
D03 C9

D504 DF&9
DSO& DF6YF
psoB C9

FolyDos Z.0 ROM (GBO9/GB13!

RE4: LD A, 1
CALL FFLP
INC HL
IN A, (0
CPL
AND 7FH
X0R (HL)
JR 17, RE7
RES: DJINZ Ri4
RK&: XOR A
LD (REROW) , A
RET
RK7: LD C,-1
LD D,0
SCF
REE: RL D
INC C
RRA
IR iC,RES
LD A.D
XOR (HL)
LD (HL) , A
LD A, D
AND (HL)
IR Z,RKS
LD HL , REROW
LD (HL) , B
INC HL
LD (HL) , D
LD A, (&)
cP OFEH
IR NZ,RES
caLL 112H
JR RE10
REQ: CALL OC9H
RK10: JR NC, RK&
LD (REVAL), A
LD HL, (RKLON)
IR RE12
RKi11: LD HL, (RKCNT)
DEC HL
LD AH
OR L
JR NZ,RK13
LD HL, (RESHD)
RE1Z: LD A, (REVAL)
SCF
RE1Z: LD (RECNT? ,HL
RET

SPZ: SCAL Z5PACE
SCAL ZSFACE
RET

: Call routine number E

FPAGE t&
iMove to next row

i Increment EMAF pointer ‘
1Read raow status

;Complement

;Ignore bit 7

;Same as last time?

;No =& find out why

;Fall thru when done

;Clear carry

;iNo repeat hkey

;Compute bit mask and
scolumn number

;Get bit mask
iUpdate map .

;Get bit mask

skey released?
;Yes =: 1gnore
;Foint to EED datsa
;:Save row number

;Save bit mask
;NAS-5YS 37

iNo =» skip
1Call NAS-SYS 3

;Call NAS-SYS 1
iUndefined key =i skip
:Save ASCII value
;Long delay

:Get counter .
; Decrement
i lerc?

iNo =% skip
;Short delay
;Get ASCII value
;Indicate char
;Save counter

FolyZap V2.0 PolyDos 2.0 ROM (5B809/GB15) PAGE 17

D509 ES SCALI: FUSH HL
DSOA DS PUSH DE

DSOR FS FUSH AF

DSOC 1400 LD D,0

DSOE 2A710C LD HL, (STAR)
D511 19 ADD HL, DE
D512 19 ADD HL,DE
D513 SE LD E, (HL)
DS14 23 INC HL

DS1S S LD D, (HL}
D516 EE EX DE, HL
D517 Fi FOF AF

D518 D1 FOP DE

DS19 EZ EX (SP) HL
DS1A C9 RET

D31k 81D4 PDSCTE: DW RKED 3 7DH
DS1D ©04D5 DW SF2 ; 7EH
DS1F 0903 D SCALI s 7FH
D321 352D5 D DSIIE 1 80H
D32T AYDO DW DRD ;81H
D525 ACDO DW DWR ;82H
D527 BBDO DW RRIR ; B3H
D529 DADO D WDIR ; 84H
D528 EFDO DW CFS ; BSH
DSZD 83D! DW L OOk 1 86H
DS2F FODI DW ENTER s 87H
D531 29D2 DW cov ; 8BH
DEXE3I Z4D2 DW COVR ; B9H
D335 ASDZ Di CEER ; 9AH
D537 DFDZ2 DW CEEBRE. ; BBH
D539 FDD2 D CFMA 1 8CH
DSZR 14D3 DW 56CV ; BDH
DS3D 28D DuW JUMP ; 8EH

DE3F 3B8DI DW FOUT s BFH

FolyZap V2.0

DOEQC
QOEQ
O0E1L
O0EZ2
OCEZ
O0E4
00E4

QOO
OO1R
O03R
0088
Q0A8
QOCOo
QODO

Co7D

D541
DS44
DS47
D34A
DS4C
DS4F

CD9ADS
CDELDZ
CDFODS
JECR

CDEZDS
C3ZFBEDS

IEOT
B9
JEZ28
D8

AF
CRS1
21ECO4
c8
218C0OZ

FolyDos 2.0 ROM (GB09/GE135)

L

H

H FolyDos 2.0 R1 (GB09/6815)

: Disk Driver Routines Section

H By Anders Hejlsberg
Copyright (C) 1981
PolyData microcenter ApS

1

L]

H

H Routines will control a Gemini GBO9

H FDC card (Western Digital 1797 floppy
H disk controller chip) with up to four
: Pertec FD250 5.25" floppy disk drives

; Fort definitions

FPAGE

CMDREG: EQU OEOH 11797 command register
STSREG: EQU OEOH 31797 status register
TREREG: EQU OE1H 31797 track register
SECREG: EQU OEZH ;11797 sectar register
DATREG: EQU OE3H ;1797 data register
STPORT: EGQU OE4H 16B09 status port
DRFPORT: EGQU OE4H 16BO9 drive select port
;3 1797 commands

CRSTOR: EQU OOBH iRestore

CSEEK: EQU O1BH i Seek track

CSTEP: EOQU OZBH ;Step one track
CRDSEC: EQU 088H ;Read sectors

CWRSEC: EQU OABH sWrite sectors

CRDADR: EQU OCOH sRead address

CCLEAR: EOQU ODOH :Force interrupt

: Workspace

IDHEAD: EQU DSKWSFP

1 Initialize disk drivers and

INIT: CALL CNVCOD
CALL CLEAR
CALL MOTON
LD A,CRSTOR
CALL €1797
JF TSTDSK

; Return disk size of drive C

DSIZE: LD A, MAXDRY
CP C
LD A, 28H
RET C
XOR A
BIT 2.C
LD HL, 35%18%2
RET z
LD HL, 35k 1042

select drive €

;sConvert drive code
iClear 1797

;Start motors
;Restore RK/W head

;1 Test for disk
in HL
;Too big?

i (Error 2B if so)

iYes = return

iNo error

;Double density?

; (Double density size)
;Yes =» return

18ingle density size

18

Y

PalyZap VZ.

DS62
Da&=

D564
D565
D5&8
D36A
D5&D
DS&F
D372

DE73

D374
ps77
DS79
DE74
D37C
DS7

DS7E
DEg1
D583
D85S
Ds87
Ds8e
DS8A
D8k
Da8p
DERF
D530
D591
D59z

D595

DSR7
D398
D399

D39A
DS9E
p39C
D370
DESF
DSAO
D3Al
D5AZ
DaAZ
DSAS
DSAs
D5A7
DSA8
JUaTAYY
DSAA

5AaC

36D
DSRO
D3E1

AF
ce

FS
CD28Dhs
202D
CDhBR2ZDS
2028
CDFODS
Fi

FS
CDCYDbé
201E
05
281ER
24

1C
JAN200
Cr&7
OE24
2802
CE14
7HB

RY
IBES
1EQO
14

7A
FEZ23
=8DD
IE29
El

B7

ce

[~
(]

41

-y
7

ELO4
07
07
4F
78
ELOZ

2C

47

AF

37

17
10FD
ki
I202C0
C1

cq

PolyDos 2.0 ROM (G80%F/G8135)

X0OR A
RET

FAGE

sNo error

;: Read or write B sectors starting at sector DE
: on drive C to or from memory starting at HiL.
7 A=0 indicates read, A=-1 indicates write

RWSCTS: FUSH AF

CALL DRSEL

JR NZ , RWSZ

CALL CNVSAD

JR NZ,RWSZ

CALL MOTON
RWS1: POP AF

FUSH AF

CALL RWSR

JR NZ, RWS3

DEC B

JR 7,RUS3

INC H

INC E

LD A, (DRVCOD)

EIT 4,A

LD C,18%2

JR 7,RWS2

LD C,10%2
RWS2: LD AE

CF »

JR C,RWS1

LD E, 0

INC D

LD A,D

CF 75

JR C,RWS1

LD A, 29H
RWSI: FPOF HL

OR A

RET

i1Save R/W flag
;Select drive

s1Error =3 skip
;Convert sector addr
1Error = skip
;Start motors
sRestore R/W flag

iRead/Write one sector
iError =X skip
sDecrement count

;:Done => skip
;Calculate next addr

i Increment sector nbr
iDouble density?

1 (Double density sizel
;Yes =3 skip

;Sirngle density size
;Get sector nbr

;Too big?

sNo => skip

iClear sector nbr

; Increment track nbr
;Get track nbr

;Too big?

iNo => skip

sError 29

1 Ad just

;Status to 7 flag

; Convert drive number in C to & drive code

c
o C
C

CNYCOD: FUSH B
LD <]
LD A
AND 4
RLCA
RLCA
LD
LD
AND
INC
LD
XOR
S5CF

CCl: RLA
DJINZ £c1
OR C
LD {DRVCOD) , A
FOF EC
RET

¥

o I

DFU:DI'.-'-I pol wl

; Convert a sector address

;Save BRC i
;Drive nusber to B
jand to C

;Isclate density
;Move to bit 4

sFut in C
;Isplate drive number

;Make 1-4
1Put in B
;Set bhit B in A

s Include density
;Save as drive code
;Restore BC

in DE into a track

19

FolyZap V2.0 FolyDos 2.0 ROM (GB09/GELS) FAGE
: number in D and & sector number 1n E
DSEZ ES CNVSAD: FUSH HL ;Save
DSBZ CS FUSH BC
DSR4 &2 LD H,D ;Put sector addr in HL
SBS &B LD LGE
DSBS TAOZCG LD A, (DRVCOD: ;Get drive code
DSRS CR&7 RIT 4,R ;Douvble density?
DSBER 012400 LD BC, 182 ; {Double density size!
DSBRE 2803 JR Z,C8A1 iYes =& skip
DSCO 611400 LD BC, 10x2 18ingle density size
DSCE ZEFF C8AlL: Le A, -1 :Track counter
DECS 3C CSAZ: INC A s Increment track nbr
DaCs FEZZ CF 34+1 s Overflaow?
DSCY Z0CE JR NC,C8AZ iYes =3 skip
DSCA BY oR A iSubtract track size
DSCE ED4Z2 SR HL, BC
DECD ZOF& JR NC,C5A2 sNo carry =% repeat
DECF 09 ALRD HL , BC 1 Ad just
D300 57 LD b.A sPick up track
DSbl 5D LD E.L sFick up sector
DEDZ AF X0OR A iNo error
DSDZ 1802 JR CSA4
DD IEZ6 CERZ: LD A, 26H iError Z&
psD7 Ct CSA4: FOP BC ;Restore
paDE E1l FOF HL.
DEDY B7 Or A ;Status ta 7 flag
psba C9 RET
: Delay for B milliseconds. Set up for 4MHz
; clock without wait states. The delay value
: need not be modified for slower clock rates.
: Note, however, that the minimum clock rate
i is IZMHz without wait states.
DSDER ZESE DELAY: LD A,74
DSDD FF RST RDEL
DEDE 10OFE DJINZ DELAY
DREO C9 RET
;3 Clear the 1797
baEl ZEDG CLERR: LD A,CCLEAR
: Do a 1797 type I command
DSEZ DIEO Ci7e7: Ut {CMDREG) , A ; Output commarnd
DSES JEOA LD A, 10 1Small delay
bSE7 3D C1A: DEC A
D3EQ 20FD JR NZ,C1A
DSEA DBED CiE: IN A, (STSREG? ; Done”
DSEC 1F REA
DSED ZBFR JR C,CiE iNo =3 wait
DSEF C? RET
; keep drive motors running
DSFO ZA0ZCAO MOTON LD A, (DRVCOD) ;Get drive code
DSFE D3E4 ouT (DRFORT), R :1Start drive
DSFS DBED MO1: IN A, (STSREG) ;Running”?
DSF7 17 RLA
DSFg8 Z8FH JR C, MO0t 1No = wait

PolyZap V2.0

DSFA C9

DSFE Co
D5FC EDFODS
DSFF 0664
D&CY CDDEDS
D604 ZECO
D506 D3EOC
D&08 OEF6
DA0A 0601
p&OC CDDEDS
D&OF DREO
D&11 CEAY
D613 2803
D615 0D
D616 Z0FZ
D618 CDEIDS
D&1RB AF
D&1C 40
D&1D 0D
D61E 2005
D&20 Z202C0
D&2T ZEZD7
D625 C1
D&26 B7
D&27 €9

D&28 3ECT
D&2A R
D&2B ZEZB
D&2D D8
D&ZE CS
D&ZF ZA0ZCO
D&ZEZ 47
D&EZ CDYADS
D&Z6 4F
D&ZE7 CDFODS
D&3A 78
D&ER 21
D&ZC 2820
D&ZE CRFRDS
D&41 2Z0C1E
D&43 ES
D&44 DS
D445 DBE1L
D&47 57
D&48 1EGO
D&4a 217DCO
D&4D ZEROI
D54F CDC9DS
D&se DA
D65T EL
D&54 ZEZT
56 2004
D&ER ZATDCO
D&SE DIEL
D&SD AF
D&ESE L1

PolyDos 2.0 ROM (GRO9/GE1D)

RET

FAGE

; Test that a disk is present i1n selected drive

TSTDBE:

TDI1:

TD2:

TD3:

; Select drive C

DRSEL :

DRG1:

FUSH
CALL
LD
CALL
LD
ouT
LD
LD
CALL
IN
BIT
JR
DEC
JR
CaLL
XOR
INC
DEC
JR
LD
LD
FOF
R
RET

LD
CF
LD
RET
PUSH
LD
LD
CALL
LD
CALL
LD
SUE
JR
CALL
IR
FUSH
FUSH
IN
LD
LD
LD
LD
CALL
FOF
POP
LD

1
w it

LD
ouT
X0
FOF

BC

MOTON

E, 100
DELAY

A, CRDADR
(CMDREG) , A
C,150

R, 1

DELAY

A, (STSREG?
0,A

Z,TD2

c
NZ,TD1
CLEAR

A

c

C

NZ,TD3
(DRVCOD) , A
A, 27H

EC

A

A, MAXDRY
c

A, 28H

C

BC

A, (DRVCOD
BE,A
CWVCOD
C,A

MOTON

A

C

Z,DR51!
TSTDGK
NZ,DRS1
HL

DE

A, (TRKREG)
0,A

E,O

HL, IDHEAD
Al

RWSR

DE

HL

A, 27H
NZ,DRS1

A, (IDHEAD)
(TREREG) , A
A

BC

1Save BC
;Start motors
1In case head loading

;Do a read address

:Must complete in 150ms
:Delay one ms

; Done?

:Yes = skip
; Timeout™
iNo =» retry
;Clear 1797
;No error
;s Timeout?

iNo =3 skip
iNo drive selected

sError 27

iRestore BC

;Status to ¢ flag

;Too big?

i (Erroe 2B i+ s0)

;¥es => return

:Save BC

;Get current drive code
sFPut in B

;Convert new drive code
sPut 1in ©

;Start motors

sDrive already selected?

