ENHANCED BASIC
REV 3.1T

The Nascom Microcomputers Division of Lucas Logic Limited reserves
the right to amend/delete any specification in this brochure in

ac e with future /e i

© Copyright Lucas Logic Limited

Nascom Microcomputers
Division of Lucas Logic Limited
Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ

Tel: 0926 497733 Telex: 312333

Lucas Logic

CONTENTS

0. INTRODUCTION

I. GETTING STARTED WITH XBASIC

agrwNE

First steps - Dired & Program mode
Numbers and Strings

Variables

Arrays

Expressons

II. THESYSTEM EDITOR & SYSTEM COMMANDS

=

2.
3.
4

5.

Screen Control Codes

The Screen Editor

The Line Editor

System Commands:

MON, NEW, DEL, AUTO, LOAD, SAVE, VERIFY
CLEAR, RUN, CHAIN, LIST, HOLD, MGE, RENUM
Chaining and 'Semi-Chaining' Programs

I11. COMMANDS, STATEMENTSAND FUNCTIONS

1
2.

3.
4,
5

Commands/Statements

Disc Handling Commands.

DIR, ERA, REN, LOCK, UNLOCK
Standard Functions

Standard String Functions
User-Defined Functions

IV. INPUT/OUTPUT FACILITIES

1.

2.
3.

Devices and I/O assgnment:

PRINTE, INPUTE

Dired 1/0 Port access

Speda Commands affeding I/O:

SEP, FMT, IOM, SPEED, NULL, WIDTH, ZONE

V. XBASIC FILE MANAGEMENT SYSTEM

6.

grLOdhE

General

File Naming Conventions

The File Descriptor

Sequential and Random Access Methods
File-Handling Commands:

DRIVE, OPEN, CREATE, CLOSE,
APPFEND, PRINTE, INPUTE, INCH$
File-Handling Examples

VI. ERROR MESSAGES

1
2.

3.

List of Error Messages

Error handling within BASIC:

ON ERR GOTO/GOSUB, ON EOF GOTO/GOSUB,
OFF ERR, OFF EOF, ERR, ERR$, ERL

Error Message Construction/Extension

VIlI. MACHINE-CODE LINKAGE

1.

2.

MC-code related Commands/Functions:
CALL, POKE, PEEK, DOKE, DEEK, PTR, HEX$
Loading and Saving M C-code Files

OO0k~ WwW

10
10

15

16

21

22

25

27

28

30
30

34
34
35
36
37

39

45
47

48

50

52

VIII, COMMAND/FUNCTION EXTENSION
1. Program storage
2. Reserved Word Construction
3. The Auxiliary Tables
4. Commands and Functions
5. How to enter extra Reserved Words
APPENDICES
AppX. A. Index of Reserved Words and Error Messages
AppX. B. The Hardware Configuration, including:
MEMORY MAP, SCRATCH-PAD addresses
1/0O Device assignments, Graphics,
incompatibilities with other versions, etc
AppX. C. Useful Subroutinesin XBASIC
AppX. D. Examplesof Extra Commands and Functions
AppX. E. Trangdator for Nascom ROM and tape Basic

53
54
55
55
55

58
61

65
76
81

0. INTRODUCTION

Nascom Extended Basic (XBASIC) is an interpreter written in Z80 madhine @de which hes
been developed by Crystal Research. It is based on experience gained with earlier versions
of Xtal BASIC and Nascom ROM BASIC. Extended BASIC is ggnificantly larger than
both the earlier Xtal BASIC and Nascom ROM BASIC, but includes many new features,
and exigting features have been extended.

For thase with some experience of macdine-code programming, the ility to create user-
defined reserved words must be one of the most outstanding features of this BASIC. By
writing appropriate sub-routines and by inserting your own defined words in an auxiliary
reserved word table, you will be &le to expand this interpreter to give the type of BASIC
most suited to your own needs. We believe that, for the time being at least (and we have not
head of any equivalent in over two yeas), this feature is unique to BASIC's from Crystal,
and it makesit potentially one of the most powerful BASIC' s ever available.

Extended BASIC is designed to alow the incorporation of disc handling commands, as
well as handling cassette tape, and the file handling system has been designed with aview to
deding with both. Although we use the terms ‘disc’ and ‘castte tape’ throughou the
manual, it is as well to remember that some forms of tape, such as the ‘stringy floppy’ or
‘floppy tape are theoretically cegpable of randam- acess and may hdd separate ‘file
directories, i.e. intents and puposes they behave & disc drives. We therefore include all
such devices under the broad term ‘disc drives, to distinguish from the sequentia-only
‘ cassette tape’ drives.

Nascom Extended BASIC is available in three forms - tape cassette, NAS-DOS and CP/M.
The differences involve only the media ad the provision d appropriate disc access
commands.

LOADING EXTENDED BASIC ON NASCOM MICROCOMPUTERS (TAPE VERSION)

XBASIC will run onany of the Nascom computers, as long as one of the NAS-SY S monitors
is being used. Itis supplied ontapein CUTS format, to load at 1200 baud.

To load XBASIC, type R and then press the <ENTER> key. Next, press the PLAY button
or. the asstte recorder. The program shoud be observed to load block by block until, after
abou two minutes, loading shoud be @mplete. XBASIC occupies the area 100(H to
40FFH (about 12 1/4 K).

To run, type in E1000 and press the <ENTER> key. Thisistheinitialising, or ‘COLD’, entry
to XBASIC. A ‘WARM’ entry is also alowed from the monitor into XBASIC by typing
E1003<ENTER>. This preserves any current BASIC program and variables. This entry
point should na, however, be used unless XBASIC has already been previoudy entered by a
COLD start.

NOTATION

In order to simplify the use and understanding of this manual and, in particular, the
command and function descriptions, we have adopted a notation that explains the syntax
reguirements of each command/function. This consists of a single letter, which may or may
not be followed by a number, enclosed thus: < >. If a command/function name has to be
followed by an expression, this rotation will show the type of expression that is allowed:

J an expression, which must evaluate to a number in the range 0 to 255. If it is not an
integer, the decima part of the number will be chopped off, the integer part only
being used.

An expression, which must evaluate to a number in the range -65535 to
+65535. Again, only the integer part is actually used. In some cases, the range is
restricted to 0 to 65535, or even 0 to 32767 (e.g, Array elements), but mention is made
only when those cases apply.

L A line number, intherange 0 to 65535. This must be a number only, and so may not
be given asavariable.

Any numeric expression.
Any expression, whether numeric or string.
Any string expression.

m o m 2

A string expression, which must evaluate to give alegal file name (as defined in
Chapter V .2).

A numeric variable, which may not be an array element.

< C

A variable name, which may be of numeric or string type, and may bean array
element.

SV A string variable name, which may not be a string array element.
X A complete Xtal BASIC statement.

Examples:
1. In Chapter 111.4 we find the LEFT$ function described thus: LEFT(<S>,<J>)

This means that LEFT$ must have two arguments separated by a comma, and enclosed
within parentheses. The first argument must be alegal string expression, and the second
argument must be a number intherange 0 to 255 (reasonable, since we cannot have strings
longer than 255 characters).

e.g. LEFT$("NAME "+X$,7) islegal.

2. In Chapter 111.1, the ON..GOTO command is shown:
ON <J> GOTO<L1><L2>,.. <Ln>

This means that ON must be followed by a number in the range 0 to 255 followed by the
word GOTO followed by one or more line numbers <L1> to <Ln>. Each of these line
numbers (if more than one) must be separated by a comma.

e.g. ON X GOTO 1000,2000,3000 will simply drop to the next lineif X isO or greater than
3, otherwise a GOTO will be executed to one of lines 1000, 2000 or 3000 according to the
value of X being 1, 2 or 3 respectively.

3

. GETTING STARTED WITH XBASIC

1. RUNNING UP XBASIC

Having loaded XBASIC from your tape or disc, you should be rewarded with the ‘sign-on’
message, i.€:

Nascom Enhanced BASIC Rev xx
(C) 1982 Xta

Size: yyyyy

Ok

where xx represents the sub-version for your machine, and yyyyy the memory size
available for storage of BASIC program and variables. The Ok prompt shows that XBASIC
available and is not running a program, but is waiting for a command to be typed in at the
keyboard. Virtually any of the commands or statements listed in the following chapters may
be typed in and executed, dong with a number of speciad commands given in Chapter
I, known as‘'SYSTEM’ commands. For example, we may use the machine as a calcul ator:

Example:
PRINT ATN(1)*4 Y ou type thisline
3.14159 Computer printsthe result of 4 times the arc-

tangent of 1

This is known as DIRECT execution mode, since commands are executed DIRECTLY they
are typed.

Alternatively, commands and statements may be entered without being executed,. by typing
a line number in front of it. A sequence of one or more lines entered in this way forms a
PROGRAM, which may be executed by means of the RUN command (see below). Thisis
known PROGRAM mode.

Line numbers may range between 1 and 65535, and may be followed by one or more
commands. Each line so entered is automatically placed in order, with line 1 at the front.
Line numbers may be selected arbitrarily by the user, but it isrecommended that reasonable
gaps be left (say, 10) between lines, so that extra lines may be inserted if these are later found
to be necessary, in the development of a program. The program may begin with any line
number, but the first line to be interpreted will always be the lowest line number entered.

A line may be deeted by entering its number followed by <ENTER>, with no other
information.

Several commands may be entered on asingle line by separating them with colons:

Example:

10 PRINT 2*13: PRINT 5+6 Y ou type these

RUN lines

26 Computer responds with the answers
11

Separation in this manner allows several commands to be entered in DIRECT mode as well
asinaprogram.

2. NUMBERSAND STRINGS

There are two types of quantity allowed in XBASIC - numbers and strings. Numbers may
a so include floating-point numbers, integers, and hexadecimals.

2.1 Numbers

These can be whole numbers (integers) or floating-point numbers (reals). A number is
stored internally as four bytes, one of which represents a signed exponent, while the other
three represent a signed mantissa. This gives an exponent range from -38 to 38, with a
seven-digit signed mantissa. Although the full seven digits are available for internd
calculation, they are rounded off to six figures when output, the seventh figure being
known as a ‘guard’ digit. When accuracy is at a premium, the seventh digit should always be
used, if known, since Xtal BASIC can make use of it, even though only six significant figures
are displayed.

Example:
The Pl function actually uses 3.141593, even though it displays as
3.14159 (to show this, try PRINT PI-3).

Leading and trailing zeroes are suppressed on output, so that integers are actualy printed as
such without long rows of zeroes.

Examples:
3 314159 314.159 .0314159 3.14159E+08 -3.14159E-37

These are al possible forms in which numbers may be output. The last two, for those not
familiar with them, are in SCIENTIFIC notation, a form only used when the output is too
large or too small to be conveniently printed in any other way. Numbers may be INPUT in
thisform, if required.

2.2 Integers

XBASIC supports 16-bit integers, i.e, whole numbers in the range -32768 to +32767.
Integers outside that range may only be stored in ordinary numeric variables (see next
section, on variables), but integersin this range may be stored internaly in two bytes instead
of four (for simplicity of design of the interpreter, we actually store integers in four bytes
for smplevariables, and two bytes per eement within arrays, where the greatest savings
may be made).

We use an additional convention with integers, however, that numbers in the ranges -65535
to -32769, and 32768 to 65535, may be accepted by integer variables, since it is often
useful to do so. In these cases, the values are internally converted to lie in the ranges 1
to 32767 and -32768 to -1 respectively (since we should otherwise need 17 bits to store such
numbers).

2.3 Hexadecimal numbers

The alowance of hexadecima numbersin XBASIC greatly increases the ease of linkage to
machine-code routines and locations, and they may normally be used in any expressions
requiring numeric quantities. The only limitations arethat only integersare allowed for, in
therange &0 to & FFFF. To indicate a hexadecima number, aleading ampersand ‘&’ symbol

5

is supplied, followed by a string of charaders, ead of which may a number in the range O
to 9, or a letter in the range A to F. When encountered within a numeric expression, a
hexadecimal number is internally converted into a dedmal integer and the result of such an
expressionwill still always be a nama number. The hexadecimal number may consist of
1 to 4digits. More may be entered, bu all except the last four will then be ignored.

Examples:

&1F34 represents 7988in decimal.

&A7 represents 167in decimal.

&91F34 till represents 7988 in decimal (the first digit isignored).

To obtain the hexadedmal equivalent of a decimal number, the HEX$ function maybe used
(seeChapter VII.1).

2.4 Strings

These are combinations of ASCII characters representing letters, numbers and symbds,
useful for storing names, titles and text, although their intrinsic data can be extraded by the
interpreter and they are frequently used to hdd numeric values as well. A string can be
any combination d up to 255 charaders, usualy shown in qudes" " in order to prevent
confusion with numbers or variables.

Examples:
"TREVOR" "Trevor" "12345.6° "Oh! *$%" are dl valid strings.