;Yes =- bye

1 Test for disk
sError =: skip
i Save

:1Get track nbr
;Fut in D

: Dummy sectar
t1Read ID header

;Restore

: {In case error)
1Error =+ skip
sFick up track
1Give it to 1797
shio error
sRestore

FolyZap V2.0

D&EF
D&s0

Db61
D&6Z
Das4
D&&S
D&&E
D668
D&6A
b&é&D
D&GE
D&70
D&7Z
D&74

D675

D&76
D477
D678
D679
D&7C
D&7E
D680
D682
D484
D&8S
D687
D&88
D&BA
D&BB
D&8D
D&BF
D692
D&9Z
D695
D697
D699
 D&9A
D&9C
D&9D
D69E
D&AD
D&AZ
D6AS
D&AT
D&AT
D&AA
D&AC
D&AE
D&BO
D6EZ
DSBS
D&RS
D&E7

B7
Cc?
; Seek
DRE! SEEKTR:
EA
c8
74
D3IE3
IEL1B
CDEZDS
€S
0614
CDDEDS
Ci
Cce

an

HIAESH
7 A=1:
1 A=-1tt

CS RDWR:
DS

ES

4F

ZA02CO

CR&7

1612

2802

160A

7E RWOs
O&00

EA

3803

92

0602

D3IE2 R

CDFODS

QC

2014

QOEES

JEAB

BO

D3IEGC

7E RWz:

2T

et

ED4O
28FC
F2C2D6
3EZ
18FZ
(3]0} RWd:
B8R
2802
JECO
OEE4
RO
D3IEC
£ED40
28FC

RW=:

RW7:

RWS:

OR
RET

track D

IN
CF
RET
LD
ouT
LD
CALL
FPUSH
LD
CALL
POF
RET

FolyDos 2.0 ROM (GBO9/GB1S)

A

A, (TREREG)
D

z

A,D
(DATREG) , A
A, CSEEK
C1797

EC

B, 20
DELAY

EC

Read sector
Read address
Write sector

FtSH
FUSH
FUSH
LD
LD
BIT
LD
JR
LD
LD
LD
Cr
JR
SUp
LD
ouT
caLt
INC
JR
LD
LD
OR
ouT
LD
INC
IN
JR
JF
out
JR
DEC
LD
JR
LD
LD
OR
ouTt
IN
JR

BC

DE

HL

C.A

A, (DRVCOD)
4,4

D, 18

7, RWO

D, 10

B,2
(SECREG) , &
MOTON

C

NZ , RWd
C,STRORT
A, CWRSEC

B
(CMDREG) , A
A, (HL)

HL

B, (C)

7, RW3

F kW6
(DATREG) , A
RWZ

»

A,CRDSEC
Z,RW7

A, CRDADR
C,STFORT

B
(CMDREG) , A
B, (C)

7, RWS

PAGE 22

;Status to 7 flag

1There already?

i1Yes = bye
1Seek track

sAdditional delay

Read/Write sector £ to/from memary

:Save

Put R/W flag in C
1Get drive code
;Double density”

: (18 sectors/track)
iYes => skip

;10 sectors/track
;Get sector number

; (Side O flag:

:0n side 07

iYes =7 skip

;Adjust

:S8ide 1| flag

:Output sector number
skeep motors running
sWrite sector?

iNo =» skip

sPoint to STFORT

; Get command
;Include side

; Output command

1Get next byte ready

;Read status
iNo reguests ==>
sJump on INTRE
; Output byte
;6o get next
;Read sector?

; (Read sector command)
yYes => skip

iRead address command
iFoint to STPORT
i Include side
:Output command
;Read status

;No requests =>

loop

loop

Polylap V2.0

D6ET
DoBC
D6RE
D&REF
D&6CO
D&C2
D&C4
D&CSE
D&C6
D&C7
D&CS

D&eca
D6EA
D&CE
D&CE
D&DO
p&h1
D&4D4
D&D6
D&D7
D&D?
D&DE
D&DD
D&OF
D&EL
D6EZ
D&ES
D&E7
D&6ET
D&ER
D&EE
D&F
D&FZ
D&FE
DaF4
D&F &
D&FT
D&FA
D&FR
D&FC

D&FD

F2C2D6
DEEZ
77

-
A

18FZ
BRED
B7
El
D1
C1
co

C5
47
QOEQS
CD&1D6
78
CD75D6
2824
oD
2817
CE47
TE20
201R
CE41
Z0ED
IEIE
CE49
2007
TEOR
CDE3IDS
180D
061F
04

17
IOFC
CDE1DS
78

C1

B7

Co

FolyDos 2.0 ROM

JF
IN
LD
INC
IR

RW6: TN
OR
POF
FOP
POF
RET

(GBO9/5818)

P, RW6
A, (DATRER)

C(HL) LA

HL
FWS

A, (STSREG!
A

HL

DE

EC

pdump on INTRO
;Read byte
have it
;:Point to next

;Read status
;Status to 7 flag
;Restore

; Read/Write sector E from track D with up to

: eight retries

RWSR: FUSH
LD
RWRO: LD
RWR1: CALL
RWR2: LD
CALL
JR
DEC
JR
BIT
LD
JR
EBIT
JR
LD
BIT
JR
LD
RWR3: CaLL
JR
RWR4: LD
RWRS: INC
RLA
JR
CALL
LD
RWR7: FOF
ORr
RET

$END: END

RC

B,A

c,d
SEEKTR
A,B
RDWR
Z,RUR7
C
Z,RWR4
O.A

A, 20H
NZ,RWR7
0,C
NZ,RWRZ2
A,CBTEP
1,C

NZ, RWRZ
A,CRETOR
C1797
RWR1
E,1FH-
k

NC , RWRS
CLEAR

A B

EC

A

;Save

;Put R/W flag in B
;Set retry count
;Seek track D

;Get R/W flag

:Do read/write

iNo error =& done

;Done 8 retries”

1Yes =& skip
iDrive not ready?
; (Error 20 14 so)

1Yes =» skip
:0dd retry?
iYes = skip

iLoad step command
;2nd or 6th retry?
sNo =% skip

;Load restore command
;Do command

;6o retry

;Compute error code

;Clear 1797

;Fut code in A
iRestore

;Status to 7 flag

FAGE &3

PolyZap

$END
ARGLO
ARG4
ARG7
ARGC
BIN
BLZ
BLIMNKF
BREAEK
BREVAL
Cla
CCLEAR
CFFLG
CFS
CFSit
CFS3
CFS6
CFse
CH
CKER
CLINF
CNVCOD
cav
CFS2
CRDSEC
CRT1
CRTC1
CSAZ
€50
Cup
CURBLR
cuu
DBREAEK
DIRBUF
DRD
DRSEL
DSIZE
ENTL
ERRCOD
FCRS
FF
FLDA
FSEC
GETCH
GOvZ
INIT
INTA

L MAFP
kKTABL
LE2
LES
LES8
MAXDRV
MONSTE
NMIJ
NXTFCE
OVAREA
OVRLY
FCPL
FDCE
FOSCTE
FLFF

V2.0

D&FD
QC1E
oc12
0cig
OCOA
D4ZEC
D447
Coté
CO0s
QC25
DSE7
00DoO
CoOOR
DOEF
D135
D128
D1sC
D173
0017
D2A5
Co19
Da7A4
D22

D1E8
0088
DZDF
D4OS
DSDS
O0O1S
0014
C201
0013
D2C4
C40Q0
DOAY
D&28
DSS2
DIFC
Co0s
C418
a00g
0l
0000
D177
D291
DS41
€73
0ol
0C&D
DIgF
D1B7
DICE
0007
QC2C
OC7D
C416
C800
c804
c212
DOZA
DS1E
CZio

PolyDos 2.0 ROM (GBU9/GB1S)

ABORT
ARG2
ARGS
ARGE
ARGN
HINI
BL4
BNSC
BREKADR
BS

CiB
CCR
CFMA
CFS1
CFs12
CFS4
CFg7
CFSEFP
CkRl
CLEAR
CMDREG
CNVYSAD
COVR
CR
CRSTOR
CRTZ
C£sAal
CSA4
CSR
cuL
CURCHR
CWRSEC
DDRV
DNAME
DRPORT
DRVCOD
DSKWSP
ENTZ
ERRFLG
FEXA
FFLF
FNAM
FSFL
GETOV
IDHEAD
INSLEN
INTBL
KOPT
LF

LKZ
)
LK
MDRV
MOTON
NUMN
NXTSEC
OVFCB
FEMG
FDC1
PDCROM
FLCT
FO1

D2C8
QCOE
0C14
QC1A
OCOR
D440
D475
Co0A
0C27
0008
DSEAR
0018
D2FD
DOFB
D132
D129
D164
Coi¢
D2F9
DSE1L
Q0QEQ
DSR2
D234
Q00D
O0O0R
D3ER
DaC3
DED7
0016
Q011
C200
QOAB
Caol
£400
QOE4
Coo2
Co7D
D225
coo4
Q012
0045
QOO0
Q00A

D253

cO7D
C214
D416

ocz7

000A
D1A1
D1BA
D1DD
CoOo
DSFQ
OC20
Ca14
Co4B
c211t
DO1D
DOQOO
co17

D352

ARG1
ARGS
ARG6
ARG?
ARGX
BL1
BL INE
BRAM
BREPT
c1797
€1
CFDRV
CFNSC
CFS10
CFa2
CF5S
CFs8
CFSEC
CKBRE
CLIN
CMFS
CONFLG
CFS1
CRDADR
CRT
CRTC
CSAZ
CSEEK
CSTEF
CUR
CURSOR
DATREG
DELAY
DNNIM
DRS1
DRW
DWR
ENTER
ESC
FEXT
FIRST
FNSC
FUFL
GOV1
INFOFA
INSTR
JUMF
KTAR
LEL
LK
LK7
LOOK
MO1
NMIA
NUMY
QUTTA
OVNAM
FCHR
FDC2
FDOSW
PLMG
FOLO

ococ
QC1l0
0C16
QCic
OC2R
Da1F
D4t
coog
0020
DSEZ
DSAY
coot
COOF
Diéa
D124
D143
Di71
caoD
D2DF
CCiBR
DiDF
0C26
DI1E3
QQCO
D3C7
D3IF&
D3CS
QO1E
O0ZR
Q012
0C29
O0ET
DSDR
D41¢C
D&SE
DOAE
DOAC
DiFOQ
O01R
Q008
COOz
QO0E
QO0B
D2&6

200
C215
DEZ8
OC&F
DiBE
D1AD
DiC3
D185
D3FS
QCTE
0C21
QC73
ceoo
C24¢Q
D029
DORD
C212
D3R4

PAGE 24

FolyZap

FOL1
FO4
FO7
FORTO
FRCH
RAF
RCALH
RDIR
RHL

RE 10
RE13
Rt 4
RK7
RKRD
RELON
REVAL
RSF
RW2
REWS
RWRO
RWRE
RWR7
RWSE
SiFCE
SCALI
SECRUF
ap2
STACK
STSREG
TCH1
TDZ
TROVN
UINA
uouTa
WDIR
IATE
ZBLINK
ICKEBRE
ICOVR
ICRT
ZDWR
IFFLF
ZJumMpP
IMFLF
ZNNIM
INUM
ZRERD
18CALT
I5PACE
I88CY
ITDEL
ZunuT
ZX0UT

V2.0

DZAF
DIb1
p3g7
OCO0
DER7
OL&7
Q010
DOEREB
0C&S
D4E7
DSOG
D4AR
D4CO
D48l

202
CO13
OCSER
D&FC
D&BS
D6CE
D6ER
D&FA
D597
CoS5
DSoY
CI00
D504
1000
OOEOD
D130
D&25
DR&
OC7E
ac77
DODA
Q073
aO78
Q0B8R
0089
Q065
0082
O0SE
DOBE
QOSF
0078
00&4
007D
G050
0069
008D
Q0aD
0075

006E

FolyDos 2.0 ROM (GBO9/GE1%S)
FDZ 53 FOZ DISE
FOS DI&F FO& DI7E
FO8 D371 FOQ DIAZ
POUT D338 FPGS Co18
PRCHT D3AR FRS 0028
RAM 1000 RBC QC61
RDE OCE3 RDEL 0038
RDWR D&75 RESET 0000
RIN 0008 RE1 D48D
RE11 D4F1 RELZ D4FC
REZ2 D49C REZ D4A2
RES D4RY Rk & D4RR
RES D4CS RES D4E4
REBIT coiz RECNT coig
REROW cotl RESHO C204
ROUT 000 RFC OCE9
RWO D&84 RW1 p&8D
RWZ D&TE RW4 DA
RW& D&C2 RW7 D&BO
RWk1 D&CD RWR2 D&ho
RWR4 D&FO RWRS DeF2
RWS1 D572 RWSZ psge
RWSCTS D564 RWSK D&Ce
SZFCE Coa9 SCALH 0018
SCTE C100 SCTRS Co7E
SECREG OQOE2 SEEKTR D&bt
S5CV 14 STAR 0C71
STMON Q00D STRORT GOE4
SYSWSP L0832 TAE o009
TD1 D&OA D2 D618
TOF CO0o TREREG OOCE]L
TSTCH D179 TSTDSEK, DEFE
UINJ 074 UouTA 0Cc78
USRWSF COCO VRAM ¢804
XORT oC29 IARGS Q0&
ZBIHEX Q074 ZRIZHEX 00468
ZCFMA o08c ICFS 0085
ICKER O0O8A OOV 008s
ICPOS QO7C ICRLF OO6A
ZDRD o0ogl IDSIZE 0080
ZENTER 0087 ZERRM OOARB
ZIN 0042 ZINLIN Q067
ZKED 0041 ZLO0K 00846
IMRET O05H INIM Q072
ZNNQOM 0077 INOM 0071
IPOUT QO8F ZRDIR Q083
ZRLIN Q079 ISCALT OQ7F
250071 C0&8D {SF2 QO7E
ZSRLIN Q070 I5RLX OOsF
ZTBCDZ O0&7 ZTBCDI 0044
ZTX1 0060 ZUIN Q078
IWDIR 0084 IXKEEBD Q074

FAGE 25

FolyZap V2.0

£800
€800

C800 456D7367

€804 B7
£805 C8
£80& 47
C807 213FC8
€80A 7E
C8OB 23
£8aC B7
CsoD 2814
C80F EB
ce10 2807
C812 CBR7E
ce14 23
C815 28FR
‘CB17 18F1
C819 7E
CB1A E&7F
C8i1c F7
C81D CR7E
CBIF 23
£820 28F7
cgz2z2 .9
£823 EF
C824 IF4ELF20
C83B 78
C83C DF&8
£83E C9

C83F

C83IF S3796E74
€84B 02
£84LC S546F6F20
£863 03
C8464 42616420

PolyDos 2.0 Emsg overlay

FolyDos 2.0

Emsg overlay

By Anders Hejlsberg
Copyright (C) 1981

PolyData microcenter ApS

H
s
8
]
]
H The error message writer
3
L]
H
H
3

REFS SYSEQU

REF
ORG OVAREA
IDNT $,0

;s Overlay name
DB Emsg’

; Overlay entry point

DR *?No message for error 7,0

OR A
RET i
LD B,A
LD HL, EMSGTB
SEARCH: LD A, (HL)
INC HL
OR A
JR Z,NOMSG
cP B
JR Z,PRINT
SKIP: BIT 7, (HL)
INC HL
JR 7,SKIP
JR SEARCH
PRINT: LD A, (HL)
AND 7FH
RST ROUT
BIT 7, (HL)
INC HL
JR Z,PRINT
RET
NOMSG: RST PRS
LD a,B
SCAL ZRZHEX
RET
EMSGTE: EQU s

i PolyDos error messages

DC ’Syntax errar’
DB OZH

DC ’*Too many/few parameters’

DB O3H
DC ’Bad parameters’

PAGE 01

FolyZap V2.0

€872
ce73
€890
C871
CaAz2
C8A3
C8gr7
C8E8
cacs
€8Cc?
C8bA
C8hh
CBEF
C8Fo
C8FF
€00
Cot4
€715
€920
C921
Co31
Co32
C940
c94a1
Ce50
€951
Co61
C962
co79
C974
C98E
C98F
CI9B
Cco9C
ceB2
CIB3
CcoCh
cecC
C9DD
C9DE
C9FE
C9FF

CAlB
CAlC
CAZC
CA2D
CAZ9
CA3A
CA4E
Caar
CA3A
CASB
CALE
CALF
CR77
CA78
CABS
CAB6
Ch94

10
4946C6CHS
11
46696C65
12
42616420
13
46696C65
14
43787465
15
44726976
20
44726976
21
4469736H
22
57726974
23
5265636F
24
4368656
25
4C6F7374
26
42616420
27
AELFZ2064
28
496C6CHS
29
4469736R
30
492063561
31
54686174
32
444697265
33
49206361
40
49206361

80
4E455854
81
53796E74
82
52455455
83
4F757420
84
46736E63
B3
AF 766572
86
4F737420
87
956E64465
88

PolyDos

; DISK BASIC error messages

2.

DB
1]
DE
bC
DB
DC
DE
DC
DB
DC
DB
DC
DB
DC
DB
DC
DB
DC
DB
De
DB
DC
DB
DC
DB
De
DB
De
DB
DC
DB
pC
DB
pc
DB
DC
DB
DC
DB
DC
DB
beE

DB
DC
DB
De
DB
Dc
DB
De
DB
pe
DB
DC
o)z
Dc
DB
pc
DR

0

Emsg overlay

10H

*Illegal character in filename’

11H

’Filename too long’

12H

"Rad drive identifier’

13H

"Filename missing’

14H

’Extension missing’

15H

’Drive number missing’

20H

"Drive not ready’

21H

"Disk write protected’

22H

‘Write fault’

23H

’Record not found’

24H

*Checksum errar’

25H

’Lost data error’

26H

’Bad disk address’

27H

’No disk or wrong format’

28H

*Illegal drive number’

29H

’Disk is full’

J0OH

I can’’t find that file’

3iH

’That file already exists’

32H

’Directory is full’

I3H

’I can’’t do that to a locked file’

40H

*lI can’’t rename across drives’

80H

"NEXT without FOR’

81H

’Syntax error’

82H

RETURN without GOSUR®

83H

’Out of data’

B4H

*Function call error’

85H
‘Overflow’
86H

0ut of memory’

87H

’Undefined line’

88H

PAGE 0

]

PolyZap V2.0

CA9S
CAAZ
CAA3
CABB
CABC
CACC
CACD
CAEX
CAE4
CAF1
CAF2
CBO4
CROS
CB14
CER15
CRB32
CR33
CB43
CB44
CBS6
CRS7
CB&6
CB&67
CR7A
CB7R
CB8C
CB8D
CB9a
CE9B
CER4
CBES
CBCO
CRCH
CBD6
CBD7
CBREZ2
CBE3
CBF?
CBFA
CCi1
cci12
CC2A
CC2R

CCa5

CCa6

42616420
89
B46FT7562
8A
444697649
8B
A96CHCHS
8C
54797065
8D
AF757420
B8E
53747269
8F
53747269
90
49206361
91
S56E64465
92
4D697373
93
4946C4C4S
94
SS4E6974
95
S56E4974
96
4946E7461
97
3SEELA20
98
4946E7661
%A
4E756C6C
9B
49206361
9C
S56E6974
9D
556E6974
9E
49204361

QO

PolyDos 2.0 Emsg overlay

DC
DB
bC
DB
bC
DB
DC
DR
bC
DB
pC
DB
pC
DR
pC
DB
DC
DB
DC
DB
DC
DB
pC
DB
pc
DB
DC
DB
bC
DR
Dc
DE
pDec
Db
pC
DB
bc
DB
Dc
DB
pC
DB
bC

’Bad subscript’

89H

’Double defined dimension’
BAH

’Division by zero’

B8EH

’Illegal in direct mode’
8CH

'Type mismatch’

8DH

’0Out of stringspace’

8EH

’String too long’

8FH

'String expression too complex’
20H

'l can’’t continue’

91iH

’Undefined function’
92H

"Missing operand’
?3H

’Illegal unit number’
94H

’Unit already open’
FSH

*Unit not open’

P6H

’Invalid format descriptor’
97H

End of file’

98H

*Invalid record number’

9AH

*Null string’

9BH

*I can® 't open that unit’
FCH

"Unit not open for input’
9DH

*Unit not open for output’
FEH

I can’’t position that unit’

;1 End of error message table

$END:

DH

END

0

®
PolyDos
UTILITIES GUIDE
o
N Y,
@ /

. / ralyilata
microcenter

PolyDos Utilities Guide -1-

TABLE NTENT

. IntrOduction S 8 5 8 B 9 8 8 60 S 5 000 S E PV OSSP G N LP L LSS 2

The FORMAT program "B EEEEEEEEE NI I AN A I BN B BN R N AR BCEE BRI B B B A B B 3

W [[l
.

.The BACKUP program "EEEEEEEENI I I I I I AR R A A A NI I I I NI NN NN NSRS 5

4- The Superzap program ® 6 ¢ 00 00 06 0 08 008 0P S S ES OSSO E S0 S O 6

-2- PolyDos Utilities Guide

Section 1

Introduction

This manual describes the FORMAT, BACKUP, and SZAP utility
programs included on your system disk. The above programs are
not system commands, but seperate machine code files, i.e. files
with the GO extension.

FORMAT is used to format disks, i.e. prepare blank disks for
use, Furthermore, it can be used to verify disks. FORMAT is
described in section 2.

BACKUP is used to make backup copies of disks. It 1is described
in section 3.

SZAP (SuperZap) 1is a program that enables you to examine and
modify sectors on a disk. It may be used by the experienced
system programmer to recover files from a crashed disk. SuperZap
is described in section 4.

PolyDos Utilities Guide -3-

Section 2

The FORMAT program

The disk format program is used to prepare blank disks for use
and to verify the sectors on a disk. As the task of formatting a
disk is dependant on the hardware configuration, FORMAT is
available in two versions, one for the G809/G815 system, and one
for the GB05 system. When invoked, FORMAT clears the screen and
outputs:

PolyDos 2.0 [xxxxx].
Disk Format Program

where xxxxx is the implementation name. Next, you must select a
drive number for formatting/verification:

Which drive (0-X)7?

where X is the largest drive number supported by your particular
implementation (7 in the G809/G815 version, and 3 in the G805
version). Note that the FORMAT program has no special command to
terminate itself. Each time a task is completed you are returned
to the prompt above. To exit, you may at any time press
CTRL/SHIFT/@ which returns you to the command level. Once the
drive number has been established, you must select the function
to be performed:

Format or verify (F/V)?

Type 'F' to select disk formatting, or 'V' to select disk
verification. When verifying, FORMAT reads each sector on the
disk, starting from sector 0000H. If an error occurs, the error
number is displayed. If formatting was selected, yet another
question appears:

Skew factor (0-4)7?

to which you must answer a digit between 0 and 4. The skew
factor determines the order in which the sectors of a track on
the disk are numbered. If a disk is formatted with the sectors
of each track being in sequential order, i.e. in the order 0, 1,
2, 3, etc., the disk will seem extremely slow to the system. The
reason for this is that often after one sector has been read the
controlling program spends a short time processing before
reading the next sector. By the time the next transfer is
requested the R/W head of the drive will be well past the header
record of the next sector, if not several more sectors as well.
Thus, the disk will have to do almost a complete revolution,
before the next sector can be read. To get around this problem,
the disk may be formatted with the sectors in a jumbled order,
rather than being in sequential order, so that when the sectors
are read/written in numerical order, a delay of up to four
physical sectors can occur before the next wanted sector is
found. The skew factor determines this delay. A skew of 0
indicates that no delay should occur between each transfer
(assuming that the sectors are accessed in numerical order),
i.e. that the sectors should be ordered sequentially. A skew of

-4~ PolyDos Utilities Guide

1 indicates that a delay of one sector should occur between each
transfer. Thus, in double density the sectors should appear in
the order 0, 9, 1, 10, 2, 11,...., 8, 17, and in single density
in the order 0, 5, 1, 6, 2, 74¢+.., 4, 9. As explained above,
skew factors of 0 are hardly ever used. Normally, a skew of 1 is
selected, but higher skews may be wused to suit particular
applications.

When the disk has been formatted, it is verified automatically.
When the verification completes, FORMAT prompts you:

Disk name?

to which you must answer by entering a name of up to twenty
characters. Once the name has been written to the disk, the disk
is ready for use, and you may remove it from the drive.

PolyDos Utilities Guide -5~

Section 3

The BACKUP program

The disk backup program is used to make bakcup copies of disks.
Obviously, the COPY command can be used for this purpose (e.g.
COPY :0 :1;Y to backup all files on drive 0 to drive 1), and has
the advantage that is packs the disk on the way, but BACKUP is
usually faster, and it requires no system files to be present on
the source disk. Also, BACKUP is ideal for converting disks
between the two densities supported by the G809/G815 version. On
running BACKUP, it will clear the screen and output:

PolyDos 2.0
Disk Backup Program

Following this a prompt for the source and destination drives
will appear:

Source drive?
Destination drive?

It is permissable to enter the same drive number for both drives
(or the same physical drive under G809/G815, e.g. 0 and 4), in
which case BACKUP will ask you to insert another disk before
each transfer (make sure that you don't get them mixed up!). If
an error occur during a disk access the error number is output,
for example:

Reading: Sector 02E7 >>>> Error 23
Retry or ignore (R/I)?

Two options are offered. 'R' will do a retry (not that 8 retries
may already have been attempted), and 'I' will ignore the error
and continue from the next sector. Note that if you ignore an
erroneously read sector, the data written to the destination
disk will of course be incorrect. However, the ignore option may
be used to recover as much data as possible from a crashed disk
(errors may then be corrected later for example using the
SuperZap program). If BACKUP is unable to read a correct copy of
sector 0000H, it will backup all sectors on the source disk.
Otherwise it will pick up the next-free-sector pointer from the
directory information in sector 0000H, and only copy sectors
below that pointer. If you are copying from a double density
disk to a single density disk you may come upon the message:

No room on destination drive.

As the message suggests, there is not enough room on the single
density disk, to hold all of the sectors in use on the source
disk.

Once the backup is completed the program restarts allowing you
to make other copies at the same time., To terminate the BACKUP
program press CTRL/SHIFT/@.

-6- PolyDos Utilities Guide

Section 4

The SuperZap program

The SuperZap program is used to examine and modify disk contents
on a one sector basis. SuperZap displays on the screen the
contents of a sector in hex as well as in ASCII and allows you
to move a cursor about in the image. Single bytes may be set to
new values which can be entered in hex as well as in ASCII.

On running SuperZap (by entering SZAP), the screen 1is cleared
and you must select a volume (drive) number. Following this, the
first sector of that drive is read into the sector buffer, and
an image is displayed. Due to the limited screen size, an entire
sector cannot be displayed at one time. Instead, each sector is
divied into a lower (bytes 00H-7FH) and an upper (80H-FFH) part.
Each part is displayed as 16 lines of 8 bytes. Before each 1line
the address of the first byte in the 1line 1is displayed. Then
comes the actual data displayed as 8 two-digit hex number, and
to the extreme left, 8 ASCI1 characters are displayed,
representing the data as it would be written. SuperiZap
automatically swaps between the 1lower and upper parts of a
sector when it is found necessary. Whenever you move beyond the
current sector, SuperZap automatically updates the disk by
writing the sector before the new sector is read. However,
updates only occur when changes has been made to the sector. On
the right hand of the display, the current volume/sector numbers
are displayed. If an error occurs the error number is written to
the screen below the sector number. In case of read errors the
sector buffer is set to all zeroes.

To set a byte to a new value you must enter two hexdigits
('0'-'9' or 'A'-'F'). When the first digit is entered, the
cursor moves to the second digit of the particular byte. When
you enter the second digit the sector buffer is updated and you
are moved left one byte.

The following commands are recognized by SuperZap (<LA> denotes
the 1left arrow key, <RA> means right arrow, <UA> up arrow, and
<DA> down arrow):

<LA> Move left one byte. If the cursor is at the first byte
of a display frame, SuperZap displays the previous
frame, and moves the cursor to the last byte. <BS> may
be used instead of <LA>. ’

<RA> Move rigth one byte. If the cursor is at the first byte
of a display frame, SuperZap displays the next frame,
and moves the cursor to the first byte. <SPACE> may be
used instead of <RA>,

<UA> Move the cursor up one line, 1i.e. to the 1left eight
times.

<DA> Move the cursor down one 1line, i.e. to the right 8
times.

N Move to the next display frame.

PolyDos Utilities Guide -7~

<CH>

Move to the previous display frame.

Set sector number. When 'S' is typed the cursor moves to
the 'Sct' field. Following the command you must enter
three hexdigits giving the address of the sector you
want to move to.

Set volume (drive) number. When 'V' is typed the cursor
moves to the 'Vol' field. Following the command you must
enter the number of the drive you want to select.

Read sector. When 'R' is typed, the current sector |is
read from the disk, thus overwriting the changes you
have made.

Write sector. When 'W' is typed, the contents of the
sector buffer is written to the disk. Note however, that
a write is automatically done whenever you leave a
sector,

Enter ASCII mode. When <CH> is typed, the cursor moves
to the ASCII field of the display. When you are in the
ASCII mode, all entries, except <CH>, will be entered
directly into the sector buffer. If you press <CH>
normal operation is restored.

Quit. The quit command terminates SuperZap, and returns
you to the command level. If modifications have been
made to the sector currently within the buffer, the
sector is written to the disk before quitting.

PolyEdit

USERS GUIDE

/

! microcenter

PolyEdit Users Guide -1-

TABLE QF NTENT

IntrOdUCtion PR EEE RN e A A B R B R B B B B A A A AR A A N N RS) 2

Invoking the editor 'Y EEEEEEEEN NN AR A A B R N R BN I I IR B A A A 3
2.1 The Comand line ® @ 8 2 © € 06 0 9 O 5 P O S O R S S E SO O E PSP S E e LESES D 3
2.2Reentering PolyEdit 2 & 2 % 2 90 000 8 8 8t 0 e o 60 08 800 e 0 4

Editor operationcceesecesscsssscccccsosnccsssssnssasace O
3.1 Editor commands Ceesesseesesecccsscsssssssesssccens D
3.1.1 Cursor movement COMMANAS ..isessscosssssacoscccses 7

' Editing commandsSeeececcccscosvsnccaccacscansss 7
Search/replace cOMMANAS ...ssveocsscccsccsncccsss B
BloCK COMMANAS svveeecccsosssnsssnssssssssscncnone I
Various COMMANAS ceeessesccccssncssceccsssonovance . 9
0

nging the CUrSOr ..ccceccoevcccorsssrscsosnsecccnnsans s 1

U W

3.1
3.1
3.1
3.1
3.2 Cha

USing the Edit OVGI].ay ® 5 8 8 5 2 8 % @ E 8 SO O T SO O L O SN S SOOI 11

-2- PolyEdit Users Guigde

Section 1

Introduction

An editor is a system program that has a special use, To put it
briefly, the editor allows you to create and change text,
Specifically, the editor displays on the screen the contents of
a text file and lets you move back and forth in the text, adding
and deleting as you please. When you write text (including text
form programs, such as BASIC programs or assembly language
source files) you use the editor.