3. VARIABLES

A variable is a ommbination of letters and/or numbers, the first character being a letter.
XBASIC distinguishes the first FIVE characters (most BASICS distinguish orly the first
two). Variables may be of either numeric. Integer or string type, and hdd numbers, whole
numbers and strings respectively. Integer variables must be suffixed with a ‘%’ and string
variables with a‘$. There is no theoretica limit to the length of a variable name, athough
the length of theinpu line will clealy limit it!

Examples:
A AA X9% X93% X$ F4$ ABCD$ AB123% KRAZY KRAZY10

are dl valid variables, although BASIC would be unable to dstinguish
between the names of the last pair, since their first five dharacters are the
same.

Care must be taken to ensure that variable names do nat contain reserved words, otherwise
SYNTAX ERRORS will result.

Examples:

TONE LETTER COST EXPENSE PINCH TERROR TO LET COS
EXPINCH ERR (and OR)

will all cause problems.

Keeping variable names to two characters will solve this problem (the only 2-charader names
in XBASIC are IF, TO and FN) and this also saves space

Integer variables may contain only integers in the range -65535 to +65535 but they may
also contain hexadecimal numbers. However, values returned by integer variables are in the
range -32768 to +32767, using the most-significant bit as a SIGN flag (these may be regarded
as sixteen-bit numbers).

Example:

A% =65535: PRINT A% will display the value -1
LOC=&9678: PRINT LOC will display the value 38520
LOC%=&9678: PRINT LOC% will display the value -27016

4. ARRAYS

In addition to ssimple numeric and string variables, we can use numeric and string arrays.
An array is, in effect, a table full of variables, each of which can be uniquely identified.
Naming of arrays takes exactly the sameform as for simple variables, except that they are
followed by a set of one or more subscripts, each subscript representing one of the dimensions
of that variable.

Examples:
A(0) TABLE% (56) NAME$(1,0,2)

are dl valid arrays, where A is an array of one dimension, the subscript (0)
referring to the FIRST element. TABLE% is a two-dimensiona integer
array and NAMES$ is a three-dimensiona array holding strings, each of
which may be up to 255 charactersin length.

In XBASIC all array subscripts number from zero.

In order for BASIC to know how much space to allocate to an array, the array in question
must be dimensioned with a DIM statement (see Chapter 111.1) before being brought into
use. However, if al subscriptsin an array have maximum values of 10 or less, then that
array may be used without a DIM statement.

Example:
AA(7,4,6)=56

will dimension that array exactly as though the following had been
written:
DIM AA(10,10,10):AA(7,4,6)=56

assuming that no previous DIM statement has been used for AA. That
array will have 11*11*11=1331 elements, requiring over 5320 bytes to
storeit! NOTE: If we had used an integer array AA% we should only
require about 2670 bytes to store it.

5. EXPRESSIONS

Expressions consist of variables, numbers, string variables or strings in any combination, and
related by means of arithmetic and/or logic operations.

5.1 Arithmetic operators
The arithmetic operations allowed in XBASIC are asfollows:

+ (add) - (subtract) * (multiply) / (divide)
1 (raise to power) MOD (remainder)

Thet operator has the following conventions:
X10=1forX>=0,and0 Y =0for Y>0(so01 0=1!).
X 1Y isundefined for X<0 or for X=0and Y <0.

The MOD operator is the remainder from adivision, and can be defined as follows:
X MOD Y =X-Y* INT(X/Y)

Examples:

5MOD 3returns 2

-5 MOD 3returns 1 (see definition of INT, Chapter 111.3).
5.2 Relational and logical operators

RELATIONAL operators are used for comparisons and the evaluation of conditions,
particularly for IF statements. The ones allowed are:

> (greater than) >= (greater than or equal to)
< (lessthan) <= (less than or equal to)
= (equal to) <> (not equal to)

LOGICAL operators alowed are:
NOT AND OR XOR (exclusive-OR)

Example:
10 IF (X+Y-Z)>3 AND Y<=20 THEN 100

Expressions involving relationa operators and logical operators are normally used within IF
statements (Chapter 111.1), but can aso be used within normal arithmetic expressions, since a
relational expression returnsavalue -1 if itis TRUE, and O if FALSE. In some cases, quite a
lot of space can be saved.

Example:
IF X>15THEN A=0: ELSE A=1 can bereplaced by:
A= - (X>15)

5.3 Bit manipulation

Logical operators may also be used for bit manipulation, provided that the sub-expressions
on either side evaluate to results in the range -65535 to 65535 (i.e, they can be thought of
as sixteen-bit quantities). Then AND, OR, XOR and NOT will al work upon the individual
respective bits of the two expressions.

Example:

PRINT 1234 AND 3412 outputsthe result 1104:
0000 0100 1101 0010 (1234 = &04D2)

0000 1101 0101 0100 (3412 = &0D54)

0000 0100 0101 0000 (1104 = &0450)

5.4 Operator precedence

Operator precedence follows the usual mathematica order. We aso include the relational and
logical operators here, so that they may be used within arithmetic expressions with the
correct precedence:

Highest precedence: 0 (parentheses).
1
* [MOD
+ -
<K <==<>>=>
NOT
AND
Lowest precedence: XOR OR

5.5 String expressions

XBASIC aso alows string expressions, but the only operator is CONCATENATION,
represented by ‘+'.

Example:

A$="ABC": B$="DEF": C$=A$+B$: PRINT C$
outputs the result

"ABCDEF"

String comparison may aso be performed for aphabetic sorting, since "B">"A", for
example. In comparing two strings, the comparison is done character by character, until a
position is found in which the two differ. The ‘greater’ string is then the one whose
character has the greater ASCII code. If no differences are found, but one string is longer than
the other, thelonger string is considered to be the greater.

Examples:

"GOLIATH" isgreater than "DAVID"

"ANDY" is greater than "ANDREW"
"BROTHERHOOD" is greater than "BROTHER"
"Hello" > "Goodbye" returns the numeric result -1 (true).

[I.THE SYSTEM EDITOR AND SYSTEM COMMANDS

1. SCREEN CONTROL CODES

Thefollowing VDU control codes are used by XBASIC on the standard 48x16 VDU
Note, incidentally, that al 16 lines scroll when running XBASIC.

Ctrl-A &01 HOME cursor to top left corner of screen.

<TAB> &09 TAB cursor to next print ZONE, by printing spaces. However see
aso IOM command in Chapter 1V.3.

<LF> &0A LINK FEED, or move cursor DOWN. Scroll screen at bottom.

<CS> &0C CLEAR SCREEN and Home cursor to top left corner.

<CR> &0D CARRIAGE RETURN, without line feed.

Ctrl-P &10 PRINT SCREEN to printer (device £1, see Chapter 1V .1).

Ctrl-Q &11 Move cursor LEFT.

Ctrl-R &12 Move cursor RIGHT.

Ctrl-S &13 Move cursor UP.

Ctrl-T &14 Move cursor DOWN (same as <LF>).

2. THE XBASIC EDITOR

This powerful facility, available to you the moment that XBASIC is entered, has been
designed in an attempt to make program entry and debugging more of a pleasure rather. Input
lines may be up to 127 characterslong, and note iskept at all timesof where the start and
finish of thelineis. So, if you have several linesin alisting, you may move the cursor up the
screen to that line and make modifications to it, even if it occupies two or more rows on the
screen. If the line is extended so that it will apparently run into the next one, the lines
below simply move down one row to make room for it. Note that the modified line is only
entered into the program when the <ENTER> key is pressed while the cursor sits in one
of the rows of the screen containing that line.

The following specia key functions are available, the ones in brackets indicating the
equivalents for the Nascom 1 keyboard:

Ctrl-A (@A) HOME cursor to top left corner of screen.

s<BS> or <CS> CLEAR screen and Home cursor.

CH(@R) Move cursor RIGHT.

C O (@Q) Move cursor LEFT.

CH (@) Move cursor UP.

Cr (@ Move cursor DOWN (scroll screen at bottom).

<BS> DELETE character to the LEFT, but moving rest of line one place
to the left.

s’ ' (@U) DELETE character from the RIGHT, moving rest of line one place
to the left.

s' (@V) INSERT space at cursor, moving rest of line one place to the right,

and moving lines below it onerow down, if required.

NOTE: An insertion done at the bottom line of the screen will
cause an immediate scroll, moving the cursor up with it. This
has no ill effects, apart from being a bit disconcerting when first
observed.

10

Ctrl-W (@W) ERASE whole line. This differs from Ctrl-X in that the cursor is
returned to the start of the line before clearing it.

Ctrl-X (@X) ERASE to end of line (even if it occupies 2 or more rows), the
current cursor position.

Ctrl-O (@0) ERASE to end of screen from current cursor position.

Ctrl-P (@P) PRINT SCREEN contentsto printer.

<ESC> (s<NL>) Abandons a line (though you could just use an arrow key or a
Ctrl-W!) and prints the ‘ OK’ prompt.

<CR> or <NL> ENTER the current line on which the cursor sits into BASIC.

cursor will end up dtting at the sart of the next line (i.e, not
necessarily the next ROW of the screen). Leading and trailing
spaces areignored, and lines of greater than 127 characters will
be truncated to 127 (this being the size of the buffer area).

If thisisall asclear as mud(!), the best thing to doisto ‘play’!

3. THE LINE EDITOR

In addition to the screen editor, a ‘Line edit’ mode is aso available, primarily for use
within programs, when to use the screen editor could cause some irritation (since the INPUT
prompt would also be assumed to be part of the input line! On the other hand, this could
also be very useful in certain applications).

In this mode, cursor movement keys are not available, except that © ' and <BS> Both
delete the last character from the line, Ctrl-P still gives a screen dump to printer, <ESC>
abandonstheline, and <CR> enters it into BASIC.

For the reasons outlined above, screen edit mode is‘switched on’ automatically in direct
mode, and LINE EDIT mode turned on for programs. In addition, the user may use the IOM
command (see Chapter 1V.3), insde or outside aprogram to change the editing mode:
IOM 0,1 gives SCREEN EDIT mode, IOM 0,0 gives LINE EDIT mode. In direct mode, IOM
2,0 should be used before IOM 0,0 , otherwise screen edit mode will be reselected on
completion of the statement.

LINE EDIT mode shows itself by means of a prompt at the start of the line (" J'in direct
mode and ‘7 in an INPUT statement with no specified prompt string).

SPECIAL NOTE: In spite of the declaration above that lines are limited to 127 charactersin
length, it is possible to move the buffer area to other areas in the memory space, and to
change the buffer length up to 254 characters maximum! This may be done by means of the
PTR command (see Chapter VII). Care must then be taken over selection of the area used to
contain the buffer, and it is recommended that an area created by means of a CLEAR
command be used.

4. SYSTEM COMMANDS

The following commands are normally intended for use in direct mode, athough some
(such as RUN and LIST) can also be used to advantage within programs, and CHAIN is
used almost entirely within programs. Because they all affect modification and overal
control of programs and of the system, they are all referred, to as SY STEM commands:

11

MON Takes control back to the operating system, or the monitor. This is the command to
use when you wish to leave XBASIC.

NEW Causesall program lines and variables, if any, to be deleted.

DEL <L1><L2> Deletesall linesfrom the program in the range <L1> to <L2>. Both start
and finish lines should be specified, but will default to 10 if not given! If <L1> islarger than
<L2>, or if <L1>islarger than the largest line present, a RANGE ERROR will occur.

Example:
DEL 100,199 deletes all lines with numbers from 100 to 199 inclusive

LIST <11><12><I13> Liststhe program to the current output device. Thelisting starts
from thefirst line after <I1> and ends at line <I3> or the first line after <I3> if that lineis not
present. <I2> givesthe number of lines to list at atime. After <I2> lines nave been listed,
there will be a pause. The user then presses a key, and the listing continues with another
<I2> lines (except for some special keys, given in note (iii)). Any or al of the expressions
may be omitted, but the appropriate commas should be present if <I2> and/or <I3> are
specified.

Examples:

LIST Listswhole program

LIST |5 Listswhole program, 5lines at atime

LIST 100,7 Lists 7 lines at atime starting from 100

LIST 200 Still lists 7 lines at atime, starting from line 200
LIST 100,,199 Lists 7 lines at atime from 100 to 199

LIST ,4,299 Lists4 lines at atime from the start to line 299
LIST ,,199 Lists4 lines at atime from the start to line 199

LIST 300,5,999 Lists5lines at atime from 300 to 999

Notes:

(i) BASIC remembers the last value of <I2> given and keeps using it until LIST is used
with adifferent value. When BASIC starts up, <I2> is assumed to be 65535, until given.

(i) A listing may be abandoned at any time, whether paused or not, by pressing <ESC>.
(iii) When paused, the cursor movement keys may be used to abandon the listing and, at
the same time, move the cursor in the direction of the key pressed. This only works in
SCREEN EDIT mode (see section 3 of this Chapter). The purpose of thisis to allow quick
exit to the Editor, without having to remember to press <ESC> first!

(iv) Unlike many BASIC'S, the LIST command may be used within a program as a normal
statement, and note aso that <I1>, <I2> and <I3> may all be EXPRESSIONS. This can
be extremely nice!

Example:
X=100: Y=50: LIST X,Y ,X+99 Listsfromline 100 to 199, 50 lines at atime.