Section 2 of this manual describes to you how to invoke the
editor, how to specify which file(s) you want to create and/or
edit, and how to exit the editor. Section 3 describes how to
operate the editor, i.e. the commands available and the
functions they perform. Section 4 describes how to invoke the
editor from you own machine code programs.

PolyEdit Users Guide -3-

Section 2

Invoking the editor

The editor consists of two overlay files on the system disk. The
first one, called Ecmd.OV, handles the EDIT command and file
input/output. The second one, called Edit.OV, 1is the editor
itself, 1i.e. the program that allows you to edit the files you
have selected. To use the editor, both overlay files must be
present on the master drive.

Th n

The command line used to invoke the editor must start with the
command word EDIT followed by a 1list of file specifiers
separated by blanks:

SEDIT <fspec>[<fspec>]

At least one file specifier must follow the EDIT command word.
When the editor has been loaded into memory it prompts:

PolyEdit x.x

where x.x is the version number. Next, the file specifiers are
processed. PolyEdit starts with the first file specifier, which
it looks up in the directory. If it exists, it 1is read into
memory, and the next file specifier is processed. The reading of
input files continues, each file being merged to the end of the
text already read, until there is no more file specifiers on the
command line, or an unexisting file 1is specified. If an
unexisting file was specified, it becomes the output file.
Otherwise, the first file specifier will function as output file
specifier. If the extension is omitted from an input file, the
first file with a matching name will be loaded. If the extension
is omitted from an output file specifier, .TX is supplied. The
default drive is always the master drive.

The examples that follow assume that you have a file called
Letter.TX and a file MAINPROG.TX on the disk in drive 0, and a
file called Intro.TX and a file called ROUTINES.TX on drive 1.
Furthermore they assume that drive 0 is the master drive.

Command line: EDIT Letter

Response: Reading Letter.,TX:O0.
Output file is Letter.TX:0.
Comments: Since to drive number is included in the file

specifier, the file must reside on drive 0. As
no output file is specified, the input file
specifier is used as output file specifier.

Command line: EDIT REPORT.BS

Response: Output file is REPORT.BS:0.

Comments: Since REPORT.BS does not exist on the master
drive, no files are read, and REPORT.BS becomes

the output file specifier.

-4- PolyEdit Users Guide

Command line: EDIT Letter Intro:l .
Response: Reading Letter.TX:0.
Reading Intro.TX:1.
OQutput file is Letter.TX:O0.
Comments: As Letter.TX as well as Intro.TX are existing
files, both of them are read into memory,
Letter.TX being the first file, and Intro.TX
being merged to the end of Letter.TX. Since no
output file is specified, the first file
specifier, i.e. Letter.TX, is selected.

Command line: EDIT MAINPROG ROUTINES:1 PROGRAM

Response: Reading MAINPROG.TX:0.
Reading ROUTINES.TX:1.
Qutput file is PROGRAM.TX:O0.

Comments: Since PROGRAM.TX does not exist on the master
drive it becomes the output file. Note that .TX
is supplied by default.

If an error occurs while the command line is being processed, an .
error message is displayed, and control is returned to Exec.

When the command 1line has been processed without errors,
PolyEdit prompts:

Press <SPACE> to continue

Press <SPACE> to enter the editor, or, to return to the command
level, press CTRL/SHIFT/@. Once inside the editor you <can exit
in one of two ways. If you press CTRL/SHIFT/@ you are returned
directly to the command level in PolyDos, and the text in memory
is not saved. If you press CTRL/"™ PolyEdit prompts:

Writing text to nnnnnn.ee:d.
where nnnnnn.ee:d is the output file specifier. If a file exists
of the same name and extension as the output file, it |is
deleted, and the message: .
(01d file deleted)

appears. If an error occurs, e.g. a disk is full error, while
the file is being written, PolyEdit outputs:

WARNING: Disk is full.
New output file name?

Type a new file specifier, and PolyEdit will try write the file
again. If you wish, you may insert another disk before entering
the new file specifier,
R i P Edit
The following command line may be used to reenter PolyEdit:
SEDIT;W .

Assuming that PolyEdit has been coldstarted prior to this
command, and that no vital memory areas has been overwritten,

PolyEdit Users Guide -5-

the editor prompts:
PolyEdit x.x
Output file is nnnnnn.ee:d.
Press <SPACE> to continue

where nnnnnn.ee:d 1is the output file specifier. Press <SPACE>,
and you will be returned to the editor.

-6- PolyEdit Users Guide

Section 3

Editor operation

PolyEdit is a character oriented on-screen editor, which means
that the display may be likened to a window, which can be moved
about over the text. The cursor always resides within the window
and by its position it determines where characters are to be
deleted or inserted.

There is no limitations on line lengths. If a 1line 1is 1longer
than 48 characters it swaps over the edge of the screen and
continues on the next line. The piece of text you see on the
screen always appears as it would when listed. This means that
whenever a carriage return appears in the text, the following
characters are displayed starting on a new line, and whenever a
TAB character appears the following characters are displayed
starting in the next multiple-of-8 column. Note that the top
line i.e. the unscrolled line on top of the text screen is also
used by PolyEdit, thus axpanding the number of lines displayed
to 16.

As you will learn from section 3.2 the cursor can be represented
either as a blinking cursor overlaying a character, or a solid
non-blinking cursor inserted between two characters. The solid
cursor never overlays a character, it just marks the current
editing position. When you enter characters they are always
inserted before the cursor, and when you delete characters it is
always the characters before the cursor you remove.

Edj omma

The commands recognized by PolyEdit are entered as control
characters, i.e. <characters with ASCII values less than 20H. A
control character is produced from the keyboard by pressing the
TRL key and another key simultaneously, or by pressing a
control key, e.g. BACK, ENTER, CS, etc. Whenever you enter a
character which is not a command, it is inserted in the text at
the current cursor position, and the rest of the text on that
line is pushed one character to the right.

Since control characters (characters with ASCII values less than
20H) are interpreted by PolyEdit as editor commands, you cannot
enter these characters in the text using the CTRL key or one of
the control keys. However, if you use the @ key instead of CTRL,
the control character will be inserted instead of executed as a
command. Thus, to insert a CTRL/L character in the text you
would enter @/L, i.e. press @ and L simultaneously.

In many text editing applications one misses an ALPHA-LOCK key
on the NASCOM keyboard, i.e. a key that will revert the SHIFT
key function on alphabetic characters. PolyEdit supports this
missing feature. Through the CTRL/G command (see section 3.1.5)
you can select for the GRAPH key to function either as normally
or as an ALPHA-LOCK key which, when depressed, reverts the SHIFT
mode of alphabitics.

PolyEdit Users Guide -7-

Editor commands are divided into 5 groups:

Cursor movement commands
Editing commands
Search/replace commands
Block commands

Various commands

The commands in each of these groups are described in the
following sections. RA denotes the right arrow key, LA denotes
the 1left arrow key, UA denotes the up arrow key, and DA denotes
the down arrow key. ‘

Ccurso o) nt ands
RA Move cursor right one character.
LA Move cursor left one character.

SHIFT/RA Move cursor right to the next multiple-of-8 column.

SHIFT/LA Move cursor left to the next multiple-of-8 column.

UA Move cursor up one line.

DA Move cursor down one line,.

SHIFT/UA Move cursor to the first character in the «current
line, or if the cursor is already at the beginning of
a line, to the first character in the line above.

SHIFT/DA Move cursor to the last character in the current line
(i.e. to the carriage return ending the line), or if

the cursor is already at the end of a line, to the end
of the next line.

CTRL/O Move cursor up one page (15 lines).
CTRL/N Move cursor down one page (15 lines}.
CTRL/B Move cursor to the beginning of the text, i.e. to the

first character in the text.

CTRL/E Move <cursor to the end of the text, i.e. to the last
character in the text.

3,1.2 Editing commands
BACK Delete character before the cursor. CTRL/H may be used

instead of BACK.

Cs Delete word before cursor. First, one character 1is
deleted regardless of its value, and then characters
before the cursor are repeatedly deleted until a space
or a TAB or a carriage return is met. CTRL/L may be
used instead of CS.

ESC Delete 1line before cursor. First, one character is

LF

CH

ENTER

CTRL/A

CTRL/F

CTRL/C

CTRL/X

CTRL/K

PolyEdit Users Guide

deleted regardless of its value, and then characters
before the cursor are repeatedly deleted until a
carriage return is met. CTRL/[may be used instead of
ESC.

Undelete one character., LF is used to recover
characters deleted accidentally. CTRL/J may be used
instead of LF.

Tabulate. Inserts a TAB character before the cursor,
CTRL/W (or @/W) or CTRL/I (or @/I) may be used instead
of CH.

New line. Inserts a carriage return before the cursor.
CTRL/M (or @/M) may be used instead of ENTER.

Flip alphabetics to end-of-line. All alphabetic
characters (A-Z, a-z, [, \, 1, {, |, and }) from the
cursor to the next carriage return are flipped, i.e.
upper case characters are turned into lower case, and
lower case characters are turned into upper case.

arch ace ¢ ands

Input search string and optionally a replace string,
and find the first occurrance. When CTRL/F is pressed,
PolyEdit prompts by printing a NULL character. You may
now enter a search string of up to 255 characters. The
only editing key available is BACK (CTRL/H) which
deletes the last entered character. End the entry by
pressing CTRL/F or CTRL/X. If CTRL/F 1is used, no
replace string is input. If CTRL/X 1is used, yet
another NULL is printed, and you may now enter a
replace string. The maximum 1length of the replace
string is 255 less the length of the search string.
Again, end by pressing CTRL/F or CTRL/X. Once the
string(s) are input, PolyEdit scans the text for an
occurrance of the search string. If found, the cursor
is moved to the <character position Jjust after the
occurrance. If not, the cursor does not move. The
search only includes the text after the cursor. To
scan all of the text, use CTRL/B before CTRL/F.

Continue search. Continues searching for the search
string entered using CTRL/F.

Replace. Replaces the search string by the replace
string. CTRL/X only works if used immediately after a
CTRL/F, CTRL/C, or CTRL/K command. Furthermore it is
required that a replace string was input the last time
you used CTRL/F.

Replace and find next. CTRL/K is equivalent to CTRL/X
followed by CTRL/C.

PolyEdit Users Guide -9-

. 3,1.4 Block commands

CTRL/P

CTRL/1I

CTRL/D

CTRL/_

Set block marker. Block markers are used to delimit
blocks in the text to be copied or deleted using
CTRL/I or CTRL/D. When CTRL/P 1is entered, a start
block marker is 1inserted 1in the text before the
cursor. However, if the character before the cursor is
already a block marker, no marker is inserted. Instead
the existing marker is changed to the opposite type,
i.e. a start block marker is changed to an end block
marker, and vice versa. Hence, to insert an end block
marker enter CTRL/P, which inserts a start block
marker, followed by another CTRL/P, which changes the
start block marker to an end block marker. Within the
text a start block marker is stored as an ACK
character (ASCII 06H), and an end block marker 1is
stored as a NAK character (ASCII 15H). Thus, block
markers can be inserted by entering @/F and @/U
instead of CTRL/P.

Insert block. Inserts the first marked block before
the cursor. The block marks are not included. If no
blocks are marked, or if the cursor is within the
first marked block, CTRL/I is ignored.

Delete block. Deletes the first marked block from the
text. The block markers of the block are deleted as
well. If no blocks are marked, CTRL/D is ignored.

Delete all block markers. Scans the text for start and
end block markers, i.e. ACK (ASCII 06H) and NAK (ASCII
15H) characters, and deletes them whenever they occur.

3,5 Various commands

CTRL/G

CTRL/]

CTRL/"

Set GRAPH key function. CTRL/G must be followed by a
character which determines the GRAPH key mode. 'G' (or
'g') makes the GRAPH key function as usual. 'A' (or
'a') makes the CRAPH key function a an ALPHA-LOCK key
which, when depressed, reverts the SHIFT mode.

Flip display flag. The display flag determines if TAB
(tabulate) and CR (carriage return) characters are to
be shown on the display. If the display flag is set,
TAB characters are shown as right arrows, and CR
characters are shown as left arrows. If the display
flag is clear, no characters are displayed on the
screen to represent TABs and CRs. Whenever CTRL/] is
entered, the display flag is complemented. The display
defaults to reset, i.e. it is reset when the editor is
invoked.

Terminate editor. When CTRL/" is entered the editor
returns to the calling program., If the editor was
invoked from an EDIT command (see section 2.1), the
text is written to the output file, and control is
returned to PolyDos,

-10- PolyEdit Users Guide

Changin h SO

Within PolyEdit the «cursor can be represented either as a
blinking cursor overlaying a character or as a solid
non-blinking cursor inserted between two characters.

The EDIT command handler has a special mode which allows you to
redefine the cursor character. To invoke this mode, enter the
following command line:

SEDIT;C
which will prompt you:
New cursor ASCII value (in hex)?

If you enter 0, a blinking cursor is selected. Other values
indicate a solid cursor, the value being the ASCII value of the
cursor character. What happens now is that the Edit.OV overlay
file is read into memory and modified to reflect the new cursor.
If no errors occur, the new version is written to the disk, and
you are returned to PolyDos.

If your NASCOM is equipped with a graphics character generator
(the NAS-GRA ROM), a suitable value for a solid cursor would be
ODBH. It is a semigraphic character with the upper four pixels
set,

PolyEdit Users Guide -11-

Section 4

Using the Edit overlay

This section describes to you how to call the Edit overlay from
your own machine code language programs. If you are not familiar
with machine code programming, you may wish to skip this section
(it's in no way required of you to understand it before
operating the editor).

The Edit overlay can be invoked from your own programs using the
cov and COVR SCAL routines (please refer to the system
programmers guide for further details on these system services).
The editor uses the directory buffer as workspace. Therefore, it
sets DDRV to OFFH before returning, to indicate that the buffer
does not contain a valid directory. Interface to the overlay is
done through five variables, all of which must be initialized
before the editor is called.

Name Addr Size Describtion

SOFP Caco 2 Start-of-file pointer. This location
contains a pointer to the start address of
the text buffer. The pointer should reserve
one byte of free RAM below the start
address. Thus, 1if RAM is available for the
text buffer starting from address 2000H,
SOFP should read 2001H.

EOFP caca 2 End-of-file pointer. This location contains
a pointer to the first free 1location after
the text in the buffer. If no text is
present when you call PolyEdit, EOFP should
equal SOFP,

BTOP cac4 2 Buffer end address. This variable defines
the end address of the text buffer. The
location pointed to by BTOP is used to store
data. Thus, the address in BTOP 1is the
address of the last byte reserved for the
buffer and not the address of the first
unused location after the buffer.

CURADR C2Cé6 2 Cursor address. When PolyEdit is invoked the
cursor is moved to the address stored in
CURADR, or, 1in other words, the cursor is
moved forwards CURADR-SOFP times. Normally
the value stored in SOFP is also stored in
CURADR so that when PolyEdit is invoked the
cursor 1is placed at the first character in
the text. Before returning PolyEdit stores
the cursor address in this location.

DKOPT cacs 1 Default keyboard options. PolyEdit will load
the value in DKOPT into KOPT (address 0C27H)
when it 1is invoked. If bit 0 is set,
unshifted letters entered from the keyboard
will be in lower case. If bit 1 is set, the
GRAPH key is in the ALPHA-LOCK mode. Before
returning PolyEdit stores the wvalue in KOPT
into DKOPT whereafter it stores a zero in
KOPT.

-12- PolyEdit Users Guide

Below is shown an example of a program using the Edit overlay.
It allows you to enter some text in the editor, and when you
exit the editor the text is printed on the printer,

REFS SYSEQU ;Get symbols from SYSEQU
REF ;Get all of them

;Define buffer parameters

BSTART: EQU 02000H ;Buffer start
BEND: EQU 0CO00H ;Buffer end

;Define interface variables

ORG USRWSP
SOFP: DS 2
EOFP: DS 2
BTOP: DS 2
CURADR: DS 2
DKOPT: DS 1

;Define program origin

URG 1000H
IDNT $,$

;Entry point

LD HL,BSTART+1 ;Get start address
LD (SOFP) ,HL ;Put in SOFP
LD (EOFP) ,HL ;and in EOFP
LD (CURADR) , HL ;and in CURADR
LD HL ,BEND-1 ;Get end address
LD {BTOP) ,HL :Put in BTOP
LD A,2 ;Set default keyboard
LD (DKOPT) ,A ;options
SCAL ZCOV ;Invoke PolyEdit
DB 'Edit’
LD HL, (SOFP) ;Pick up start address
PRINT: LD DE, (EOFP) ;Compare pointer to EOFP
OR A
SBC HL,DE ;Finished?
JR NC,DONE :Yes => skip
LD A, (HL) :Get character
PUSH HL ;Save pointer
SCAL ZpouT ;Print character
POP HL ;Restore pointer
INC HL ;Move to next
JR PRINT ; Loop
DONE: SCAL ZMRET :Back to PolyDos

END

o [
PolyZap
USERS GUIDE
|
\ Y
/
‘ /
_ //
/
/

/
,/
® / N microcenter

PolyZap Users Guide

WWwWwwwWwwwwwwwg

a » 8 e o o s s e s s 0

WO~ &WKR O

TABLE OF CONTENTS

Introduction £0 POlYZAP ceeeevesossaseassssssooosncscansssss
1.1 Notations used in this MAanNUAl ..c.eceececcncocoscsssssas

Coding assembly language PrOQraMS ..cceseccacossossosocccscsoa
2.1 Source statement format ...cieeeececancoscacnnscnsensanse
label field ...viieeeccanscoacrssccssrsoncsccncscs
opcode field ..iveersscsoscssscencncccconnnos
operand fieldieecesecacccocccccccccnsea
comment fieldcc000cccee cecseeassecssane

2.1.1 The
2.1.2 The
2.1.3 The
2.1.4 The

Constants
Expression

NN
s & o o &
(e TS I SRV N

s

Symbols . ®P 0 8 8 9 @ @ 5 & & 2 " B O S B S O B " B F S O S B S e S I A2 S S T B B L LS eSS YN
The location COUNEEr ..ceevscceccocesasessessosvsosnsansae

9 0 0 0 6 8 B S B P E P S P B E P S E S P E SOOI TSSO

Symbol table files ® & & 8 B 8 P ® O S P O 0 O 9 O S O SO LSS SN eSS

UdO OperationsS .ueeceeeescssssessscocscscsscsasanssssssnsnss
ORG - Define Origin .siieeeceocecessssscsesscsssoscconocons
IDNT - Define object file identity e acenass e
EQU - Equate symbol to @ value ..ceeeeceooscsssoonsnns
SET - Set symbol value ...iciereccceccvcscsassosnssncsns
DEFL - Define label ...t ceeccenccssesssssesonnsns
REFS - Reference file speCify tviseeeccecssscsccncccacs
REF - Reference a symboluiersesscsccsssscsscooncos
DB - Define byte(s) ...cec.... s eeesenaccuteansnnoosoos
DC - Define character Stringoceecececacessoncces

0 DW - Define word(s) .cecececenccnces cesaseseaseseescns

1 DS - Define StOra@ge ...eveeeeesvsrcccscscsancsasnassos

3.12 DEFB - Define byte(s) teeeieeeetecccncecsssocssssassss
3.13 DEFM - Define MESSAGE «eesscscsancsssssrsoccansassonsses
3.14 DEFW - Define word(S) ceeeavasccecsssaccoossnsscnsasnnns
3.15 DEFS - Define StOrage ...cecicececencoosososcsssnsaocens
3.16 END - End Of SOUICE PIOQrAM ..evesvvoecconsocncccaanass .
3.17 Conditional asSembly ceeveeeecccsosrssassoncnncasasesses

3.17.1 IF

4 8 8 0 8 8 8 9 5 0 4 S 0 U S E 8 B 6 S G LGP B E S L O LSS S ST

3.17.2 ELSE s it eeeeeecccocssossonarsanonsnsssasooaassas
3.17.3 ENDIF tuiveeeeeeocecescscscosanosnansssssssscscsss
3.17.4 COND ..ieevecccsccconasnas ceecssssetecrsnccc s
3.17.5 ENDC it veeeoeossocccncsssacsacannnssossssscsas

Operating Polyzap ® B 8 5 B O & 5 6 O O 5 & 0 0 ¢ O O P O S L LSS PSS O R C e s e
4.1 Assembly OPLIiONS ...t ieeerrsssscscsscscsssssanssonaanss

4.1.1 The
2 The
3 The
4 The
5 The
6 The
7 The
mbler

L

P
S
C
G
D
F
e

OPLION +tevevveesonsnnsscecasasssscsonsosocsss
OPLiON +teveeernevssssnscsasesscssosccccosssa
OPLION tiitiirevoesecsooncanessossonnssscsas
OPLION v vevrocersnnssssnnnassssssnnsnssas
OPLiION tiietervessnrosscaasacassnennocancs
OPLION i eveveoccesonssososccsssnsoncnnsscsss
OPLiON civeveneesossssscncsssassscansssons

rror handling ® 6 8 8 ¢ 8 0 0 8 PO S P S ST B C B E LD OSSPSR

BN

YT U b WWwWww

VWWOWWOWLOLWOWWOWOODEWOWOOM--I~J~]

14
15

-2- PolyZap Users Guide

Section 1

Introduction to PolyZap

PolyZap is a program that processes source program statements
written in ZILOG/MOSTEK Z-80 assembly langquage. The assembler
translates these source statements into object <code files
compatible with PolyDos file format, and produces a listing of
the source program. The symbolic language used to code source
programs to be processed by the assembler is called assembly
language. The language is a collection of operation code symbols
(opcodes), representing machine code instructions, pseudo
operations (pseudo-ops), representing directives to the
assembler, symbolic names (symbols), and special symbols. The
assembly language provides opcodes for all machine code
instructions in the Z-80 instruction set. It also provides some
pseudo-ops, which specify auxiliary actions to be performed by
the assembler.

PolyZap is a two-pass assembler. During the first pass the
source program is scanned to develop a symbol table. During the
second pass the object file is created with reference to the
table developed 1in pass one. It is during the second pass that
the source listing is produced.

1,1 Notations used in this manual

To describe the syntax, or format, of command lines, source
statements, and assembly options, the following notations are
used throughout the manual:

[ee.] Contains an optional element. If selected, the
element may only be used once.

{o..} Contains an optional element. If selected, the
element may be used any number of times.

<owo? Contains an element name. The forms the element can
take on is described in the text.

As an example of these notations, consider the following line,
which describes the syntax of an assembler source statement in
general:

[<iabel>(:]][<opcode>(<operand>{,<operand>}]][;<comment>]

The first element in the line is an optional label. If selected,
the 1label <can optionally be followed by a colon. After this
comes an opcode, also optional, which, 1if selected, must be
preceded by at least one space to separate it from the label
field. If the opcode was selected, it may be followed by a 1list
of operands. If the operand list is specified, the first operand
must be preceded by at least one space to separate it from the
opcode field. If more than one operand is given, each operand
must be separated from the previous one by a comma. The last
field of a line is the comment field, which, if selected, must
be preceded by a semicolon.

PolyZap Users Guide ‘ -3-

Section 2

Coding assembly language programs

Programs written in assembly language consist of a sequence of
source statements. Each source statement <consists of ASCII
characters ending with a carriage return.,

2,1 Source statement format

Each source statement may include up to four fields: A label
field, an opcode field, an operand field, and a comment field.
Each of these fields, and their appearance, are described in the
following sections.

PolyZap does not differ between upper and lower case letters
within the following assembly language elements: Symbols,
operation codes, pseudo-ops, register names, condition codes,
operators, and constants. Thus, the source statement:

START: LD HL,OAS9EH

is exactly the same as:

start: 1d h1l,0a59eh

2,1,1 The lab field

The label field occurs as the first field of a source statement,
It may either be empty, or contain a symbol name, optionally
followed by a colon. A symbol may have any length, but normally
symbols are not longer than seven characters, as this would
disturb the assembly listing format.

When a symbol appears in the label field, normally it will be
assigned the value of the program counter, i.e. the address of
the first byte of object code generated by the source statement.
However, the EQU, SET, and DEFIL, pseudo-ops treat labels
differently (see section 2.2).

2.1,2 The opcode field

The opcode field occurs after the label field and, if present,
must be preceded by at least one space. Entries in the opcode
field may be one of two types: A Z-80 operation code, e.g. ADD,
LD, INC, which will be translated into its corresponding Z-80
machine code instruction, or a pseudo operation, representing a
directive to the assembler. The pseudo-ops are described in
section 2.2,

2,1.3 The operand field

The contents of the operand field depends on the operation code
in the opcode field. Some opcodes don't require an operand (e.g.

-4- PolyZap Users Guide

NOP, CCF, END), in which case the operand field is empty. Other
opcodes require a fixed number of operands, and some allow for a
varying number of operands. If the operand field is not empty,
it must be separated from the opcode field by at least one
space, and if it is to «contain more than one operand, the
operands must be separated by commas. If the opcode field is
empty, the operand field must also be empty.

2.1,4 The comment field

The comment field is always the 1last field of a source
statement. If it is present, it must begin with a semicolon (;).
The comment field is not in any way processed by the assembler,
but it is included in the assembly 1listing for documentation
purposes.

2.2 Symbols

Symbols are one of the most important features of assembly
language. A symbol is a name with an associated value (l6-bit),
the name being used rather than explicitly stating the value.

A symbol is declared to the assembler by placing it in the label
field of a source statement line. The value assigned to the
symbol depends on the opcode of that line. If an EQU, SET, or
DEFL pseudo-op appears in the opcode field, the value assigned
to the symbol is given by the expression in the operand field.
Otherwise the symbol will be assigned the value of the location
counter (program counter). The latter use of symbols are called
labels. A symbol may occur only once in a label field, unless it
is used with a SET or a DEFL pseudo-op.

The following characters may be used to form symbols:

Alphabetic characters: A-Z and a-z
Numeric characters: 0~9
Special characters: S 7@ _

A symbol must begin with an alphabetic or a special character,
and may contain any number of alphabetic, numeric, or special
characters after that. Note that the assembler does not differ
between upper and lower case letters.

There are certain reserved keywords that may not be wused as
symbols. These are register names (e.g. A, D, HL, IX), condition
codes (e.g. %, NC, PE), operators (e.g. NOT, AND, SHR), and a
single $ character.

2.3 The location counter

The location counter is an internal register of the assembler
giving the address of the object code currently being generated.
The initial value of the location counter is 0, but it can be
changed by an ORG pseudo-op. The current value of the location
counter may be referenced within an expression by using a single
$ character as a symbol. Normally, the value returned is the
address of the first byte of object code generated by the source

PolyZap Users Guide -5-

statement. However, when using the pseudo-ops DB, DW, DEFB, and
DEFW with multiple operands, the 1loaction counter will be
incremented after coding each operand. Hence, the $ symbol will
yield the address of the first byte of object code generated by
the operand within which it is used.

2.4 Constants

Constants represent quantities of data that do not vary in value
during execution of a program. Constants are either numeric
constants, litteral constants (character constants), or strings.

Numeric constants can be any 16-bit integer represented in one
of four bases: Hexadecimal, decimal, octal, or binary, with
decimal being the default base. A numeric constant must always
start with a digit (0-9). Hexadecimal constants are 'H'
postfixed (e.g. 15H, 23CO0H, OFFFFH), decimal constants are
optionally 'D' postfixed (e.g. 21D and 34801D, which is the same
as 21 and 34801), octal constants are either 'O' or 'Q!'
postfixed (e.g. 13Q, 1777770), and binary constants are 'B!
postfixed (e.g. 11B, 01101010B).

Character constants consists of a single ASCII <character
enclosed in single or double qguotes (e.g. 'A', "$", '"'). The
delimiter gquotes may be used as characters if they appear twice
(i.e. '''' and """").

Strings consist of two or more ASCII characters enclosed in
single or double quotes. Similar to character constants, the
delimiter qoutes can be used as characters if they appear twice
for each occurrance desired (e.g. 'That''s all folks'}).
Everywhere a string is allowed, a character constant 1is also
allowed.

2.5 Expressions

An expression is a combinaticn of symbols, numeric or character
constants, algebraic operators, and parentheses. The expression
is used to specify a value which is to be used as an operand.
Note that enclosing an expression entirely in parentheses
indicates a memory address. Thus, the source statement line
LD HL, (DATA+3) is NOT equivalent to LD HL, (DATA+3) *1.
Expressions will evaluate into 16-bit values. Overflow resulting
from arithmetic operations are not reported; instead the result
will be truncated to the low order 16 bits. '

The operators recognized by PolyZap, and their priority are
listed below:

Operator Function Priority
HIGH Isolate high order byte 1
LOW Isolate low order byte 1
- Unary minus (2's complement) 2
+ Unary plus (ignored) 2
* Multiplication 3
/ Division 3
MOD or \ Modulo 3

-6- PolyZap Users Guide

SHL Logical shift left 3
SHR Logical shift right 3
+ Addition 4
- Subtraction 4
EQ or = Equal 5
NE or <> Not equal 5
GE or »>= Greater than or equal 5
LE or <= Less than or equal 5
GT or > Greater than 5
LT or < Less than 5
NOT Logical NOT (1's complement) 6
AND or & Logical AND 7
OR or ~ Logical OR 8
XOR or % Logical XOR 8

All operators involving alphabetic characters must be separated
from their operands by at least one space. The byte isolation
operators (HIGH and LOW) isolate the high or low order 8 bits of
their operand. HIGH X is equivalent to X/100H, and LOW X is
equivalent to X AND OFFH. The relational operators (EQ, NE, GE,
LE, GT, and LT) interpret their arguments as unsigned integers,
and returns 0 if the relation is false or -1 (OFFFFH) if the
relation is true.

2.6 Symbol table files

Symbol table files (or symbolfiles) provide a meothod of
referencing symbols defined in another assembly. A symbolfile
contains the complete symbol table of its associated source
file(s), i.e. the table created by PolyZap during assembly which
gives the names and values of all symbols defined by the source
file(s). Through the REFS and the REF pseudo-ops you can extract
key sombols, i.e, addresses of subroutines and workspace
locations from a symbolfile defined by another program.