12

AUTO <L1><L2> Automatic line-numbering while entering programs. This Command
requires a start line <L1> and increment <L2>, and both of these default to 10 if not given.

Examples:

AUTO 1005 Starts from line 100 and continues 105, 110, 115, etc.
AUTO 100 Starts from line 100 and continues 110, 120, 130, etc.
AUTO Starts from line 10 and continues 20, 30, 40, 50, etc.

Each line number is displayed just as if it had been typed from the keyboard, and the user
may enter the usual program statements at that point. On pressing <CR> in that line, the
text is entered with its line number in the usua way, and then the next line number
appears. The user then continues with this line. When finished, just type <ESC> to abandon,
whereupon normal direct mode will be re-entered. Any error (BRANCH ERROR is
common, when the user just presses <CR> without entering any statement and the line does
not exist) will also cause a return to normal direct mode. The editing mode is not affected
by this command.

LOAD <F> Loadsafilefromtape OR disc (depending which is available, either if both
are available) whose file name is <F>. The file name convention is described in full in
Chapter 1V .4, sothe user is referred to that.

Examples:

LOAD "TEST" Loads the program file "TEST.XBS' from the current default disc or tape
drive. Any existing program in memory is deleted, but note that variables are NOT
destroyed.

LOAD "B:TEST.ASC" Loadsthe ASCII program file "TEST.ASC" from disc drive B,
whatever the current default drive. In this mode, the user may actually observe the file
loading, appearing line-by-line on the screen. Again, variables are NOT destroyed, but
neither isthe existing program. Thus the user may add extraroutinesto existing programs,
and the added lines will appear at their correct positions in relation to those already present.
Note, however, that if a new program is to be loaded as a .ASC file, a NEW command must
first be executed.

LOAD "T:ROUTINES.OBJ' Loads the machine-code routines or data from the file
"ROUTINES. OBJ' on tape drive T, into the area previoudy reserved for them in the
memory map (by means of the CLEAR command). The start address will be assumed to be
the first location above this CLEARed area (e.g, if a CLEAR & 9FFF has been done, the file
will load starting at & A000). See also Chapter VII.2.

In al three cases, if the size of the file is larger than the area available, a MEM FULL
ERROR will occur. If thefileis not present, aNO FILE ERROR will occur if adiscdriveis
being searched, while no result will be returned if a tape drive is being searched - the user
simply has to abandon the tape load, as explained in Appendix B.

If a type other than XBS, ASC or OBJ is specified, a FILE TYPE ERROR will occur (this
also applies to SAVE. If it is desired to load or save data files, use the file access
commands described in Chapter V).

13
SAVE <F> As for LOAD, but saves a file named <F> to tape or disc.

Examples:

SAVE "T:TEST" Saves the program file "TEST.XBS" to tape drive T, whatever the current
default drive.

SAVE "TEST.ASC" <I1>,<I12><I3> Savesthe programin ASCII format from lines<I1> to
<I3>. The value of <I2> has no effect here, but should be a legal integer quantity 0-65535.
The format is, in fact, like that of LIST, except that nothing appears on the screen, and
NO pauses are made at every <I2> lines.

SAVE "TEST.ASC" by itself will save the whole program in this form. SAVE
"A:MCSTUFF.OBJ' <I1><I2> Saves the area of memory starting from <I1> and ending at
<|2> to disc drive A. Both <11> and <I2> MUST be specified, and <I2> must be larger than
<|1>, otherwise nothing will actually be saved. Although intended for saving routines for use
in the ‘machine-code area (see memory map, Appendix B), there is no restriction on the
actual area of memory saved.

VERIFY <F> Verifiesthefile named <F> on tape or disc, reporting achecksum error as
a BAD DATA ERROR. This command works in the same way as LOAD, except that
program files are not loaded into memory, but treated as if they were datafiles. Any valid
file name may be specified. As for LOAD, if an attempt to verify a non-existent disc file, a
NO FILE ERROR will result.

CLEAR <I1><lI2> Clears al variables and arrays from the system, and clears out al
strings.

When specified, <I1> and <I2> set up the the topmost location of memory. available to
BASIC (<I1>) and size of the stack (<I2>), additional to clearing the variables.

The stack is usualy 256 bytes, and may not be set to asmaller value.

It will not normally be necessary to increase the size of the stack, unless alarge number of
nested FOR loops, subroutines and expressions are used (if you encounter STACK FULL
ERRORS, this is usualy because subroutines are being entered and not RETURNed from
(i.e, something naughty is being done!). If <I1> is not specified, the stack size will remain
unaltered.

The top of memory is set in order to leave space for OBJ files, that is machine-code
routines or data. Normally, none is reserved, and the value reserved is left unchanged if
<I2> is omitted. <I2> may not be set above thetop of the RAM space - any attempt to do so,
or to set it too low, or to set too large a stack size, will result inaMEM FULL ERROR.

Examples:

CLEAR ,500 sets 500 bytes of stack space.

CLEAR & 7FFF sets the top location of RAM for BASIC programs and variables to
& 7FFF, so that machine-code routines can be placed in the area from &8000 upwards. The
stack sizeis unaffected.

CLEAR & AFFF,300 sets 300 bytes of stack space, and the top location to & AFFF.

RUN begins execution of the program currently in memory, starting at the lowest line
number, and clearing all variables. The following variations are also available:

RUN <L > - Begins execution at line number <L>.
RUN <F> - Equivalent to a LOAD <F> followed by a RUN. This can be used within a
program, as well, to link from one program into ancther.

14

CHAIN Exactly the same as RUN, except that, in all three variations all variables are
preserved, and can thus be passed from one program to ancther. This is an extremely useful
command, particularly when it is desired to run an extremely large application, which
may be split into several smaller programs sharing the same variables. See also section 4 of
this chapter for adiscussion of applications of this command.

HOLD <L1><L2> ‘Holds a range of lines for view in a program, so that another
program may be appended to it, or so that this range may be renumbered, and thus
moved to another part of the program. The effect is that the rest of the program seems to
have disappeared. In fact, it is still present in memory, but cannot be found by a LIST
command, nor executed by RUN, etc. Both <L 1> and <L2> may be omitted, their default
values being 0 and 65535 respectively. Thus, HOLD by itself has no effect.

Examples:

HOLD 100,199 Leaves only lines 100-199 inclusive ‘in-view'.
HOLD 100 Leavesal linesfrom 100 up in view.

HOLD ,199 Leaves all lines up to and including 199 in view.

What actually happens is rather ‘sneaky’. The normal text pointer TEXT is moved up to
point to the start of line <L1>, while ‘the start of next line’ pointer held within the line
immediately above <L2> is set to a pair of nulls. Note that TXTTOP is still pointing to the
rea end of text. The program memory map then looks like this:

HTEXT TEXT 0000 TXTTOP
0000

HIDDEN AREA LISTABLE PROGRAM AREA HIDDEN AREA

Note that the listable area can be modified and even RUN without affecting the hidden
areas. LOADing another program DOES destroy the upper hidden area, but does not affect
the lower one.

MGE Restores sanity to a ‘held’ program. MGE does not just replace text correctly and
restore the removed line pointer - it does atrue ‘merge’ of the held area, so that the lines of
the resulting program follow their correct order. MGE takes no account of two or more
lines having the same line number, and both lines would then appear in the text together.

RENUM <L1><L2> Renumbers a ‘held’ program, or the whole of it if no HOLD
command has previously been used. <L 1> is the new starting line, and <L 2> the increment.
All references following GOTO, GOSUB, RUN, THEN, ELSE and RESTORE commands
are modified to their new line numbers. Only the line numbers within the listable area (see
HOLD) are modified, but referencesto modified lines are checked throughout the whole
program. This means that, by using HOLD, followed by a RENUM, and finally doing a
MGE, whole sections of the program may be moved into a different area of the program.

Note that both <L1> and <L2> may be omitted, each defaulting to 10, as for the AUTO
command.

15

Examples:

RENUM 1000,5 Renumber, making the first line become 1000, and incrementing in
5's.

RENUM 500 Make the first line 500, increment in 10's.

RENUM ,20 Make the first line 10, increment in 20's.

5.CHAINING AND 'SEMI-CHAINING' PROGRAMS

The RUN & CHAIN commands have aready been mentioned in the previous section. In
addition to alowing the use of RUN and CHAIN commands from direct or deferred mode,
Xtal BASIC 3 allows the ‘semi-CHAIN’ of programs, so that several programs may use a
common ‘pool’ of sub-routines, without having to keep the same set of routines within each
sub-program. This saves file space, and greatly improves the efficiency of a CHAIN, by
speeding up the loading of each sub-program.

To do this, we use the HOLD command before executing a RUN or CHAIN. The RUN and
CHAIN commands both restore a‘held program by setting TEXT back to HTEXT as soon
as the program has loaded. However, execution of the resulting program will commence at
the start of the added section, NOT at the start of the program. The only restriction is that the
common sub-routines must have line numbers smaller than those in any of the sub-
programs. The following simplified memory map should help to explain what we are trying to
do:

COMMON
ROUTINES
HOLD:
etc.
INITIAL SUB SUB
ROUTINES 1 2

By ‘INITIAL’ routines, we mean those which set up arrays, variables and memory space,
such as DIM and CLEAR statements, which only need to be executed once (indeed, the
initial routines could be contained in a separate sub-program which would CHAIN to that
containing the COMMON routines). As may be seen, just ONE sub-program actually
contains the common routines. When SUB2 or SUB3 are CHAINED, they may use the
common routines, just as SUBL.

16
[11. COMMANDS, STATEMENTSAND FUNCTIONS

1. COMMANDS/ISTATEMENTS

There now follows a list of commands and statements available in XBASIC in its
unmodified (by the user) version:

CLS Clears the screen on the current output device, or sends a form feed
code, if the output deviceisaprinter.

CONT Causes an interrupted program to resume without clearing the variables.
It may be used after a program has terminated with a STOP command. During tne stopped
period, the user may look at or dter variables without doing any harm, although any
attempt to modify the program itself will cause a CONT ERROR to occur. CONT may also
be used after a program interrupt using <ESC>. This is a particularly useful aid to
debugging in, for example, the tracing of an infinite loop.

DIM This is used to reserve storage for numeric or string arrays. It takes the form
DIM Al(11,12,.., In), A2(..),...,An(..) , where Al to An are names of one or more arrays, and 11
to In are numeric expressions in the range 0-65535 representing the maximum size of
each dimension in the array. If an array is referenced without having first been
dimensioned, it is assumed to have a maximum subscript of 10 for each dimension
referenced.

The DIM statement thus defines the amount of storage, the number of dimensionsand
the size of each dimension in the array.

An array may not be dimensioned more than once in each program - an attempt to do so will
resultin aDIMENSION ERROR.

END Terminates execution of a program. It is not strictly necessary when the
end of the program coincides with the end of the highest line number.

FOR <U>=<N1> TO <N2> STEP <N3> Allowsusto set up program. LOOPs, for the
repetition of sequences of one or more statements.

<U> is known as the CONTROL VARIABLE, which MUST be a simple
numeric variable.

<N1>isthe INITIAL VALUE to which the control variableis set.

<N2> isthe LIMIT VALUE, which, when passed, ends the loop.

<N3> is the optional STEP VALUE, which is the amount by which <U> is
changed on each iteration of the loop. If STEP <N3> is omitted, a step value of
1 is assumed.

The statement(s) within the loop follow(s) the FOR statement. To indicate the end of the
loop, we use the NEXT statement, which takes the forn:

NEXT<U1>,<U2>,.<Un> where <U1> to <Un> represent control variables of n nested
FOR loops, and is equivalent to the sequence of statements

17

NEXT<U1>: NEXT<U2>: .. : NEXT<Un>.

NEXT <U> adds the value of <E3> (or 1, as the case may be), and then compares <U> with
<N2>. If <U> is greater than <N2> (or LESS, if <N3> was negative), execution continues on
after the NEXT statement, otherwise execution transfers back to the statement immediately
following the FOR statement corresponding to <U>. If <U> does not correspond to an
active FOR loop, a NEXT ERROR will occur, otherwise, if it does not correspond to the
last FOR statement, that one will be abandoned, as will any others, until the specified
oneisfound. Note: If no variable is specified, the last FOR statement is assumed to be the
desired one.

Example 1: We may wish to print out square roots of numbers between 1 and 10.
Ws can do this:

10FORI=1TO 10

20 PRINT SQR(I)

30 NEXT |

Example 2:

5DIM A(7,7)

10FOR X=0TO7

20FORY=0TO7

30A(X,Y)=5

40 NEXT Y X

When RUN, thisroutine sets al elements of an 8x3 array A to 5 (line 30).

GOTO<L> Transfers program execution to line <L>. If <L> does not exigt, a
BRANCH ERROR will occur.

GOSUB <L> Transfers program execution to line <L>. Execution continues from there
until a RETURN statement is encountered, whereupon execution is returned to the line
immediately following the original GOSUB statement. In this way, subroutines may be
implemented. If <L> doesnot exist, aBRANCH ERROR will occur.

RETURN Terminates a subroutine accessed by a GOSUB statement. If a RETURN
is encountered without having been preceded by a GOSUB in this way, a RETURN ERROR
will occur.

POP Removes, or ‘pops one address off the stack of GOSUB addresses,
so that the next RETURN will branch one statement beyond the SECOND most recently
executed GOSUB. Aswith RETURN, a RETURN ERROR will occur if no GOSUBSs are
currently active.

IF Allows the evaluation of conditions, so that the machine may make a
choice depending on whether a condition is true or fase. The most general form is:
IF<N> THEN<X1>: <X2>: .. : <Xn>: ELSE<Xn+1>: .. : <Xm>

The expression <N> is evaluated and, if non-zero (TRUE), execution continues with the
statement(s) <X1> to <Xn> following THEN. In this case, the EL SE statement and the rest
of the line after it is ignored. If <N> is zero (representing FALSE), execution continues
with the statements following EL SE, ignoring the ones between THEN and EL SE.

18

ELSE is optional, and execution transfers to the next line if <N> is false anxd ELSE isnat in
the line. ELSEs may not be nested (or rather, they MAY be, bu the result will be that only the
first one will have awy significance. The following DOES, however, work: IF .. THEN ...
ELSEIF.. THEN .. ELSE ..

Other forms of |F statement allowed are:

IF <N>THEN <L1> ELSE <L 2>
IF <N> GOTO <L1> ELSE <L2>, which is equivaent. Again, ELSE is optional in both
cases. If <N> istrue, exeautiontransfersto line<L1>, otherwise to <L2>.

It is also possible to mix the two forms, replacing either <L1> or <L2> with statements (if
<L1> is replaced by statements, there MUST be astatement separator (:) between the last
statement and the ELSE), bu a line number must, of course, follow the GOTO, if that form
isused.

INPUT Used for getting input, from the keyboard, from a file, or from some
other input device The last two are described in Chapters IV and V.

The usual formis as follows;
INPUT “<Prompt>"; <V1>,<V2>,..<Vn>

The prompt is optional, but must be astring in qudes followed by a; if used. If no prompt
is used, BASIC prompts with a 2 However, if the system isin screen edit mode (see
Chapter 11.1) and no pompt has been used, no. gestion-mark will appear (so that aline may
be input without any junk infront of it!).

Data etered as a result of an INPUT command may be in the form of numbers, strings, o
strings within quotes. In the cae of more than ore variable being filled, the entries must be
separated by a specia charader, NORMALLY a comma (but see SEP command in Chapter
IV.3).

If the number of entries typed in exceeds the required number for the INPUT statement,
then only the first values entered will be used, followed by the displayed message EXTRA
IGNORED. If insufficient datais entered, a further prompt ? will appear.

If the user attempts to enter a string when numeric data is required, the non-numeric data
will be ignored, and O will be assumed if the first character is non-numeric.

Example:

10INPUT "Name, Rank and Number: "; NAMES$, RANKS$, N
20PRINT RANK$NAMES$;N

RUN

Name, Rank and Number: CORNISH, Capt, 506659

Capt CORNISH 506659

LET <V>=<E> or <V>=<E> Asdgns the value of <E> to the variable <V>. The word LET
isoptional, but isREALLY more corred!

19

Example:

LET AA=1+2*3/4 assignsthe value 4.5 to variable AA

LET TEMP%=12 assigns the value 12 to integer variable TEMP%

NAMES$="JOHN" assigns the string JOHN to variable NAMES,
and shows use of the format without the word
LET.

It is perfectly permissible to assign integer variables to ordinary rea variables, and even to
assign floating-point quantities to integer variables. In the latter case, however, the result
MUST be in the range -65535 to 65535 (not forgetting that numbers in the ranges -65535
to -32769 and 32763 to 65535 will be converted as shown in Chapter 1.2b). Moreover, any
floating-point part will be lost, asif an INT function (section 3 of this Chapter) had been
performed before assigning the result.

Example
A%=Pl| isthesameas A%=INT(PI), and assignsthe value 3to A%

ON<J>GOTO<L1><L2>,.. <Ln>

ON<J>GOSUB <L1>,<L 2>, ..<Ln> In both cases, expresson <J> is evaluated, and
execution transfers to line <L1> if <J>=1, <L2> if <}»>=2, and so on. If <3>=0 or >n,
execution continues with the next statement. The transfer takes the form of a GOTO or
GOSUB as specified and, in the case of a GOSUB, execution will continue with the
statement following the ON statement after returning. NOTE: A Qty Error occurs if
<J>isnegative!

Example:

10 INPUT "Typein the day of the week (1-7)";DAY
20 PRINT "Itis";

30 ON DAY GOSUB 110,120,130,140,150,160,170
40 PRINT " today."

50 END

100 REM DAY S OF THE WEEK

110 PRINT "SUNDAY";: RETURN

120 PRINT "MONDAY";: RETURN

130 PRINT "TUESDAY";: RETURN

140 PRINT "WEDNESDAY";: RETURN

150 PRINT "THURSDAY";: RETURN

160 PRINT "FRIDAY";: RETURN

170 PKINT "SATURDAY";: RETURN

RUN Type in the day of the week (1-7): 3
ItisTUESDAY today.

PRINT Used for sending out to the screen, printer, a file, or to some other
output device. Special formats for output to other devices and files are described in
Chapters IV and V). The usua form is to follow the command PRINT with a list of
expressions, each separated by one of aselection of separators. The expressions may
be numeric or string types.

The separators between expressions may be as follows:

leaves the (imaginary) print-head where it is, so that the next
expressu on will print directly from the end of the previous one.

20

moves the (imaginary) print-head to the start of the next tab-point,
of which there are several per line, normally 14 columns apart (but this may be modified
by means of the ZONE command, as may the ‘tab limit"). If the print column is aready past
the tab limit, a CRLF is printed before the next expression.

@ allows printing of expressions at specified points on the screen using
coordinates. For this situation, the screen is divided (internally and automatically) into
columns and rows (see Appendix B for the number of columns and rows in your own
system), both coordinates must be specified as a number between 0 and 255 but if either is
greater than the number of columns or rows (as appropriate), a ‘wrap-around’ will occur.
Thus if, on a 48x16 screen, for example, we do a PRINT @57,24 the cursor actually moves
to 9,8. Coordinates must both be given and separated by a comma, while the separator
between the coordinates and the expression following may be a comma OR a semi-colon
(in this case, the separator has no effect). This last separator is not needed if no expression
follows the coordinate specification.

Except in the case of a coordinate specification coming at the end of a PRINT statement, a
CRLF is printed at the end of a PRINT statement unless a‘;’ or ‘," separator appears a the
end of the statement.

By the same token, a PRINT statement by itself will just print a CRLF.

Example:

10 PRINT "HELLO"; "GOODBYE", "TO YOU"; 987,
20 PRINT 1234

RUN

HELLOGOODBYE TO YOU 987 1234

Note that all numbers are printed with a leading and trailing space, the leading space
being reserved for a sign which is only shown if the number is negative. Both of these spaces
may, however, be removed, when desired, by means of the IOM command (Chapter 1V.
3), for convenience and compatibility with some other BASICS. Moreover, humeric printout
may be specially formatted on printout by means of the FMT command (in the same
section), and the user should consult this section for information about the various forms in
which numbers may be displayed.

PRINT may be abbreviated to ? whentyped in as a line of program text, although it will
still LIST as PRINT (except, of course, that ? stays as such within REM and DATA
statements, or within quotes).

READ. ...DATA....RESTORE are used for storing and using data from within a
program as opposed to data entered by the user.

READ <V1><V2>,..<Vn> Reads in datafrom a list stored in the program
within one or more DATA statements. BASIC maintains a pointer which remembers the last
item of Data read, so that subsequent READ statements will continue from that point. The
format is very like that of the INPUT statement (without a prompt) and if there is insufficient
data available, a DATA ERROR will occur.

DATA <data> Specifies the items of data to be read. Those
items may be numbers, strings in quotes, or strings without quotes, provided they
contain no leading spaces or separators. Theuser may have as many DATA statements as

21

are desired within a program, each containing as many or as few items as are convenient.
DATA statements may appear at any position in a program and will be read as though they
were al in one block.

DATA statements are ignored when encountered during the running of a program (just like
REM statements)

As with INPUT, the separator (normally ‘') may be modified by means of the SEP
command (see Chapter 1V.3), and it must DC remembered that this command affects both
INPUT and READ statements.

RESTORE <L> Restores the internal data pointer to the firs DATA statement
following line <L>. <L> is optional and, if omitted, the pointer is restored to the very first
DATA statement in the program. In this way, DATA statements may be reread severa
times within the same program, without requiring to be stored in variables throughout the
execution of the program.

REM Causesthe remainder of the line to be ignored by the Interpreter.
Its main use is for, entering programming notes during the development of a program, so
that it may be more easily understood by anyone reading it.

SET<J1>,<J2> RESET <J1>,<J2> Graphics commands, for turning on (and off) graphics
points on the display screen. The standard screen is arranged as 96 point horizontally and 96
points verticaly.

STOP Like END, terminatesaprogram, but also displays the message BREAK
IN <L>, where <I> is the line number in which the termination occurs. Severa STOP
commands may be used in a program, and execution may be restarted from this break
point by means of the CONT command, provided that no program alterations have been made
during the break.

SWAP <V1><V2> Swaps the contents of variables <V1> and <V2>, which may be
numeric or string variables or array elements. Clearly, they must be of similar type,
otherwise a TY PE ERROR will occur. This command is very useful in sorting algorithms,
being much faster than the follow- ing:

Example:
SWAP A(1),A(I+1) replaces T=A(1): A(D=A(I+1): A(I+1)=T

where T is an extra variable which would otherwise be needed to hold one of the other

variables. The speed of this command becomes very apparent when string sorting is done,
since only the POINTERS are swapped, not the actua strings themselves.

2. DISC COMMANDS

Thefollowing are available only in the disc version of XBASIC:
DIR <F> Displays the directory, showing the files specified by <F>.

22

If <F> is not given, or is givenas"**", al files are listed on the default disc drive.
Locked filesareindicated by a* in front of their names. The adua number of filesper
line shown varies according to the value of the zone limit (seeZONE, Chapter IV.3).

Example:
DIR
*XBAS .COM: XYZ XBS
. XYZ ASC : ROUTINES.OBJ
*INVADERS.ASC
DIR "*.ASC"
: XYL ASC :*INVADERSASC
ERA <F> Erases the file given by <F>. Only one file & atime may be erased (to

discourage wholesale daughter when you dorit readly mean it!). A No File aror occurs if
<F> does not exist, andaFile Locked error if thefileislocked.

REN <F2>,<F1> Renames the file given by <F1> to the name <F2> (note the order in
which the names appear!). A File Exists error occurs if the name <F2> is already present,
and a No File error occurs if <F1> does nat exist. If <F1> is locked, a File Locked Error
oceurs.

LOCK <F> Locks the file named <F>, so that it may nat be written on,ERAsed o
RENamed. A No File eror occurs if <F> does not exist. Locked files are shown in a
DIRedory display with aleading "*".

UNLOCK <F> Unlocks the file <F> previously LOCKed, so that it may be written to,
ERAsed or RENamed.

3. STANDARD FUNCTIONS

Note: Where we say that afunction ‘returns' a value we mean, of course, ‘returnsfor use
within an expression’. If you wish to try out the examples given below pu the command
PRINT in front, to display the desired result.

Example:

PRINT ABS(-3.14159 will display the result 3.14159
ABS(<N>) Returns the Absolute value of <N>

Example:

ABS(-3.14159 returns 3.14159
ATN(<N>) Returns the Arctangent of <N> in radians ranging from —Pl/2
To +Pl/2

Example:

ATN(Dreturns 0.7853%B, which isPl/4

23

COS(<N>) Returns the cosine of <N>, where <N> isin radians.

EVAL(<S>) Returns the result of evaluating the text in the string expression <S>,
asif it were part of the normal program text. Thisis particularly useful when it may be
desired to INPUT an expression for evaluation. The expression <S> must be syntacticaly
correct, otherwise a SYNTAX ERROR will occur.

Example:

10 X=5

20 INPUT "Typein expression :";A$: Y=EVAL(A%)
30 PRINT "Resultis: ;Y

RUN
Typein expression: 1+X-EXP(X/3)
Resultis: .70551
EXP(<N>) Raises e (value 2.71828..) to the power of <N>. If <N> isgreater than

about 87, an OVFL ERROR will result (since the result will be greater than 1 E39!).

INCH Returns the ASCII value of the next input character, which it must first
wait for. This is very useful for pausing between pages of instructions, for example. See
also INCH$ and INCH$(N) in section 4 for the version to use with strings.

INT(<N>) Returns the largest integer less than or equal to <N>. This definition is
important, since it applies al so to negative numbers.

Examples:
INT (3.14159) returnsthe value 3.
INT (-3.14159) returnsthe value -4.

KBD Similar to INCH, but only scans for input. It returns O if no character is
available, or the ASCII value if one has. It does not wait for a character. See also KBD$ in
section 4, the version for use with strips.