The usefullness of this system is demonstrated by the situation
in which you have a main program that sharing a number of
utility subroutines and workspace locations with a collection of
overlays (the concept of overlays is discussed in the PolyDos
System Programmers Guide). Basically the overlays all run at
address C800H and can only run one at a time. Therefore, they
cannot communicate between each other, but only act as large
swappable subroutines to the main program. The symbolfile system
is used in this example to pass address information from the
main program to the overlays. The main program creates a
symbolfile, and the overlays reference key symbols using REFS
and REF. The classic example of this wuse 1is in the PolyDos
equate file (SYSEQU.SY), which defines the PolyDos workspace,
the NAS-SYS workspace, the subroutine numbers, the ASCII
character codes, etc. SYSEQU is included on your system disk,
and it is suggested that you use it to referencing system
locations. A 1listing of SYSEQU is given as an appendix to the
PolyDos System Programmers Guide.

PolyZap Users Guide -7

Section 3

Pseudo operations

The assembler pseudo operations (pseudo-ops) are instructions to
the assembler rather than instructions to be directly translated
into machine code. In the description of the various pseudo-ops,
the syntax, or format, of the pseudo-op source statement line is
given first. The following syntactical elements are used:

<label> Statement label.

{expr> Assembler expression.
<{expression> Assembler expression,

<string> Character string.

<comment> Any string of ASCII characters.

3.1 ORG - Define program counter origin

ORG <expression> [;<comment>]

The ORG pseudo-op changes the loction counter (program counter)
to the value specified by the expression in the operand field.
Subsequent statements are assembled to 1load into memory
locations starting with the new 1location counter value. The
expression may not contain forward references.

If object file creation was requested when PolyZap was invoked
(see section 3), enough zeroes are put into the object file to
fill the space from the last instruction assembled (before the
ORG pseudo-op) to the address given by the expression 1in the
ORG. Note that there is no way of ORGing backwards, i.e. to a
lower address than the current location counter value, as the
assembler <can only output more object code and cannot retract
what it has previously output. If you try doing a backwards ORG,
you will get an error. However, if the backwards ORG occurs
before any code 1is generated, PolyZap will allow it, and will
only change the location counter., This makes it possible to put
a group of DS statements in an area of memory beyond the program
area, but to have these DS statements occur at the front of the
program if desired.

3,2 IDNT - Define object file identity

IDNT <expression>,<expression> [;<comment>]

The IDNT pseudo-op is wused to define the load and execute
addresses of the object file. The first expression gives the
load address, and the second expression gives the execute
address. IDNT may only be used once within a program. If there
is no IDNT statement in a program, and object file creation |is
requested, and error occurs.

-8- PolyZap Users Guide

E - E £t b to a value
<label>[:] EQU <expressicn> [;<comment>]

The EQU pseudo-op assigns the symbol in the label field the
value given by the expressjion in the operand field. The
expression may not involve forward references, a the symbol in
the label field may not be a symbol already defined.

3.4 SET - Set symbol value
<label>[:] SET <expression> [;<comment]

The SET pseudo-op is identical to the EQU pseudo-op, except that
no error is generated if the symbol in the label field is
already defined.

3,5 DEFL - Define label
<label>[:] DEFL <expression> [;<comment]

The function performed by the DEFL pseudo-op is the same as that
of a SET pseudo-op (see section 3.4).

REFS - Reference fi specif
REFS <file specifier> [;<comment>]

The REFS pseudo-op gives the file specifier of the symbolfile to
be used by subsequent REF pseudo-ops. The default extension of
the file specifier is .SY, and the default drive is the master
drive. The symbolfile remains open until a new REFS is given, or
until a REF with no label is encountered.

3,7 REF - Reference a symbol
[<label>[:]] REF [;<comment>]

REF will search in the current symbolfile for the symbol given
in the 1label field. If it exists, a symbol is created with the
value of the correcponding symbol in the symbolfile. If no label
is given, all symbols in the current symbolfile are copied to
the symbol table.

3,8 DB - Define byte(s)

[<label>[:]] DB <value>{,<value>} [;<comment>]

The DB pseudo-op will generate bytes of data in the object code.
The <value> can either be an expression or a string. In the case
of an expression, one byte of data is generated, which means the
the value of the expression must be within the range -128 to 127
or 0 to 255. The number of bytes generated by a string is given
by its length. Each byte of data will be the seven bit ASCII
value (high order bit is zero) of its associated character.

PolyZap Users Guide -9~

3,9 DC - Define character string

[<label>[:]] DC <string> [;<comment>]

DC stores the characters in <string> in successive memory
locations beginning with the current location counter. As with
DB, characters are stored with the high order bit set to zero.
However, DC stores the last character of the string with the
high order bit set to one.

3,10 DW - Define word(s)
[<label>[:]] DW <expr>{,<expr>} [ji;<comment>]

The DW pseudo-op will place words (adresses) in the object code.
Each expression generates a word, i.e. two bytes, 1in the
standard Z-80/8080 byte reversed form.

DS - Defin torage

[<label>[:]] DS <expression)> [;<comment]

The DS pseudo-op 1is used to reserve data areas that need no
initial value. The effect of the DS pseudo-op is that the value

of the expression in the operand field is added to the location
counter, thus reserving the specified number of bytes.

If an object file is being created, zeroes will be filled into
areas reserved using DS. However, filling only occurs where it

is necessary, i.e. only if the DS statement is followed by some
statements that generate object code.

DEFB -~ Define e(s

[<label>[:]] DEFB <expr>{,<expr>} [;<comment>]

The DEFB pesudo-op is identical to the DB pseudo-op, except that
strings are not allowed as operands.

3,13 DEFM -~ Define message
[<label>[:]] DEFM <string> [;<comment>]
DEFM will place into the object code the seven-bit ASCII values
(high order bit is zero) of the characters in the string given
in the operand field.
DEFW - Defi ord(s

[<label>[:]] DEFW <expr>{,<expr>} [;<comment>]

The functions performed by the DEFW pseudo-op is the same as
those of a DW pseudo-op (see section 3.10).

-10- PolyZap Users Guide

3,15 DEFS - Define storage

[<label>[:]] DEFS <expression> [;<comment>]

The DEFS pseudo-op is identical to the DS pseudo-op (see section
3.11).

3.16 END -~ End of source program

END [;<comment>]

The END pseudo-op marks the end of the source program. Source
statement 1lines following the END pseudo-op will not be
processed, and will not be printed in the source listing.

3,17 Conditional assembly

The conditional pseudo-ops allow selective skipping of source
statement lines. A skipped line is completely ignored except for
a quick check to if it contains another conditional pseudo-op.
There are five conditional pseudo-ops: IF, ELSE, ENDIF, COND,
and ENDC, COND and ENDC being identical to IF and ENDIF,.
Sections of source statement lines are delimited by an IF/ENDIF
pair, with possible ELSEs in between. The sections can be nested
within one another to a depth of 15 levels.

3.,17.1 IF

IF <expression> [;<comment>]

If the value of the expression in the operand is false (zero),
the statement 1lines following the IF pseudo-op are skipped. If
the value of the expression is true (non-zero) the statements
following the IF pseudo-op is assembled normally.

3,17,2 ELSE

ELSE [;<comment>]

The ELSE pseudo-op acts to switch from skipping to non-skipping
and non-skipping to skipping mode between an IF and an ENDIF. An
arbitrary number of ELSEs may occur within an IF/ENDIF pair,
each time the result being reversion of the skipping mode.

3.17.3 ENDIF
ENDIF [;<comment>]

The ENDIF pseudo-op gives the end of a section of conditional
source statements, started by its matching IF pseudo-op.

PolyZap Users Guide -11-

3.17.4 COND

COND <expression> [;<comment>]
The COND pseudo-op is identical to the IF pseudo-op (see section
3.17.1).

3.17.5 ENDC

ENDC [;<comment>]

The ENDC pseudo-op is identical to the ENDIF pseudo-op (see
section 3.17.3).

-12- PolyZap Users Guide

Section 4

Operating PolyZap

PolyZap is supplied on your system disk as a machine code
program file called PZAP.GO. The format of the command line used
to invoke PolyZap is:

PZAP <source)>|[,<source>][<object>][;<options>]

where <source> denotes a source file specifier, <object> denotes
an optional object file specifier, and <options> denote an
optional option list. The default drive is always the master
drive. If no extension is given to a source file specifier, the
first file of a matching name is used. The default extension for
the object file is .GO, i.e. a machine code program file.
PolyZap will accept up to 8 source files for assembly. During
pass one and pass two the source files are read one by one, in
the order they appear on the command line, and assembled, until
an END statement is met, or until the last source file has been
processed. When a new file is read, the symbol table extracted
from prevoius source files is preserved. Thus, the input files
appear to PolyZap as one contignuous file. Each time a source
file is read into memory a message is displayed:

Pass xxx: nnnnnn.ee:d.

where xxx is either 'one' or 'two', and nnnnnn.ee:d is the file
specifier.

If the assembler runs out of memory when reading a source file,
or if the symbol table overflows the available memory, the
message:

Memory overflow

is output, and control is transferred back to PolyDos. To avoid
memory overflow, split your source file into two or more smaller
source files,

If PolyZap detects an error, an error message will be output
followed by the erroneous 1line, even 1if no 1listing was
requested. If errors occur during pass one, pass two will be
aborted unless you have specifically forced it using the F
assembly option.

At any time you may press CTRL/SHIFT/@ to abort PolyZap and
return to the command level in PolyDos.

4,1 Assembly options

The assembly options may be zero or more of the options
described in this section. The assembly options appear as the
last entry on the command line, and if any are specified they
must be prefixed by a semicolon, to separate them from the rest
of the command 1line. Some examples of command lines involving

PolyZap Users Guide -13-

assembly options:

SPZAP BACKUPS;S

SPZAP TYPES Type.OV:F
SPZAP GMS1,GMS2 GAME;LPGD
SPZAP SYMBOLS;C

4,1.1 The L option

The L option instructs PolyZap to output an assembly listing
during pass two. If the options list includes a P option, the
listing will be directed to the printer. Otherwise the screen
will be used for output. When listing to the screen PolyZap will
pause and blink the cursor each time 15 lines has been output.
To continue press any key.

4,1.2 The P option

The P option specifies that assembler output should be sent to
the printer. Furthermore it instructs PolyZap to print a heading
and a page number on top of each page. If the P option appears
in the option list you will be prompted:

Heading?

The maximum length of the heading is 36 characters.

4,1,3 The S option

The S option instructs PolyZap to output an alphabetically
sorted symbol table listing at the end of pass two.

4 Th tion

The C option requests that PolyZap save the symbol table created
during assembly in a symbol table file. The symbols in a symbol
table file can be accessed from another assembly using the REFS
and REF pseudo-ops (see section 3.6 and 3.7). If the C option
appears in the option list you will be prompted:

Symbolfile name?

Answer by entering a file specifier. The default extension is
SY, and the default drive is the master drive. Note that the
assembler will not create a symbol reference file if errors
occur during assembly.

5 T optio
The G option instructs the assembler to print all object codes

generated by DB, DC, DW, DEFB, DEFM, and DEFW pseudo-ops, and
not just the first four bytes.

-14- PolyZap Users Guide

4.1.6 The D option

The D option instructs PolyZap to omit the printing of lines
containing conditional pseudo-ops, and 1lines skipped as an
effect of these, in the assembly listing.

4,1.7 The F option

The F option instructs PolyZap to force the second pass through
the source program, even if errors occur during the first pass.

PolyZap Users Guide -15-

4 Assem rror handli

Assembly errors detected by PolyZap are displayed before the
actual 1line containing the error. Errors are accumulated, and
the total number of errors is printed an the end of each pass.
If no 1listing was requested, assembly error messages are still
displayed to indicate the the assembly process did not proceed
normally. The format of an error report is:

>>>> ERROR Error message
The code generated to a source statement in error is not
predictable. Some error conditions will produce code, others

will not, depending on the type of error. Below all error
messages are described:

Parentheses error

The parantheses in an operand do not balance.

Error in string

A string or a character constant is empty or an ending
guote is missing. Note that the beginning and the ending
goute must be of the same type.

Error in constant

An illegal digit was detected in a constant.

Undefined symbol

A symbol appearing in an expression in the operand has
not been declared as a label. A symbol value of zero is
assumed,

Syntax error

The operand contains an illegal <character, or a
semicolon is missing in front of a comment.

Truncation error

The value of the operand exceeds the range of a single
byte (8 bits). It must be within the range -128 to 127
or within the range 0 to 255. A wvalue of zero |is
assumed.

Offset error

The offset at an instruction using indexed addressing is
not within the range -128 to 127, or the address at an
instruction using program counter relative addressing

-16- PolyZap Users Guide

(JR and DJINZ) is not within the range $-126 to $+129, or
the offset at a JP (IX) or JP (IY) is not zero. An
offset of zero is assumed.

Invalid operand

The operand constellation is not valid.

Unknown instruction

The symbol appearing in the opcode field 1is neither a
valid Z-80 operation code nor a valid pseudo operation.

Invalid label

The symbol in the label field contains an illegal
character.

Label missing

No symbol appears in the 1label field at one of the
pseudo-ops EQU, SET, and DEFL.

Reserved word
The symbol appearing in the label field is a reserved
word (A, B, C, D, E, L, H, M, N, P, R, Z, AF, BC, DE,
HL, 1X, 1Y, NC, Nz, PE, PO, SP, HIGH, LOW, MOD, SHL,
SHR, EQ, NE, GE, LE, GT, LT, NOT, AND, OR, XOR and §S).
Double defined label
The symbol appearing in the label field has already been
used as a label.
Illegal backwards ORG
At this point of assembly it is not possible to ORG

backwards, as one or more bytes of object code has
already been generated. ‘

Too many IF/COND's
The maximum nesting level of IF/COND conditional
pseudo-ops is 15.

No prior IF/COND

The conditional pseudo-op in the source statement has no
matching IF/COND pseudo-op.

PolyZap Users Guide

ENDIF/ENDC missing
This error can only occur at the end of a source
program. It indicates that one or more IF/COND
conditional pseudo-ops are still in effect, although no
more source statement lines are present.

Bad symbolfile name
The symbolfile specifier given in the operand is

syntactically incorrect. Refer to the PolyDos Users
Guide for a description of file specifiers.

No such symbolfile

vhe symbolfile specified in the operand does not exist.

Symbolfile unreadable
An error occurred when reading a symbolfile. Try load

the symbolfile into memory using the LOAD command to
determine the type of error.

Symbolfile too big
There is not enough memory to read the specified
symbolfile. Split your source file 1into two or more
smaller source files, to free more memory.

Symbol not in symbolfile
There is no symbol of the name you specify in the
current symbolfile,

IDNT can only be used once
You are only allowed to have one IDNT statement within
your source file.

IDNT missing

An IDNT statement line is missing from your source file.
To create an object file it must be present.