LN(<N>) Returns the natural (base €) logarithm.
LOG(<N>) Returns the base 10 logarithm.

Care is needed when using these, since many BASICS use only LOG, and that for natural
logarithms only. If <N> islessthan or equal to zero, a QTY ERROR will occur.

Examples:
LN(2) returns 0.693147
LOG(2) returns0.30103

PI Returns the value 3.14159, and is faster than using a variable to hold the
number pi.

24

POINT(<J1>,<J2>) Used in conjunction with the special graphics commands SET and
RESET, returns 1 if the graphics point at <J1>,<J2> is lit, otherwise 0. See Appendix B.

POS(<J>) Used to obtain the current output column or row position, according to the
value of <J>.
POS(0) returns the ‘print column’ count. This is independent of screen size, and

is only zeroed when a CR, HOME or CLEAR SCREEN/FORM FEED code is output, or if
the column count exceeds 255. Thisis designed mainly for use with printers.

POS(1) returns the current column position of the cursor on the VDU.
POS(2) returns the current row position of the cursor on the VDU. Both of

these are designed to be used in conjunction with the PRINT@ facility (see PRINT in
section 1).

RND(<I>) Returns arandom number, depending upon the value of <I>.

RND(1) returns a random number in therange 0 to 1, as a floating-point
number.

RND(<I>) with <I> in the range 2-65535, will return an integer random number,

ranging from 0 to <I>-1. E.g, RND(9) returns a number in the range 0-8. This achieves
compatibility with many integer BASIC's, and obviates the need, for example, for
INT(9*RND(1)), which is often seen in other BASIC' S.

RND(0) returns the last random number produced, whether integer or rea
The random number generator uses the Z80 refresh register several times during the

routine to give far more random results than a‘ pseudo’ random number generator. Hence the
RANDOMIZE statement found in many BASIC'sis not required in XBASIC.

SGN(<N>) Returns the sign of <N>. If <N> < 0, it returns -1, if <N> =0, it returns 0,
and if <N>> O, it returns 1.

SIN(<N>) Returns the sine of <N>, where <N> isin radians.

SIZE Returns the size of memory available for the program, variables, pointers

and strings, as a positive number in the range 0-65535.

SQR(<N>) Returns the sguare root of <N>. If <N> islessthan 0, a QTY ERROR
will occur.
SPC(<J>) Prints <J> spaces. Thisfunction is only valid within aPRINT statement.

TAB(<J1>,<J2>) Prints characters until the (imaginary) print head reachescolumn <J1>
on the output device. Thisfunctionisaso only valid withina PRINT statement. The value

25

of <J2> represents the ASCIlI value of the character printed, and <J2> is optional. If
omitted, the character specified in a previous TAB function will be used, or a space character
if none hasbeen previously specified, thus being ‘upward-compatible’ with TAB on most
BASICS.

This ‘tab character’ feature is somewhat unusual, and is provided for two reasons. First, a
few BASIC'S, for example, PET BASIC and SHARP BASIC, use a ‘cursor RIGHT’ instead
of a space as the TAB character, with the advantage that headings and margins on the
screen may be ‘printed over’ without removing parts of the screen that may still be required.
In these cases, work in ‘trandating’ such a program to run under XBASIC is eased by
specifying the ASCII code for cursor-RIGHT' at the first occurrence of a TAB function
within a program.

Secondly, by using other characters, patterns for lining up margins and headings may
easily be produced.

Example:
10 PRINT "Name"; TAB(20,46)

20 PRINT "Address" ;TAB(20)
RUN

Theuser may well dream up some other applications!
NOTE: If the print column is past or at column <J1>, no TAB will occur.

TAN(<N>) Returns the tangent of <N>, where <N> isin radians.

4. STANDARD STRING FUNCTIONS

ASC(<S>) Returns the ASCII value of thefirst character of the string
<S.

Example:
ASC("BCD") returns the value 66 (decimal for 42H, the code for "B").

CHR$(<J>) Returns the single character string whose ASCII valueis <J>.

INCHS$ Waits for an input character, and then returns it as a one-character
string. Thisisvery handy for single-character responses such as Y/N?

Example:

10 PRINT "Typein acharacter:";: AS=INCH$
20 PRINT: PRINT "Youtyped a ";A$

30 END

RUN

Typeinacharacter: (typea"B")

Youtyped a: B

26

Note that neither this nor the INCH function will actualy edo the key bak to you, so
either PRINT the string as soonasit isinput, or use INCH$(1) instead (see next paragraph).

INCH$(<J>) Waits for an input string of <J> characters. Each character will be
echoed as input, unlessthe IOM command has been used to suspend echoing of characters.
No specia characters are recognised, and EXACTLY <J> characters must be input. This
function is mainly useful for file input, since it docs nat react to selected characters (unlike
INPUT), and may thus be used to read program or machine-code files.

Seedso Chapter V onfile-handling, for the use of these functions with files.
KBD$ Again, like INCHS$, bu returns anull string if no character is available,
otherwise the character as a one byte string. Note: KBD and KBD$ work only with the

console keyboard, whatever device is currently selected for input.

LEFT$(<S>,<J>) Returnstheleftmost <J> characters of the string <S>.

Example:

LEFT$("HELLO" ,2) returns the string "HE".
LEN(<S>) Returns the length of the string A$ including punctuation marks, control
charaders and spaces.

Example:

LEN ("HELLO") returnsthe value 5.

MID$(<S>,<J1><J2>) Returns <J2> characters darting from the <J1>the character
position in string <S>. <J2> may be omitted, in which case the whole string starting from
the <J1>tn charader will be returned.

Example:
MID$("HELLO",3,2 returnsthe string "LL".
MID$("HELLO", 3) returnsthestring’ ' LLC".

MUL$(<S>,<J>) Returnsastring <S> repeated <J> times. This is‘string multiplication’.
The string returned must be no longer thin 255 characters. This is particularly useful for
displaying repeating patterns.

Example:
MULS("*",15) returns the string "k sk dokkkckokk - kn
MULS$(+--",8) returnsthe string " +--+--+--+--+--+--+--+-- "

RIGHT$(<S>,<J>) Returnstherightmost <J> characters of the string <S>.

Example:
RIGHT$("HELLO",2) returns the string “LC".

27

SCRN$(<J>) Returns the string of characters from row <J> of the VDU screen. <J>
must be < the number of rows on the screen of the system (16 on a standard Nascom), and the
length will always be equal to the number of columns on the screen (48 on a standard
Nascom)

STR$(<N>) Returnsthe string representation of a numeric variable.

NOTE: The format in which numbers are returned by this function is affected by the FMT
command inexactly the same way as for PRINT, and also by the 1OM 5 command (the
trailing space optional under PRINT is not included).

Examples:

STR$ (1.234) returns the string " 1.234".

FMT 2,3: A$=STR$(37.7325) placesthe string "37.733" in A$.
VAL (<S>) Returns the numerical value of string <S>, up to the first non-numeric
character (in this sense, the characters ‘+, ‘-, *.” and ‘E' count as numeric). If the first

character is non-numeric, the value O isreturned. In addition, the character "&" is taken to
indicate a hex number to follow, which can be very useful!

Examples:
VAL("1.234ABC") returns the value 1.234.
VAL("&"+"ABCD") returns the value 43981 (& ABCD).

5. USER-DEFINED FUNCTIONS

DEF FN <V1> (<V2>)=<E1> definesauser function. It must be kept to oneline. <V1>
may be any legal variable name, as may <V2>. <V2> is a dummy variable, which can be
used within the expresson <E1>. The DEF statement sets up pointers within the
variable space which give the address of the expression <E1> within the program, and the
address of the variable <V2> inthe variable space. Thelineisthen ignored, and execution
proceeds to the next line of text as if nothing had happened.

A cal to the user-defined function may now be made, as FN <V1> (<E2>). What then
happens is that the current value of <V2> is saved in memory, and the value of <E2> is
placed in it. The address of <E1> is then obtained, and <E1> is evaluated using the new
value of <V2>. Having obtained the result of the function, the old value of <V 2> is restored,
asif nothing had happened toit. Thus it is, infact, reasonably efficient in execution time,
certainly better than using GOSUB statements.

<V1> must be the same type as the result of <E1>, but either or both <V 1> and <V2> may
be of numeric or string type. If a function call occurs before the appropriate DEF FN, a FN
DEFN ERROR will occur.

Example:

10 DEF FN ASN(X)=ATN(X/SQR(1-X* X))
20 DEF FN ACS(X)=PI/2-FN ASN(X)
30FORI=0TO .99 STEP .1

40 PRINT I,FN ASN(I),FN ACY(1)

50 NEXT

When RUN, this program will print out a table of values ARCSIN(I) and ARCCOS(I)
for values of | between 0 and 1, in increments of 0.1. Have ago...

28
IV.INPUT/OUTPUT FACILITIES

1. DEVICESAND I/O ASSIGNMENT - PRINTE£ and INPUTE

Special forms of the INPUT and PRINT statements allow the user to assign different 1/0
devices to the system, such as printers, serial or paralel devices, discs and tapes. Each
deviceisassigned a device number in therange O to 254, so that we may have up to 255
output devices, and 255 input devices.

In addition, we may handle input and output to and from files, which may be stored on disc
or tape, and these are handled in a dightly different way, described under sections 4 and 5 of
this chapter. For your information, al file 1/0 is handled through device 255, which is
assigned internally, and whose addresses you do not need to know.

All devices other than the file device are defined in a special table caled IOLIST, the
address of which isfound at DEVPTR (see scratch-pad list in Appendix B). From BASIC,
DEVPTR may be found or modified by means of the PTR command/function described in
Chapter VII. 1. Thetable IOLIST isset out in the following manner:

IOLIST: DEFB n : The number of devices used.
DEFW OUTO ; Output device O
DEFW INTO ; Input device O
DEFW OuUT1 ; Output device 1
DEFW INP1 ; Input device 1
DEFW OuUTn-1 ; Output devicen-1
DEFW INPn-1 ; Input devicen-1

The user may, of course, construct hisher own IOLIST in the above manner, and assign
the addressto DEVPTR (CARE!! All I/O goes through here, so can cause dire consequences
if the table is incorrectly constructed). It issuggested that the user’s table be located at a
different address to the one provided in the Interpreter, since the one provided may not be
extended. Addition of I/O routines to the user's specification is quite easy, since no registers
need be saved (XBASIC has already saved any necessary registers on entering these
routines). For an output routine, supply the character to be output in the A register. It does not
have to be in the A register on return. For an input routine, return the input character in the A
register.

Three devices are currently assigned under XBASIC as supplied:

0 OUTPUT to VDU (i.e, the ‘ consol €' output)
INPUT from keyboard. Device 0 isthe only one which utilises the screen editor.

1 OUTPUT to printer (may be seria or parallel, more usually paralldl).
Thisisthe device utilised for dumping the screen to printer when a CTRL/Pistyped.
INPUT not assigned (may be parallel input, but currently set up asfor 0).

2 OUTPUT to serial port (RS232).
INPUT from seria port.

29

PRIN£E<J> Assigns a new output device. All statements which produce output, such
as PRINT and LIST, will now direct that output to device <J>, until another PRINTE
statement is encountered (for a different device), the program ends, or the program is
aborted by an error or from the keyboard.

INPUTE<J> Assigns a new input device. All statements requiring input, such as
INPUT, INCH, and INCHS, will now receive it from device <J>, until another INPUTE
statement is encountered, the program ends, or is aborted (just as for PRINTE above).
Note that the KBD function will ONLY work from the input device O (the console keyboard),
whichever deviceis used.

Both PRINE and INPUTE may be used as part of normal PRINT and INPUT statements,
in which case a semi-colon must be used to separate the device number from the rest of the
statement. An INPUTE statement may NOT contain a prompt, however (although subsequent
INPUT statements using that device may).

Note that the CLOSE command (Chapter V.5) has the effect of including an INPUTE O
and aPRINE O, in addition to closing files.

The END of aprogram (with or without the END or STOP statement) or the abandonment
by interruption or error also has the effect of including an INPUTE O and PRINE 0. This
means that, in DIRECT mode, in which the linetyped may be regarded as a‘miniature
program, the assignment of a device and the I/O statement required must appear in the same
line, otherwise the I/O will be made through device O!

Examples:
PRINE 1: LIST

Thiswill lists the whole program to the printer device and then prints Ok’ at the VDU (i.e an
internal PRINTE 0 has been performed). Note that the ‘lines at atime' value is ignored when
LISTing to a device other than O.

10 PRINEL: INPUTE2; X

20 IF X=0 THEN END

30FORI=1TO X

40 INPUT AS: PRINT A$

50 NEXT

60 INPUT£0O

70 PRINTE0;"Do you wish to continue ?';:Y $= INCH$
80 IFY$="Y" THEN 10 ELSE END

This program accepts data from input device 2, and displays it at the printer, or whichever is
output device 1. First, the number of items to be read (X) is obtained from the input device,
and then the items follow, being printed as they are read. After X items have been read,
both input and output return to the console, so that the user may choose to terminate the
program, or continue with another set of data (note that CLOSE could have been used at
line 60, even though no files are being invoked).

For information onthe use of PRINTE and INPUTE with files, see Chapter V.5.

30

2. DIRECT I/0O PORT ACCESS

In addition to the PRINTE and INPUTE commands described above, users may find the
following commands and functions useful, when it is desired to use /O devices for which
the appropriate machine-coded internal operating routines are not available:

OUT <J1><J2> sendsthe value of <J2> to output port <J1> of the computer.

Example:

OUT &F0,5 sends the value 5 to port FOH (240).
INP(<J>) returns the current value of input port <J> as a number in the range O-
255.

Example:

A%=INP(&F4) readsthe vaue currently at port F4H (244)

WAIT <J1>,<J2><J3> Monitors the port specified by <J1>, EXCLUSIVE ORs it with
<J3> (which is optional, assumed O if not used), and ANDSs the result with <J2>, treating
<J2> and <J3> asif they were eight-bit binary numbers. Thiswill be repeated until the result
iS non-zero.

Examples:

WAIT 2,&40 suspends execution until bit 6 of port 2is set.

WAIT 1,& FF,&O0F waits until any of the 4 most significant bits are set,
or until any of the 4 least significant bits are reset on
port 1.

3. SPECIAL COMMANDSAFFECTING I/O AND PRINT FORMATTING

SEP<J> A very useful little command, which is not found in other BASIC'S
(yet, or to our knowledge!). It definesthe value of the separator character used in DATA
and INPUT statements. The ASCII value of the required separator must be expressed after the
SEP command. Normally, thisis the comma.

The usual use of SEP is SEP 0O, which allows the user to put any string of characters into
an INPUT or DATA statement, when only one item is required, and it is desired to allow
commas to be part of the input data (in some BASIC'S, a LINEINPUT command is
provided to allow this). Here is another possible use:

Example:
10 SEP47: REM ' ' ISSEPARATOR
20 INPUT "Type in the Date as
DD/MM/YY: "; DAY, MONTH, YEAR
30 PRINT "Day is";DAY, "Monthis";MONTH, "Year is';YEAR
40 END
RUN
Typeinthe Date as DD/MM/YY: 4/12/81
Dayis4 Monthis12 Yearis81

31

Three points to watch - first, a double-quote is assumed to surround input data if it isthe
first non-space character in the input line, and will be subsequently removed. Secondly,
certain characters will not work well as separators, particularly if numeric datais desired
(e.g, the ., athough there are no problems here with string input). Finally, do not forget
that SEP affects DATA statements too! Normal operation may be restored by means of a SEP
44,

The current separator may be obtained at any time by using SEP as a function.

Example:
A=SEP putsthe ASCII value of the current separator into A.

FMT<J1>,<J2> Formats numeric output, for PRINT statements or STR$ functions. The
expressions <J1> and <J2> set up the number of figures to be printed in front of and behind
the decimal point respectively. If the actual number of figuresin front of the decimal point is
less than that specified, leading spaces are used, while overflow will cause a default output
in scientific notation. Trailing zeroes are always printed (except in the ‘normal mode’ see
below), so that the output may be shown right-justified.

Scientific notation may be forced by setting <J1> to 15, in which case <J2> still gives the
number of trailing figures. Otherwise, the sum of <J1> and <J2> may not be greater than 8
(remember that the maximum precision of the system isonly 7 significant figures!).

‘Normal’ output format may be restored by means of FMT 0,0. In this format, output is to
6 significant figures, scientific notation is forced if the magnitude of the number is > 1E6
or < 1E-2, and trailing zeroes are suppressed.

Examples:

FMT 3,3: PRINT 567.9876 displays as 567.988
PRINT .00124 displaysas 0.001

PRINT -1.73205 displaysas - 1.732
PRINT 7895 displays as 7.895000E+03
FMT 15,2: PRINT 567.9876 displays as 5.68E+02
FMT 0,0: PRINT 0.056 displays as .056

Note that the sign is not counted with the figures, but appears in theleading space at the
start of the entire number (when positive, this space may be removed by means of IOM, see
below).

All in al, athough a PRINTUSING facility (a command for formatting output, found on
some other BASIC'S) is not provided with XBASIC as supplied, the FMT command provides
a flexible way of ‘tidying-up’ output, and for putting such numbers into strings (something
that PRINTUSING cannot do).

IOM <J1><J2> Sets bit <J1> of the IOMOD word in the scraich-pad area. This
consists of sixteen one-bit flags, of which seven are used in XBASIC, the others being
reserved for future expansion. Normally, all sixteen bits are set (1), indicating a mode on, and
<J2> may evaluate to either 0 or 1 only. The modes for <J1> are described as follows:

Bit O - Edit mode. On for SCREEN EDIT mode, off for LINE EDIT mode.

32

Bit1l - Echo mode. On if al input characters are to be echoed to the output device,
otherwise off. With this mode off, LINE EDIT mode is automatically selected, whatever the
setting of bit O (otherwise the whole system would lock up!).

Bit2 - Switch mode. Normally, we swap to LINE EDIT mode when a program is RUN,
and back again to SCREEN EDIT when the program ends or is abandoned. By setting this bit
to 0, this ‘switching’ is prevented, i.e, the edit mode, once set, will stay in that state until it
is set to the other mode.

Bit3 - Breaks mode. On if <ESC> isto be allowed to interrupt a program, and <EOF> to
indicate end-of-file. If this bit is off, program interruptions will NOT be alowed (great for
demonstrations!), and an end-of-filewill only beindicated by the last block in afile being
detected (so there may be some junk within that last block that is undesired’ data). This is
useful for reading files that may contain ANY characters as part of the data (e.g, program
files).

Bit4 - Trail space mode. On if atrailing space is to be printed after any numeric output,
otherwise numbers will all run into one another, as strings already do! Some BASIC'S aways
print trailing spaces (e.g Nascom ROM BASIC and Xtal BASIC 2), while others never do,
so the object of this and Bit 5 isto make program compatibility easier to achieve.

Bit5 - Leading space mode. Similar to bit 4, many BASIC'S will print aleading space
on numeric output of positive numbers, while printing a negative sign for negative
numbers, while others omit the leading space. Again, this bit is on for aleading space, off
for no leading space.

Note - these last two bits only affect NUMERIC output, NOT string output (even if the
strings consist entirely of numbers).

Bit6 - Auto LF mode. When set, outputs a line feed character whenever anewlineis
output, but just sends a <CR> if reset. By ‘newline, we mean that XBASIC thinks that it is
sending a <CRLF>, eg, at the end of each linein a LIST. A case such as PRINT
CHR$(13); CHRS$ (10); would, however, print a <CR> and an <LF> whatever the value of
this bit. The setting of this bit has no effect on device 0.

Note - thisis useful for file output, since the <LF> code is ignored ininput of a file
using INPUTS, so that the file size may be reduced by resetting bit 6 prior to output. Of
course, some files may need the <LF> codes, when bit 6 should be set. Thisfacility isalso
necessary when using some printers, which may not have an auto line-feed enable/disable
option.

Bit7 - Expand TAB'S. When set, TAB' S areexpanded and, when reset, the actual
TAB character itself is output (ASCII code =9). When a PRINT is performed using the
comma separator (for printing in ‘zones’), a TAB character is actualy printed, but
normally is internaly expanded into spaces. Thus, by performing an IOM 7,0 , the actual
TAB character is printed (ASCII code =9), which is useful for sending output to a
printer, for example, which may have its own special tab settings.

IOM may be called as afunction, to give the appropriate bit setting.

Example:
IOM 0,0: PRINT 10M(0)

33

Prints the result 0, after setting up for line edit mode. Screen edit mode will be turned on
as soon as direct mode is re-entered and, if the above example had been executed from direct
mode, |OM (0) would now return 1 again!

SPEED<J> Sets a delay in the character output to the current output device. O
gives the dowest (VERY dow!) speed, while 255 is normal (fastest) speed. SPEED may also
be used as afunction, to return the current set speed.

Example:
SPEED 200: A=SPEED results in A containing 200.

NULL <J> Sets the number of nullsto be printed after every <CR> character. This
command is designed for operating with slow serial devices, where the <CR> code may take
a little over the time allowed for one character to print. The correct setting for particular
devices will be found by experiment, although 1 will usually be enough for most applications
(up to 255 is allowed, however!). The default setting is 0.

The current number of nulls may be found by using NULL as afunction.

WIDTH <J> Sets the width of the current output device, so that an automatic CRLF is
generated as soon as the column count reaches <J>. Thisis useful on certain types of printer
(e.g Teletypes and Creed Teleprinters), on which overprinting would normally occur when
the print head reaches the end of aline. Normally, the width is set to 0, when no automatic
CRLF isproduced. The current width can be obtained at any time, by using WIDTH as a
function.

ZONE<J1>,<J2> Setstheprint zone (tab) width (<J1>), and the largest column for which
printing to the next zone will stay on the same line (<J2>), known as the ZONE LIMIT. The
default settings for these are 14 and 36 respectively.

34

V.FILE MANAGEMENT IN XBASIC
1.GENERAL

The management of files in XBASIC has deliberately been kept as simple as possible,
while maintaining flexibility. In particular, the commands for handling cassette tape files
and disc files are exactly the same, the only differences being that cassette files do not allow
the following:

a Random-access (since cassette tape is a sequentia medium).
b. Changing from read to write mode (or vice versa) while accessing.
C. Fileinput after a CREATE, or file output after an OPEN.

Discfilesallow ALL of these facilities.

Disc and tape drives are alocated single letters of the aphabet, the letters A to S
inclusive being allocated to ‘disc’ drives (i.e, devices which are capable of supporting a file
directory area and random-access), while T to Z inclusive are allocated to ‘tape’ drives.

For those who did not read the start of Chapter O (tut, tut!), we remind you that ‘disc files

are those which belong to devices which allow random-access and a directory of files,
whereas ‘tapefiles belong to devices which support sequential access only.

2. FILE NAMING CONVENTIONS

The file naming convention used in XBASIC is based upon that of the CP/M disc operating
system (produced by Digital Research Inc.), since it is now very Well known and widely
used, and the file name convention may be adapted to other tape or disc operating systems.

We specify an optional 1-character drive name, a file NAME of up to 8 characters, and a
file TY PE of up to 3 characters.

The drive name, if used, isasingle letter from A to Z, as explained in the previous section.
If not given, the default drive (the one which is assumed to be specified if noneis given) is set
up as A inasystem which runs discs (or discs and tape), and T in asystem which runs tape
only. The default drive may be changed at any time by means of the DRIVE command,
described in section 5.

Both thefile name and type may consist of any combination of ASCII characters, with
the exception of those with ASCII codes greater than 127, and the characters . , " <>; ;=7

Thefile types recognised are these:

XBS - XBASIC Source, a normal program file. If the file type is not given, .XBS is

assumed. Many BASIC' S use .BAS as the source file type, but it is felt that . XBS will
cause less confusion with other versions of BASIC (it IS possible that someone is using

XBS for some obscure application, but we do not know of any at the time of writing!).

35

ASC - ASCII program file, that is an uncompressed source file (.XBS files contain
tokens for reserved words, whereas .ASC files contain them exactly as they appear in a
LIST).

OBJ - OBJECT file, or machine-code subroutines/data. A special area may be set up
within the memory map for the storage of machine-code routines, utilising the CLEAR
command, and anything stored here may be SAVEd as a .OBJ file, and LOADed into this
area.

Any other combination is treated as a data file, that is, a sequence of ASCII characters,
divided into one or more records, which may be accessed by a BASIC program. In the
broadest sense, this includes files of the three specia types .XBS, .OBJ, and .ASC
(particularly the .ASC files, since they are pure text).

In some disc applications, it is necessary to specify more than one file (an AMBIGUOUSfile
reference), e.g, in specifying the files for a DIRectory list. Here, the ? character matches any
character in that position in the file name found. In addition, the * character matches all of
the characters at and after its position in the file name or type in which it appears. Thisis best
explained by some examples:

XYZ.ASC matches XYZ.ASC, XAZ.ASC, X9Z.ASC, etc.
?2X.D?T matches AX.DAT, BX.D7T, 4X.DZT, etc.

* ¥ matches ANY file, and is the same as ?7?7???7772.77?
* XBS matches any .XBSfile.

* also matches any .XBS file, being the default type.

PROG*.ASC matches PROG1.ASC, PROGI0.ASC, PROGABC.ASC, etc.

Ambiguous references are not used (or alowed!) in cassette tape operations.

3.THE FILE DESCRIPTOR

Before describing the file-handling commands, it would be helpful to mention what we
believe to be anew concept in file-handling. Most BASIC'S have some method of assigning a
storage area for use by afile for the time that it is open. This area usually contains a
buffer, and also some information to describe the file and where it is stored on disc, etc.
The problem that arises is that this area has to be fixed and set aside before running the
program, and this means that the space set aside may not be used for anything else when the
fileis closed. It also places a constraint upon the number of files which may be open at one
time.