-17-

PolyDos

DISK BASIC GUIDE

o / falyilata
microcenter

PolyDos DISK BASIC Guide -1-

. TABLE_OF CONTENTS

1. IntrOdUCtion € 0 8 8 8 6 0 0 9 8 8 2 0 O S E B OB S SN E S PO P SOOI NNEeeee 2

2. Invoking DISK BASIC 8 & 8 8 6 8 2 8 S B R P P OO A O S SO PO DL PP OO O NS TSN GPEPE NS
2.1 The BASIC command 5 & 8 8 9 8 ® & 0 F 8 ® O B 0 O 8 & & 2 LSS S O N S S S I e s D0
2.2 Executing BASIC program filesceeeeeerecscrscronscns

w W W

3. DISK BASIC COMMANAS w4 eeeeesnecacassnscasssssoonsoncsassanssas
3.1 Direct mode COMMANAS .eceeseesrsesssassonssssscassacoassssns
3.1.1 The LOAD command ...cececsvesecscsosncacsoccsssscsssss

The SAVE command ...cccevessssessscsssssssacocsanscs

5

5

5

3.1.2 5
3.1.3 The SAVET COMMANGA +ieeesseesscnsssassssssnsansacs D
3.1.4 The EXEC cOomMAnNd ...eeeececcsssccsscssssoasaassns O
3.1.5 The AUTO COMMANG «ecseesesosscsscecsassasossssssasns O
3.1.6 The REN commMand ...eeeeecocscsccvsovascssosscoscacce 7
3.1.7 The FIND cOMMANA . eeeerveeoossccassasssssnssssves 1
. 3.2 Global COMMANAS s.eveeeceasecsssssossaccacnssoosssncssnce 7
3.2.1 Data file I/0 commandsS ..eeesecceacscceccosssccess 8
3.2.1.1 The SETNEW cOommMand ..cccceesesscessnssssss B
3.2.1.2 The FMS$ file variable .eeeeeeeccosssessss 10
3.2.1.3 The NR file variable ..ceoceevoeeaseesas 10
3.2.1.4 The EOF file variable ..ceeeescvesssseas 11
3.2.1.5 The SETINP cOmMANd veeesacsovsssecencess 11
3.2.1.6 The SETOUT command ...ccccecveeeesenanasss 11
3.2.1.7 The SETPOS coOmMANd .esvesoennsenssancsons 12
3.2.1.8 The SETCLS COmMMANA «eeoeeesesesssseessnes 12

3.2.2 Program file commandsS ..eseeeceveesrccnccaccanoass 13
3.2.2.1 The SETLOAD COMMANG soeeesssnoovessnsansss 13
3.2.2.2 The SETCHAIN commandsceccecesesssess 13

3.2.3 Printer control commandsS .eeeeeeeersssssscsscasese 13
3.2.4 VariousS COMMANGS +eeveesssoscsssannsscncoeesse R
3.2.4.1 The SETERR command
3.2.4.2 The SETREAD command ..ceesoeeessasenesss 15
3.2.4.3 The SETCLEAR commMand ...eoeeeeececeassses 15

‘ A, DISK BASIC MEMOLY MAP s s eesevosasnasosesssessasassssocssoss
B. Useful hints tuiieeeersoeeerscecosssscnocsessassassnass ceenn
C. Error messages ceesenseasenaane teca s s e s s as s e nen e

N
@~

-2~ PolyDos DISK BASIC Guide

Secticn 1

Introduction to DISK BASIC

PolyDos DISK BASIC is a collection of new commands to the NASCOM
8K ROM BASIC. Features of DISK BASIC include lcading and saving
program files on disk, sequential and random access data files,
printer interfacing, program error trapping, automatic 1line
numbering and renumbering. Programs written for the NASCOM 8K
ROM BASIC will run under PolyDos DISK BASIC with no
modifications at all.

PolyDos DISK BASIC Guide -3-

Section 2

Invoking DISK BASIC

DISK BASIC consists of two disk files, one called BSfh.OV, which
is the file handler overlay that handles the BASIC command and
DISK BASIC program file execution, and one called BSAdr.BR, which
contains the DISK BASIC commands. Both these files must be
present on the master drive to run DISK BASIC.

2,1 The BASIC command

The BASIC command is used to cold and warmstart the DISK BASIC
interpreter. On running DISK BASIC from a BASIC command the
following prompt message is output:

PolyDos DISK BASIC Version v.v
(C) 1981 Poly-Data microcenter
XXXXX Bytes free

where v.v is the version number, and xxxxx 1is the number of
bytes available to the BASIC program and its variables. To
warmstart DISK BASIC, add a W option to the BASIC command, thus
BASIC;W. If you attempt to warmstart DISK BASIC prior to a
coldstart, or if you in the meantime has been executing programs
that use the same memory areas as DISK BASIC, you are dgreeted:

I can't warmstart DISK BASIC
and returned to the command level. Note that if you wused the
BASIC command to coldstart DISK BASIC, don't use the Z in

NAS-SYS to warmstart it, as Z does not activate the DISK BASIC
routines properly.

2.2 Executing BASIC program files

When you execute a BASIC program file, by typing its file
specifier as a command, it will be loaded into memory an RUNed
automatically. What actually happens is that PolyDos invokes the
BASIC file handler BSfh.0OV, which loads the DISK BASIC routines
file, called BSdr.BR. When control is transferred to BSdr, it
loads your program file and RUNs it.

PolyDos DISK BASIC supports two kinds of program files: Memory
image files and text format files. A memory image file 1is an
exact copy of the program workspace saved on disk. Memory image
files are fast loading and consumes 1little space, but they
cannot be 1listed or edited by PolyEdit. A text format file on
the other hand can be listed and edited just as any other text
file, but it is slower to load and consumes more disk space than
a memory image file. Normally one uses text format files during
the development phase, and memory image files to contain the
finished program. You and DISK BASIC can tell memory image files
from text format files, by looking at the files load address
(the address displayed in the column labelled 'Load' of a disk
directory displayed by a DIR;E command). A load address of zero

-4- PolyDos DISK BASIC Guide

indicates a text format file, other values a memory images file,

You don't have to use the BASIC editor (i.e. NAS-SYS editing
facilities) to create text format files. Instead it is suggested
that you use PolyEdit. Not only is it a better editor, but it
enables you to enter lines of more than 48 characters (up to 72
characters are allowed). On loading a text format file, DISK
BASIC ignores all lines that doesn't begin with a line number.
Hence, by omitting the line number, you can insert comment lines
that will appear in the text file, but are ignored when the
program is loaded into memory. Consider the following example of
a text format BASIC program file possibly created using
PolyEdit:

This program will input your name

and spell it backwards

100 input "Hi there, what's your name";n$
110 print "Backwards your name is ";
120 for a=len(n$) to 1 step -1

130 print mids$(n$,a,l);

140 next

150 print: monitor

When loaded into memory (e.g. by executing the program or by
LOADing it), it will appear like this:

100 INPUT "Hi there, what's your name";NS$
110 PRINT "Backwards your name 1is";

120 FOR A=LEN(NS$) TO 1 STEP -1

130 PRINT MIDS(NS,A,l);

140 NEXT

150 PRINT: MONITOR

Note that the comments has been removed, and all lower case
letters, outside of string goutes, has been converted into upper
case.

If an error occurs on loading a program (e.g. a line number
greater than 65529 or a disk read error), an error message will
be displayed, and DISK BASIC enters direct mode. At this point
some program lines may be present.

PolyDos DISK BASIC Guide -5~

Section 3

DISK BASIC commands

The commands of DISK BASIC are divided into two groups: Direct
mode commands, which works only in the direct mode, and global
commands, which may be used in program statements as well as in
the direct mode. The descriptions use the following notations:

[...] Contains an optional element., If present the element may
only be used once.

{...} Contains an optional element, which, if present, may be
used any number of times.

ABC The names of the commands are printed 1in upper case
letters. All elements outside of the angle brackets (<>)
must be specified as-is. For example the element
{,<var>} requires the comma to be specified each time
the optional element is selected.

<ow? The angle brackets contains a syntactical element which
is described in the text.

3,]1 Direct mode commands

Direct mcde commands are only valid when used in the direct
mode, i.e. as a response to the 'Ok' prompt output by BASIC. The
commands in this group are:

LOAD Load a BASIC program file

SAVE Save program using memory image format
SAVET Save program using text format

EXEC Load and RUN a BASIC program file

AUTO Automatic line numbering

REN Renumbering

FIND Locate search string

3.1,1 The LOAD command

LOAD <filename>

The LOAD command is used to load BASIC program files from disk
into memory. <filename> must be a string expression giving the
file specifier of the file to be loaded, e.g. "Pingpong:1". If
no drive number is specified, the file is loaded from the master
drive. The program in memory is erased before the new program is
loaded.

3,1.2 The SAVE command

SAVE <filename>

SAVE will save the program currently in memory as a disk file
using memory image format. <filename> must be a string

-6- PolyDos DISK BASIC Guide

expression giving the file specifier of the program file to be
created. If no extension is specified DISK BASIC defaults to
.BS, and if no drive number is specified the file is created on
the master drive. If any files exist of the name you specify
they will be deleted.

3,1.3 The SAVET command

SAVET <filename>

SAVET works the same as SAVE, except that the file created is a
text format file.

3,1.4 The EXEC command

EXEC <filename>

EXEC works the same as LOAD, except that the program being
loaded is executed automatically.

3,1,5 The AUTO command

AUTO [<start>[,<inc>}]

AUTO provides automatically output line numbers. <start> is an
expression giving the first 1line number, and <inc> 1s an
expression giving the line number increment. If <inc> 1is
omitted, 10 is assumed. If <start> is omitted, 100 1is assumed.
When a line is entered, AUTO looks at its line number and adds
the increment to form the number to be output at the next line.
This means that you can backspace over the line number output by
AUTO, and enter a new one, from which AUTO will count at the
next line. Consider the following example:

AUTO 200,5

200 FOR A=1 TO 10

205 GOsSUB 500

210 NEXT: END

500 PRINT D{A)*C(A),D(A)/C(A)
505 RETURN

In line 500 AUTO actually output a line number of 215, which was
changed to 500 by the typist. As you see AUTO continued counting
from 500 instead of 215, the next line number being 505.

To deactivate AUTO enter a line that doesn't start with a line

number, e.g. a blank line produced by pressing <ESC> followed by
<ENTER>,

3,1,6 The REN command

REN [<start>[,<inc>]]

REN renumbers the program currently in memory to start with the
line number given by the expression <start> with a 1line number

PolyDos DISK BASIC Guide -7-

increment given by the expression <inc>. If <inc> is omitted 10
is assumed. If <start> is omitted 100 is assumed. Line number
references at the following statements will be renumbered:

GOTO GOSUB IF..THEN
ON. .GOTO ON..GOSUB RESTORE
LIST RUN SETERR

If a statement of one of the above mentioned types <contains a
reference to an undefined 1line number the reference will be
renumbered to 65529 which is the highest line number ©possible.
Such illegal references can be 1loacted later using a
FIND "65529" command.

3,1,7 The FIND command

FIND <string>

FIND will list all lines containing the search string given by
the string expression <string>. Each time the number of lines
given by the most recent LINES command has been output, FIND
stops and blinks the cursor. Press <ESC> to terminate FIND or
any other key to continue. Note that FIND will find all
occurrances of the search string including parts of line numbers
and reserved words. Hence, FIND "100" will 1list all lines
containing the string "100" (excluding the goutes), as well as
line 100. If your string is to include a double quote you must
use a CHRS$(34) functicn call.

obal commands

Global commands can be used as direct mode commands as well as
in program statements. As you will note, all global commands
start with the keyword SET. This may seem a little odd but it is
the only way of implementing extra commands that can be used as
program statements. The global commands are divided into four

groups:

Data file I/0 commands
Program file commands
Printer control commands
Various commands

3,2,1 Data file 1/0 commands

The data file I/0 commands are probably the most 1mportant
addition offered by DISK BASIC, since they allow you to maintain
data files on disks. PolyDos DISK BASIC supports two types of
data files:

Sequential files

Sequential files use the same internal format as text
files. Each "record" 1is a string of ASCII characters
ended by a carriage return. There is no fixed length on
lines in a sequential file as opposed to random access
files described below. This 1leads to the following

-8- . PolyDos DISK BASIC Guide

restrictions on sequential file access: Reading a
sequential file <can only be done from the beginning of
the file moving towards the end one line at a time and
writing to a sequential file can only be done by adding
lines to the end of the file. Only strings can be read
from and written to sequential files. In case of numeric
variables you will have to use the STR$(N) function to
write them and the VAL(SS) function to read them.

Random access files

A random access file consists of a fixed number of
records, each record containing a fixed number of
fields. A field can be one of three types: An integer,
i.e. a whole number between -32768 and 32767, a real,
i.e. a floating point number, and a string of a fixed
maximum length <{however not more than 255 characters).
As the length of each record is known, DISK BASIC can
calculate the position of specific records in the disk
file. Hence, you can read and write anywhere in the file
as you please,

Data file input/output is done through file channels, also known
as units. When you open a file for processing you assign to 1t a
unit. Every time you want to access the file you reference the
number of the unit assigned to it instead of the file name. DISK
BASIC supports 4 units numbered from 0 to 3. Thus, you can
access four files from your program at the same time. When you
close a file the unit you assigned to it is released and ready
to be assigned to another file.

3,2,1,1 The SETNEW command

SETNEW{<unit>),<filename>[,<typer[,<format>,<nrec>]]

The SETNEW command is used to open a data file and assign 1t to
a unit. The unit must be in its closed state or otherwise an
error occurs. The elemernts in the format descriptor are
explained below.

<unit> An expression representing the unit number to be
assigned to the data file (0 to 3).

<filename> A string expression giving the file specifier of the
file to be assigned to the unit. If the extension 1is
omitted, .DT is assumed. If the drive number 1is
omitted, the master drive 1s assumed.

<type> This parameter 1is optional. Its presence specifies
that a new file is to be <created and 1its value
specifies the access type of the file. It may be S
for sequential output or R for random access.

<format> This parameter is only used in the <case o©0f a new
random access file to be opened. It is a string
expression representing the internal format of each
record in the random access file.

<nrec> This parameter is only used in the case of a new

PolyDos DISK BASIC Guide -9-

random access file to be opened. It is an expression
representing the total number of records in the
file.

As you see from the above description, to open an existing file
you need only specify the unit number and the file name thus
leaving the <type>, <format>, and <nrec> fields unspecified.
DISK BASIC will itself figure out the type of the file. This is
done by looking at the file load and execute addresses. If the
load address 1is =zero the file is considered a sequential file
which will be opened for input. If the «coldstart address is
non-zero the file is considered a random access file which will
be opened for both input and output. The load address specifies
the number of records in the file and the execute address
specifies the record length in bytes.

If the <type> field is given DISK BASIC assumes that you want to
open a new file. If the file type is S a new sequential file
will be created and opened for output. The <format> field and
the <nrec> field should not be specified when creating
sequential files. If the file type is R a new random access file
will be created. In this case the <format> field and the <nrec>
field must be specified. The <nrec> field 1is an expression
giving the number of records in the file. The maximum number of
records is 32767. The <format> field 1s a string expression
giving the format of each record, i.e. the number of fields
within the record, and the type of each field. The character I
is used to indicate an integer, R is used to indicate a real,
and S is used to indicate a string. In the case of a string, the
ASCII value of the following character defines the maximum
length of the string. Below is shown some examples of format
descriptor strings:

III"
Indicates that each record contains one field which will
store integer values,

"IIR“

Indicates that each record contains three fields, the
first and the second one being integers, and the third
one being a real.

"IS"+CHRS(36)+"S"+CHRS (48)

Indicates that each record contains three fields, the
first one being an 1integer, the second one being a
string of maximum length 32, and the third one being a
string of maximum length 48. The format descriptor could
also be written "ISSS0", however this 1is not very
informative.