XBASIC overcomes this by assigning a special string variableto a file when it isopened for
access, and dropping this variable when the file is closed. This string variable is known as the
FILE DESCRIPTOR for the file. It isaways 168 characters long, contains a 128-byte
buffer, and 40 bytes of special file information.

Thelayout of afile descriptor string is as follows:

36

FDESC: DRIVE 1byte Disc drive name, 01=A, 02=B, etc.
FILNAM 8 bytes File name
FILTYP 3bytes Filetype
INFO 21 bytes Internal allocation information (disc only).
RECORD 2 bytes Record number in the range 0-65535 (applies
+ 1 overflow byte to disc only).
FILPTR 1byte Pointer to current byte in buffer for I/O.
RWFLAG 1 byte Read/Write Flag O= Input, 1= Outpuit.
RECLEN 2 bytes Random Record Length (Random access only).
FILBUF 128bytes 128-bytefile buffer.

The File Descriptor (which, for the sake of abbreviation, we shall refer to as an FDESC in
the rest of this discussion) must be a simple string variable (it may not be part of a string
array, but al of the parts of it are accessible by normal string functions. For example,
the buffer contents may be inspected by doing a RIGHT$ of the last 128 bytes of the FDESC.

A file descriptor may not be modified by LET statements, etc. If it is, aFile Error will
occur the next time it is usedinaPRINTE or INPUTE statement.

4. SEQUENTIAL AND RANDOM ACCESSMETHODS

Before explaining the various file-handling commands, let us give a short description of
the two aternative methods of accessing files allowed directly under XBASIC:

a. Sequential Access.

RECORD 0 RECORD 1 RECORD 2 RECORD 3 etc. &1A

Start of file End of file
marker

Sequential Access is most often used for the manipulation of text or index files, where
records may be of variable length, and need to be scanned sequentialy, i.e, one after the
other, starting from the beginning of thefile until the desired record location is reached.
Each record should normally have aterminator, such as a carriage return code, and aspecia
code to mark the end-of-file (EOF). XBASIC supplies an EOF code when closing a
sequential file if the last operation was a write, and will normally detect the end-of-file
marker on reading. For disc files, an end-of-file condition will aso occur if an attempt is
made to read beyond the last allocated sector of the file. Note that tape data files MUST
have an EOF mark present within the file, otherwise the end-of-file will not be detected!

b. Random-access (Disc files only).

RECORD 0 RECORD 1 RECORD 2 RECORD 3 etc.

Start of file End of file
(no marker)

37

Records stored in random-access mode will normally be of fixed length, or of variable
length within fixed-length blocks. The record length is specified when the file is opened,
and a record number is specified whenever afile input or output is required. This means that
we may move about the file in a completely RANDOM fashion, accessing only the
desired records. Having accessed arecord, reading or writing may continue from that point
in thefile, sothatitis possibleto read or write sequentially in the file, even though a random
record length has been specified. It is even permissible to write a file with one record
length, and to read or write to the same file with a different record length (if the programmer
has agood reason for wanting to do so!).

An EOF marker is NOT supplied when closing a random-access file, since it is not
convenient - the end-of-file condition will occur when an attempt is made to read a sector that
does not exist. However, it will not always occur on a non-existent record, since the disc
space may have already been created for it as a side-effect of writing another record which
uses the same physical disc sector. In that case, it will be asif the record is smply empty.

This may al be as clear as mud, so read the following section, and then study (and try
out!) the examples at the end of the chapter.

S. FILE-HANDLING COMMANDS

DRIVE Followed by asingle letter, sets up the default disc or tape drive for any
subsequent file-handling commands. If the drive specified is not available on the user's
system, aDRIVE SELECT ERROR will occur.

Example:
DRIVE B Selects disc drive B as the default drive.
OPEN "DATA. TXT",F$ will now openthefile DATA.TXT on drive B.

OPEN <F><SV><I> Opens afile named <F>, and assigns internal fileinformation and
buffer space tothe FDESC <SV>. The random record size is given by <I>, which must bein
the range 0-65535 if specified, but is not required if the file is to be accessed sequentially.
In fact, arandom record length of O indicates that sequential accessisto be performed.

For tape files, only reading of thefile is alowed after an OPEN statement. Otherwise, both
reading and writing are allowed (but this is usually only advantageous when using random
access!).

For discfiles, aNo File error occursif thefile is not present on the specified drive.

Example:

OPEN "A:SILLY.DAT", FD$, 15 Opensthefile SILLY. DAT onthe disc
drive A, assigns variable FD$ as the file descriptor, and sets it up for random-access with
15-character records.

CREATE <F><SV><I> Theformat is exactly the same as for OPEN, except that an
exigting file named <F> is first deleted if present, and a new empty file of the same name is
opened. For cassette tape drives, this is the command to be used when writing to afile.

38

CLOSE <SV1><SV2>,..<SVn> Closesthefiles given by the FDESCs <SV1> to <SVn>
inclusive, writes the remaining contents of the appropriate buffers to their files and stores
directory information (for disc files). A buffer will only be written out if the last operation
performed on it was a write. The FDESCs are then set to null strings, which effectively
releases the space for use by variables or other files. A File error will occur if any of the
FDESC's given is not active, or is an ordinary string (note that FDESC's are internally
marked so that XBASIC can distinguish them from normal strings).

CLOSE by itself is allowed, in which case ALL files currently open will be closed, and no
error isgiven if no files are open.

Note: As a side-effect, CLOSE does an automatic PRINTE O0: INPUTE O, so that all input
and output will go through the console. A CLOSE command may be executed at any time
when these two statements are required (it is shorter!).

APPEND <F><SV> This command is used for disc files only, and is very similar to
OPEN. The difference is that the internal file pointer moves to the end of the file instead of
the start of the file, and no record length is supplied. This command is used to write extra
information at the end of a sequential file, when to OPEN the file and read up to the end
would be most inefficient!

A No File error will occur if the file <F> does not exist on the disc.

PRINTE <SV><I>; <expression list> Outputs the <expression list>to thefile given by
the FDESC <SV>, from the start of record number <I> in the file. The location relative to the
start of thefile is calculated as<I> multiplied by the record length which was given when
the file was opened. This, of courseg, is if the file was opened for random access, and thisis
not allowed for tape files. Hence a File Error will occur if <I> is specified with <SV>
specifying atapefile.

For sequential access, leave out the ‘,<I>" but keep the *;’, and then output will start from
the current place in that file (XBASIC does not lose its place in a particular file even when
several files at once may be open for output). In fact, the only purpose of the record
number isto define the point within the file at which input or output is to begin, and so it will
be assumed that we start ‘from where we left off’ if the record number is not given. With
disc files that have been opened for sequential access, theinternal file pointer may
aways be set to the start of the file by specifying a record number (any will do, since it
will be multiplied by the zero record length!).

The <expression list> is similar to that ina normal PRINT statement, and remember that
the data output will be EXACTLY as for that. Hence a CRLF is output at the end of the
statement, unless terminated by a semi-colon.

Note that al subsequent statements supplying output will now go to a file, until another
PRINTE or CLOSE statement is encountered.

PRINTE <SV>,<I> or PRINTE <SV> are dlowed, setting up the specified file for outpuit.
Nothing is output by either of these (No, not even a CRLF!), that being reserved for
subsequent output statements (e.g, PRINT or LIST).

39

As you might expect, a stream of data without CRLFs may be output to a file by simply
terminating each such PRINT statement with a*;’. Remember also that you may need to
suspend the automatic tab expansion (where CHR$(9) is expanded to spaces) by using the
IOM 7,0 command. The output of strings which contain machine-code may now be
contemplated, for example.

INPUTE <SV>,<I>; <variable list> Takes input from the file given by the FDESC
<SV>, starting at the first character of record number <I> in thefile. Asfor PRINTE, the <I>
may be omitted, in which case the file is read from the last point reached (or from the
beginning if it has just been opened). The <variable list> is as for the norma INPUT
command (Chapter 111.1), and items are assigned to the variable names given in the same

way.

Note that all subsequent statements requiring input (e.g, INPUT, INCH, INCH$ and
INCHS$(N)) will now try to gather input from the file, until another INPUTE or CLOSE
statement is encountered.

INPUTE <SV>,<I> or INPUTE <SV> is alowed, setting up the specified file for input.
Nothing will actually happen until the next INPUT statement, which need not then have the
file specification given.

INCH$ and INCH$(N) These are mentioned again here, since they are very important
when files containing all sorts of control characters are required to be input (e.g, machine-
code files). Remember that INPUT ignores most control characters, and terminates on a
CR or null character (and aso on the input terminator defined by SEP). INCH$ suffers from
none of these disabilities, and so may be used for this purpose. INCH$(N) may be used
even more effectively, since it creates a string of length N and is usually much faster than
INCHS$ on its own. An EOF condition on INCH$(N) causes the truncation of the string to the
length reached at the time when the EOF occurred, so that all of the information may still be
passed into an expression before the EOF error is actually flagged. The very next input from
that file will then flag the EOF condition in the usual way (i.e, ‘End of text Error’ or ON
ERR/ON EOF routine).

6. FILE-HANDLING EXAMPLES

6.1 A text filedisplay program.

This program allows the display of data or .ASC files on the screen. It may be used under
the tape version of XBASIC by removing line 35 (which is useful on disc systems, when the
name of the required file has been forgotten!). Users of CP/M will notice that this
performs virtually the same function as the TYPE command, and that it works at about the
same speed!

10 REM TEXT FILE DISPLAY PROGRAM

20 N=128: REM No. of charactersread at atime
30 INPUT "Fileto display?'; NAME$

35 IF NAME$="" THEN DIR: GOTO 30

40 ON EOF GOTO 80

50 OPEN NAMES$,FD$

60 INPUTE FD$

70 PRINT INCH$(N);: GOTO 70

80 CLOSE FD$

90 END

40

Try replacing line 70 with the following, noting how much slower it is:
70 PRINT INCHS$;: GOTO 70 or try smaller values of N in line 20.

6.2 A simpleMailing List (Sequential Access)

The program below is a smple mailing list program suitable for either tape or disc drives,
showing as it does the use of sequential access for reading and writing files. In this case, the
datafileisread into a large string array M$ at the start of the program, and rewritten to the
file SMAIL.DAT at the end. This means that access to particular customers is very quick, but
at the expense of keeping the entire filein memory at once. Moreover, the maximum
number of customers that the system can handle is limited by memory size, and the size of
M$ as dimensioned in line 9000.

The information under each customer consists smply of higher name, telephone no.
and address, the address being stored in two lines, or fields. The array CUST$ holds these
items temporarily when being accessed by one of the program options.

The options supported by the program are to add a customer to the list, to access a
customer from the list for modification, and to list all customersto the screen or printer.

10 REM *** SIMPLE MAILING LIST PROGRAM (SEQUENTIAL ACCESS) ***
20 REM
30 GOTO 9000
98 REM
99 REM *** COMMON ROUTINES ***
198 REM
199 REM *** OPEN DATA FILE ***
200 PRINT: PRINT "Do you have afileto load (Y/N)?';: Y$=INCH$
210 PRINT Y$: IF Y$="N" THEN RETURN
220 CLS: PRINT @4, 10; "Reading in datafile..."
230 OPEN FILES$,FD$
240 INPUTE FD$; NCUST: REM Get No. of customers on file
250 IF NCUST=0 THEN 290
260 FOR I=0 TO NCUST-1
270 FOR J=0 TO 3: INPUT M$(1,J)
280 NEXT J, 1
290 CLOSE
295 RETURN
298 REM
299 REM *** HEADING DISPLAY ***
300 CLS: PRINT@8,0;HEADS$
310 PRINT@3,2; "Number of customerson file: ";NCUST: PRINT
320 RETURN
398 REM
399 REM *** WRITE NEW DATA FILE ***
400 PRINT: PRINT "Do you wish to save thefile (Y/N)?';: Y$=INCH$
410 PRINT Y$: IF Y$="N" THEN RETURN
420 CLS: PRINT @4, 10; "Writing New Datafile..."
430 CREATE FILES$,FD$
440 PRINTE FD$; NCUST
450 IF NCUST=0 THEN 490
460 FOR |I=0 TO NCUST-1
470 FOR =0 TO 3: PRINT M%(1,J)