The format descriptor string may not exceed 45 characters 1in
length. On creating a new random access file, all fields within
each record will be cleared, i.e. integers and reals assume the
value 0, and strings become empty (length 0). Records in a
random access file are numbered from 0 to NR(<unit>)-1, where
NR(<unit>) is the number of records in the file. It is, however,
possible to position the record pointer at record number
NR(<unit>), but any attemps to read or write at this position
will produce an error,

-10- PolyDos DISK BASIC Guide

If you open an existing sequential file it is only possible to
read form it, and if you create a new sequential file it is only
possible to write to it. To add lines to an already existing
sequential file, you will have to open a unit to the o0ld file
and a unit to a new file, and copy all elements from the old
file to the new file, before adding extra 1lines. It 1is not
possible to have more than one sequential output file opened on
each drive.

Some examples of SETNEW commands:
SETNEW(0) , "TEXT.TX",S

Create a new file called TEXT.TX on the master drive,
and assign to it unit number 0. As TEXT.TX is a new
file, it is only possible to write to it.

SETNEW(2) , "REPORT"

Open the file called REPORT.DT on drive 1, and assign to
it unit number 2. As REPORT.DT is an existing file, the
file 1itself defines the type of I/0 it will permit
(sequential or random access) by the value of 1its 1load
address. Thus, your program must "know" what type of I/0
it is allow to do.

SETNEW(1l) , "DATA" ,R,"IS"+CHRS$(20)+"R",1000

Create a new random access file called DATA.DT on the
master drive, and assign to it unit number 1. DATA,DT
will contain 1000 records (numbered from 0 to 999), each
record containing an integer, a string of maximum length
20, and a real, in that order.

The FM ile variab

The FMS$ dimension is a reserved variable. Each time a random
access file is assigned to a unit, FM$(<unit>) is assigned the
format descriptor of that file. This is especially useful when
accessing already existing random access files of an unknown
internal format. FM$(<unit>) 1is treated by BASIC as any other
string variable. Thus, it is possible for you to assign values
to it, however this is strongly discouraged. When a sequential
file is assigned to a unit, FM$(<unit>) is undefined.

3.2.1,3 The NR file variable

The NR dimension is a reserved variable. Each time a file 1is
assigned to a unit, the number of records in that file, or zero
if the file is a sequential file, 1is assigned to NR(<unit>).
This 1is especially wuseful for determining the type of an
existing file. NR(<unit>) is treated by BASIC as any other
variable. Thus it 1is possible for you to assign values to it,
however this is strongly discouraged.

PolyDos DISK BASIC Guide -11-

The EOF fi ria

The EOF dimension (actually only EO need be specified) is a
reserved variable. Each time a line is read from a sequential
file, or when a sequential file is opened for input, EOF (<unit>)
is assigned a boolean value, reflecting the status of the unit.
If EOF(<unit>) is false, the file contains more lines. If
EOF (<unit>) is true, the file pointer is at the end of the file.
Trying to read from a sequential file, when EOF(<unit>) is true,
will result in an error. For sequential output files and for
random access files, EOF(<unit>) is undefined.

3,2,1,5 The SETINP command

SETINP(<unit>) ,<var>{,<var>}

The SETINP command is used to input data from a unit. The unit
must be 1in its opened state, or otherwise an error occurs. The
<var> field(s) denote variable identifiers.

On reading from a sequential file, the variable(s) specified
must be of type string (i.e. $ variables). When a variable is
read, all characters up to, but not including, the next carriage
return in the file will be returned (assuming that this is not
more than 255 <characters), and the carriage return character
will be skipped. If the line contains more than 255 characters,
only the first 255 characters will be returned. If the line read
was the last line in the file, the end-of-file variable of the
unit involved will be set to true (-1). Note that it 1is not
possible to read from a sequential file which was opened as a
new file.

On reading from a random access file, the type of the variable
to be read must match that of the field pointed to by the
internal file pointer: Integer fields and real fields must be
read into numeric variables, and string fields into string
variables. When a variable has been read, the pointer advances
to the next field in the record. If you specify more variables
in the statement line than there are fields in the record, an
error message will be produced. If you specify less variables in
the statement 1line, than there are fields in the record, the
internal file pointer will be left to point at the next field.
This allows you to split up reading of records into more SETINP
statements, but it can also be a source of confusion, if
administrated inproperly, as it is possible to leave the file
pointer in the middle of a record. ’

3,2,1.,6 The SETOUT command

SETOUT (<unit>),<expr>{,<expr>}

The SETOUT command is used to write to a wunit. The unit
specified must be in its opened state, or otherwise an error
occurs. The <expr> field(s) denote expressions.

On writing to a sequential file, the expression(s) specified
must be of type string. Each time a string value is written to
the file, a carriage return will be output automatically. Note

-12- PolyDos DISK BASIC Guide

that it is only possible to write to a new sequential file, i.e.
a file opened with the S specification.

On writing to a random access file, the type of the expression
to be written must match that of the field pointed to by the
internal file pointer: Numeric expressions must be written to
integer or real fields, and string expressions into string
fields. If the length of a string expression is greater than the
maximum length of the string field it is to be written to, only
the leftmost characters will be transferred. When a value has
been written, the pointer advances to the next field 1in the
record. If you specify more variables in the statement line than
there are fields in the record, an error message will be
produced. If you specify less variables in the statement 1line
than there are fields in the record, the internal file pointer
will be left to point at the next field. This allows you to
split up writing of records into more SETOUT statements, but it
can also be a source of confusion, if administrated inproperly,
as it 1is possible to leave the file pointer in the middle of a
record.

3,2.1.7 The SETPOS command
SETPOS (<unit>),<recnbr>

The SETPOS command is used to move the internal file pointer of
the unit specified to the record given by the expression
<recnbr>. The file pointer will be positioned at the first field
of the record. <recnbr> should be within the range 0 to
NR(<unit>)-1, where NR(<unit>) is the number of records in the
file. If <recnbr> is greater than NR(<unit>), an error will be
produced. If <recnbr)> equals NR(<unit>), the file pointer will
be positioned at the end of the file. Any attempts to read or
write 1in this position will result in an error. SETPOS on
sequential files will produce an error.

T ETCLS command
SETCLS (<unit>)

The SETCLS command is wused to <close (release) the unit
specified. If data has been written to the sector currently
contained in the internal file buffer, the buffer will be
written to the disk. If the file assigned to the unit is a
sequential output file (i.e. a new file), it will be entered
into the disk directory, and all files with the same name and
extension will be deleted. Thus, the <creation of a new
sequential file 1is not <completed before a SETCLS(<unit>)
statement is executed, as opposed to the creation of a new
random access file, which is entered into the directory when the
SETNEW command is executed. However this DOES NOT mean that the
SETCLS(<unit>) statement can be omitted when working on random
access files.

PolyDos DISK BASIC Guide -13-

3.2.2 Program file commands

The program file commands are SETLOAD, which is used to load
machine code subroutine files into memory, and SETCHAIN, which
will load and execute any BASIC program file without clearing
the variable workspace.

T ETLOAD command
SETLOAD <filename>

The SETLOAD command is wused to load a file into memory under
program control. <filename> is a string expression giving the
file specifier of the file to be loaded. The default drive is
the master drive.

The files loaded using SETLOAD are typically machine code files,
but any file type of files can be handled. The file will be
loaded into memory starting at its load address. Note that no
checking is done to assure that system memory areas are not
overwritten. The SETLOAD should not be used to load BASIC
program files. Instead use the LOAD or the EXEC command from
direct mode, or the SETCHAIN command from programs.

3,2.2,2 The SETCHAIN command
SETCHAIN <filename>

The SETCHAIN command will load an execute a BASIC program file,
without clearing the variable workspace., <filename> is a string
expression giving the file specifier of the file to be CHAINed.
The default drive is the master drive.

3,2.3 Printer control commands

The printer control commands are used to control output to the
printer. Two commands are available:

SETPRON Printer on
SETPROFF Printer off

SETPRON will turn on printer output, which means that subsequent
output will be directed to the printer. SETPROFF turns off
printer output. Note that the printer output function does not
output to the printer the characters typed from the keyboard in
the direct mode and as response to INPUT statements. These
inputs will be echoed to the VDU in the usual way.

3,2.4 Various commands

In addition to the commands described in the preceding section,
PolyDos DISK BASIC supports three commands. These are:

SETERR Trap program &rrors
SETREAD Input variables with editing
SETCLEAR Define string space and memory size

-14- PolyDos DISK BASIC Guide

3,2.4,]1 The SETERR command
SETERR[<lineno>]

The SETERR command causes program control to be transferred to
the line specified in case of errors. <lineno> must be the line
number of an existing program line. The error service routine
can obtain information about the error condition in the system
variables EL (error line) and EN (error number). EL contains the
line number of the error, and EN contains the error number (see
appendix A). When the error service routine is invoked, the
SETERR function is turned off to avoid a system "hang-up",
should the error service routine itself contain an error. If
used without a 1line number argument, the SETERR command will
turn off the error trapping function., If the 1line given by
<lineno> does not exist, and an error has occurred, DISK BASIC
will output the error message "?Undefined line in xxxxx", where
XXXXX is the line number of the SETERR command. In this case the
initial error 1line and error number can be accessed through EL
and EN.

Th ETREAD command
SETREAD <strvar>

The SETREAD command will display the contents of the string
variable <strvar> and allow you to edit it, The following
editing keys are available (<LE> denotes the 1left arrow, and
<RI> denotes the right arrow):

<LE> Move the cursor left
<RI> Move the cursor right
SHIFT/<LE> Delete character
SHIFT/<RI> 1Insert character

<CS> Clear input field
<BS> Backspace one character
<ENTER> Entry complete

The length of the input field is determined by the length of the
string when the SETREAD command was invoked. Only characters
within the input field will be affected by the editing commands.
For instance, if you SETREAD a string of length 10, inserting a
character, when the cursor is in the first position of the input
field, will only move left the nine characters following the
cursor. The length of the string returned by SETREAD 1is always
the same as the length upon entry. The carriage return (<ENTER>)
ending the entry will not be echoed.

3,2,4,3 The SETCLEAR command
SETCLEAR <strsp>[,<memtop>]

The SETCLEAR command will erase all variables and set the size
of the string space to the number of bytes given by the
expression <strsp>. If the <memtop> field is specified, it
should be an expression giving the address of the highest memory

PolyDos DISK BASIC Guide -15-

address DISK BASIC is allowed to access. Values greater than
32767 must be specified as negative numbers, computed from
ZZZZZ=XXXXX-65536, where xxxxx is the desired value and zzzzz is
the value to be used. The only difference between the SETCLEAR
command and the CLEAR command is that SETCLEAR allows for values
greater than 32767 to be specified as described above.

-16- PolyDos DISK BASIC Guide

Appendix A

DISK BASIC memory map

FFFF 4=——mmm oo e e e e +
1 NASCOM 8K ROM BASIC I
EQOQ +=—=—mmmm o m o e +
| Unused |
D800 +~-——-————m e - +
| PolyDos ROM |
D000 4-—-——r e e +
| PolyDos workspace |
C000 +—————mmmm e +
| DISK BASIC routines |
BOO0D +-—---—mmm e e +
| DISK BASIC file buffers l
A9Q0 +mmm = m o +
| User RAM |
MTOP +=— === mm—m e m e e e +
I |
| Program/variables I
I |
10FA 4-mm—m— e m e e +
| ROM BASIC workspace !
1000 +--—----———— e - +

When DISK BASIC 1is coldstarted, MTOP is set to A900H, thus
reserving all unused RAM for BASIC programs and variables. The
value of MTOP can be lowered using the SETCLEAR command (see
section 3.2.5.3). The overlay area is used by the error message
writer overlay Emsg.OV. Emsg is loaded by DISK BASIC when it is
invoked. Thus, you may remove the system disk once DISK BASIC is
up and running.

PolyDos DISK BASIC Guide -17-

Appendix B

Useful hints

If you during program execution want to insert a new disk in one
of the drives, you must first make absolutely sure that all
units relating to that drive are closed, and next
POKE -16383,255, to inform PolyDos that the directory has to be
read into memory before any disk transactions can take place.

If you want to extract parameters from the command line invoking
your program, use this short routine to copy the contents of the
command line into a string variable (in this case CLS):

500 CL$="": FOR P=-16357 TO -16311
510 CLS$S=CLS$+CHRS$(PEEK(P)): NEXT: RETURN

Note that this method assumes that your program was executed
from the command level in PolyDos, and not from an EXEC command
or a SETCHAIN statement.

The routine shown below will test to see if the command file
mode is active, and, if so, abort it:

600 IF PEEK(-16373)=0 THEN RETURN
610 PRINT "*** Command file abort ***"
620 POKE -16373,0: RETURN

Very often you will need a routine to input one character from
the keyboard without echoing it to the screen. Start your
program with POKE 4158,223, and each time you want to read an
input character execute CH=INP(123), which will blink the cursor
until a Key is pressed, and return its ASCII value. To restore
normal INP operation, execute POKE 4158,219. Don't use other
"port™ values than 123. It will cause strange things to happen,
and may very well crash the system.

~18~- PolyDos DISK BASIC Guide

Appendix C .

Error messages

This appendix lists all error messages and their associated
error numbers. When you are using the SETERR function to trap
program errors, the error number can be accessed through the EN
variable.

Errors reported by PolyDos:

For a full explanation of these errors please refer to the
PolyDos Users Guide.

16 Illegal character in filename

17 Filename too long

18 Bad drive identifier .
19 Filename missing

32 Drive not ready

33 Disk write protected

34 Write fault

35 Record not found

36 Checksum error

37 Lost data error

38 Bad disk address

39 No disk or wrong format

40 Illegal drive number

41 Disk is full

48 I can't find that file

49 That file already exists

50 Directory is full

51 I can't do that to a locked file

Errors reported by ROM BASIC:

For an explanation of these errors please refer to the NASCOM 8K ‘
ROM BASIC manual. The two-letter error codes normally returned
by BASIC are listed enclosed in parentheses:

128 NEXT without FOR (NF)

129 Syntax error (SN)

130 RETURN without GOSUB (RG)

131 Out of data (OD)

132 Function call error (FC)

133 Overflow (OV)

134 Out of memory (OM)

135 Undefined line (UL)

136 Bad subscript (BS)

137 Double defined dimension (DD)

138 Division by zero (/0) |
139 TIllegal direct (ID) |
140 Type mismatch (TM) |
141 Out of stringspace (0S)

142 String too long (LS)

143 String expression too complex (ST) ‘.
144 I can't continue (CN)

145 Undefined function (UF)

146 Missing operand (MO)

PolyDos DISK BASIC Guide -19-

Errors reported by DISK BASIC:

147

148

149

150

151

152

154

155

156

157

158

Illegal unit number. The unit number is not within the
range 0 to 3.

Unit already open. An attempt was made to open a unit which
has not yet been closed.

Unit not open. An attempt was made to access a unit which
has not yet been opened.

Invalid format descriptor. The format descriptor is empty
or more than 45 characters 1long or it «contains invalid
field descriptors (i.e. not "I", "R", or "S"+CHRS$(x)).

End of file. An attempt was made to read from a sequential
file which has its end-of-file flag set, or from an
unexisting record in a random access file.

Invalid record number. The record number specified is out
of range,

Null string. An empty string is not allowed here.

I can't open that unit. You are trying to open a new
sequential file on a drive which already has a sequential
output file on it.

Unit not open for input. You are not allowed to read from a
sequential output file.

Unit not open for output. You are not allowed to write to a
sequential input file.

I can't position that unit. You are not allowed to use the
SETPOS command on seguential files.