41

480 NEXT J, |
490 CLOSE
499 RETURN
798 REM
799 REM *** MENU DISPLAY ***
800 CLS: PRINT@8,0; "SIMPLE MAIL LIST PROGRAM"
810 PRINT @4,3; "Options:"
820 PRINT @4,5;"0. Exit Program"
830 PRINT@4,7;"1. Enter Customers'
840 PRINT @4,9;"2. Modify Customers'
850 PRINT@4,11; "3. List Customers'
870 PRINT@4,13; "Which?";: N$=INCH$(1): PRINT
880 N=VAL(N$): IF N<O OR N>3 THEN PRINT BEL$: GOTO 870
890 IF N=0 THEN GOSUB 400: CLS: PRINT@8,0; "GOODBYE!"; BEL$: END
898 REM
899 REM *** SELLECT OPTIONS ***
900 ON N GOTO 1000,2000,3000
910 STOP: REM SHOULD NEVER GET HERE!
998 REM
999 REM *** END OF COMMON ROUTINES ***
1000 REM *** MSUBL1 -- Enter Customers ***
1010 HEAD$="ENTER CUSTOMERS"
1020 GOSUB 300
1030 PRINT "Any more customersto add (Y/N)?';:Y$=INCHS$: PRINT Y$: PRINT
1040 IF Y$<>"Y" THEN 800
1050 FORI=0TO 3
1060 PRINT PRMPT$(1);: INPUT CUST$(I)
1070 NEXT
1080 FOR 1=0 TO 3: M$(NCUST,1)=CUST$(l): NEXT: NCUST=NCUST+1
1090 GOTO 1020
1999 REM
2000 REM *** MSUB2 -- Modify Customers ***
2010 HEAD$="MODIFY CUSTOMERS"
2030 GOSUB 300
2040 INPUT "Customer No.?'; CN$: IF CN$="END" THEN 800
2050 CN=VAL(CNS$): IF CN=0 OR CN>NCUST THEN 2040
2060 CN=CN-1
2070 FOR I=0 TO 3: CUST$(I)=M$(CN,I): NEXT
2080 PRINT @3,8; "Customer No. :",CN+1
2090 FORI=0TO 3
2100 PRINT I+1; PRMPT$(I), CUST$()
2110 NEXT: PRINT
2120 PRINT "Any changes for thisitem (Y/N)?";: Y$=INCH$: PRINT Y$
2130 IF Y$C>"Y" THEN 2180
2140 PRINT "Which Line (1-4)?";: Y$=INCHS$: PRINT Y$: PRINT
2150 1=VAL(Y $)-1
2160 IF I=0 OR I>4 THEN 2030 ELSE PRINT PRMPT$(I);: INPUT CUST$(I): CLS
2170 GOTO 2080
2180 FOR I=0 TO 3: M$(CN,I)=CUST$(l): NEXT
2190 GOTO 2030
2999 REM
3000 REM *** MSUB3 -- List Customers ***
3010 HEAD$="LIST CUSTOMERS'
3020 GOSUB 300: IF NCUST=0 THEN 800
3030 PRINT "To Screen or Printer (S/P)?";: PF$=INCH$: PRINT PF$: PRINT
3040 IF PF$="P"' THEN PRINTE£L
3050 FOR CN=0 TO NCUST-1

42

3060PRINT "Customer No. :",CN+1

3070FOR 1=0 TO 3: PRINT PRMPT$(1),M$(CN,I): NEXT: PRINT
3080 1F PFK>"P' THEN INPUT "Type <CR>to go on:";Y$: PRINT
3090NEXT CN

3100PRINTE 0: GOTO 800

8998REM

8999REM ** INITIALISING STUFF **

9000SEP 44: REM Use separator for DATA below
9010BEL$=CHR$(7): REM The bells, the bell s!
9020CMAX=100 REM Max. No. of customers allowed
9030DIM M$(CMAX-1,3),PRMPT$(3),CUST$(3)
9040FOR I=0 TO 3: READ PRMPT$(I): NEXT
9050FILE$="SMAIL.DAT": REM File name
9060SEP 0: REM Allow commasin input text
9070ZONE 28,20: REM Set up zone width
9080GOSUB 200: REM Red in datafile

9090GOTO 800: REM Go and doyour stuff!
9098REM

9099REM *** DATA FOR FIELD PROMPTS ***
9100DATA "Customer Name: "."Telephone No.:"
9110DATA "Addr. Linel1:","Addr. Line2:"

6.3 A simple Mailing List (Random Access).

The program suite below is given to illustrate both the use of randam- accessfiles and the
‘semi-CHAIN’ fadlity oulined at the and of Chapter U. It does the same job as the single
program at example b., but with much lessmemory, and shows how the random-access
method Improves the file-handing capability. The limit on the number of customers is now
dictated only by the free disc space available, and the aray M$ of example b. is dispensed
with. The suite mnsists of four programs, the cmmmon and setting-up routines, andthe three
sub-programs which ded with the threeoptions currently suppated (see example b. above).

A record length of 75 charadersis used, and this limits the amournt of information that
may be held on each customer, chedks being needed to ensure that the total lengths of the
fields entered (NB, including CR and LF codes!) do nat excedl this length. Such cheding
may be foundat lines 1090-1100in MSUB1, and 1170-1180in MSUB2 below. Thiskind of
chedk isnot necessary with a sequentid file.

Thefirst record contains the total number of recordson file (NCUST), and provides a useful
way of preventing acessabove the limit available.

Finally, note the use of the ON ERR routine at 100, which makes gecial chedks for
CHAINing to anon-existent sub-program, and all ows the user to create anew datafileif one
is not present.

10REM *** SIMPLE MAILING LIST PROGRAM (RANDOM ACCESS ***
20REM *** COMM ON ROUTINES ***
300N ERRGOTO 100
40 GOTO 1000
98 REM
99 REM *** ERROR ROUTINE ***
1001F ERL=900THEN PRIMT' ' CANNOT INVOKE DESIRED OPTION";BEL$: GOTO 800

43

110 IF ERR<>25 THEN PRINT ERRS$;" Error inline";ERL: END
120 PRINT "No datafile -- Create (Y/N)?';: Y$=INCH$

130 IF Y$="Y" THEN CREATE FILES$,FD$: PRINT£ FD$;"0": CLOSE
140 GOTO 800

198 REM

199 REM *** OPEN DATA FILE ***

200 OPEN FILES$, FD$,RL

210 INPUTE FD$,0;NCUST: INPUTE 0: REM Get No. of customerson file
220 RETURN

298 REM

299 REM *** HEADING DISPLAY ***

300 CLS: PRINT@8,0;HEAD$

310 PRINT@3,2; "Number of customerson file: ";NCUST: PRINT
320 RETURN

798 REM

799 REM *** MENU DISPLAY ***

800 CLOSE: CLS: PRINT@8,0; "SIMPLE MAIL LIST PROGRAM"
810 PRINT @4, 3; "Options: "

820 PRINT@4, 5; "0. Exit Program”

830 PRINT@4, 7; "1. Enter Customers'

840 PRINT@4, 9; "2. Modify Customers'

850 PRINT@4, 11; "3. List Customers'

870 PRINT@4, 13; "Which?";: N$=INCH$: PRINT N$

880 N=VAL(N$): IF N,0 OR N>3 THEN PRINT BEL$: GOTO 870
890 IF N=0 THEN CLS: PRINT@8 ,0; "GOODBYE! ";BEL$: END
898 REM

899 REM *** CHAIN TO OTHER SUB-PROGRAMS ***

900 HOL D 1000: CHAIN "MSUB"+N$

910 STOP: REM SHOULD NEVER GET HERE!

998 REM

999 REM *** END OF COMMON ROUTINES ***

1000 REM ** INITIALISING STUFF »*

1010 SEP 44: REM Use separator for DATA below

1020 BEL$=CHR$(7): REM The bells, the bells!

1030 DIM CUST$(3),PRMPT$(3)

1040 FOR I=0 TO 3: READ PRMPT$(1): NEXT

1050 FILE$="RMAIL.DAT": RL=75: REM File name & record size
1060 SEP 0: REM Allow commasin input text

1070 ZONE 28,20: REM Set up zone width

1080 GOTO 800: REM Go and do your stuff!

1098 REM

1099 REM *** DATA FOR FIELD PROMPTS ***

1000 DATA "Customer Name: "."Telephone No.:"

1110 DATA "Addr. Line1 :","Addr. Line2:"

1000 REM *** MSUBL1 -- Enter Customers ***

1010 HEADS$="ENTER CUSTOMERS"

1020 GOSUB 200

1030 GOSUB 300

1040 PRINT "Any more customersto add (Y/N)?';: Y$=INCH$: PRINT Y$: PRINT
1050 IF Y$<>"Y" THEN 800

1060 FORI1=0TO 3

1070 PRINT PRMPT$(1);: INPUT CUST$(1)

1080 NEXT

1090 L=0: FOR I=0 TO 3: L=L4-LEN(CUST$(I))+2: NEXT

1100 IF L>RL THEN PRINT "RECORD TOO LONG" ;BEL$: GOTO 1030
1110 PRINTE FD$NCUST+1

1120 FOR I=0 TO 3: PRINT CUST$(1): NEXT: NCUST=NCUST+1
1130 PRINTS FD$,0; NCUST: PRINTS 0: REM Update No. of customers
1140 GOTO 1030

44

1000 REM *** MSUB2 -- Modify Customers ***

1010 HEAD$= "MODIFY CUSTOMERS"

1020 GOSUB 200

1030 GOSUB 300

1040 INPUT "Customer No.?'; CN$: IF CN$= "END" THEN 800

1050 CN=VAL(CN$): IF CN=0 OR CN>NCUST THEN 1040

1060 INPUTE FD$,CN

1070 FOR =0 TO 3: INPUT CUST$(1): NEXT: INPUTE 0

1080 PRINT @3,8; " Customer No. :",CN

1090 FOR 1=0 TO 3

1100 PRINT I+1 ;PRMPTS$(1),CUST$(1)

1110 NEXT: PRINT

1120 PRINT "Any changes for thisitem (Y/N)?";: Y$=INCH$: PRINT Y$
1130 IF Y$<>"Y"THEN 1170

1140 PRINT "Which Line (1-4)?';: Y$=INCH$: PRINT Y$: PRINT

1150 I=VAL(Y$)-1: PRINT PRMPT$(1);: INPUT CUST$(I): CLS

1160 GOTO 1080

1170 L=0: FOR 1=0 TO 3: LF ALEN(CUST$(I))+2:NEXT

1180 IF L>RL THEN PRINT "RECORD TOO LONG" :BEL$: GOTO 1080
1190 PRINTE FD$,CN: FOR 1=0 TO 3: PRINT CUST$(I): NEXT: PRINT£ 0
1200 GOTO 1030

1000 REM *** MSUB3 -- List Customers ***

1010 HEAD$="LIST CUSTOMERS"

1020 GOSUB 200

1040 GOSUB 300

1050 PRINT "To Screen or Printer (S/P)?";: PF$=INCH$: PRINT PF$: PRINT
1060 IF PF$="P"' THEN PRINTE£1

1070 FOR CN=1 TO NCUST

1080 INPUTE FD$,CN: REM Read Customer record from file

1090 FOR I=0 TO 3: INPUT CUST$(I): NEXT: INPUTEOQ

1100 PRINT "Customer No. :",CN

1110 FOR I=0 TO 3: PRINT PRMPT$(1),CUST$(I): NEXT: PRINT
1120 IF PF$0>"P" THEN INPUT "Type <CR>to go on:"; Y$: PRINT
1130 NEXT CN

1140 GOTO 800

This example has been given to give an idea of what may be done, but is no doubt greatly
extendable (for example, there ought to be a facility to delete a customer entry, and facilities
for searching and sorting under agiven field). No doubt a useful exercise for the user...

45

VI. ERROR HANDLING

1.LIST OF ERROR MESSAGES

After an error occurs (whether resulting from a direct command or from within a program),
one of the following messages will be output and execution will terminate (unless, of course,
an ON ERR statement isinforce, as described in section 2).

The forms of error messages are:

XXXXXX Error

XXXXXX Error in <L>

in direct mode
in program mode

where xxxxxx will be one of the following:

Bad Data

Branch

Cmd

Cont

Data

Dimension

Division

Drive Select

End of Text

File

File Type

Fn Defn

A checksum error has been detected while loading or verifying a
program/data file from disc or tape.

Reference has been made to a non-existent line number.

An attempt has been made to reference a reserved word which does not
exist in the system. It may be that one user istrying to runaprogram
developed on ancther user’s system, but does not have al of the necessary
commands on his/her own system.

An attempt has been made to CONTinue a program after an error
occurred, or after aterations have been made to the program..

A READ statement has been presented with insufficient data from
DATA statements.

An attempt has been made to redimension an array. An array may only
be DIMensioned once in a program. This includes arrays of under 10
elements that have not been formally DIMensioned.

An attempt has been made to divide a number by 0.

A tape or disc drive has been selected which is not available on the
system.

An end-of -file marker has been encountered in a data file, or the last
block of the file has been read. This error may be handled specialy by
means of the ON EOF command.

An attempt has been made to open afile which is already open, or to
read or write from/to afile which is not open.

A file of one type has been specified, when one of another has been
expected.

A user-defined function has been referred to, without having first been
DEFined, or CALL has been used as a function without the USRLOC
having first been set up.

46

Mem Full An attempt has been made to execute a command which would need
more memory than is available.
Next A NEXT has been encountered which cannot be matched to a FOR
Statement.
Operand An operand has been omitted after an operator.
Example:
PRINT 2.3*4+
Ovfl A numeric overflow has resulted from a calculation.
Qty A parameter in an array, command or function is out of range.
Examples:

A(X) where A isanarray and X<0 or X>65535.

LOG(X) where X<=0.

SQR(X) where X<0.

OUT X,Y where X or Y are <0 or >255.

Note: Reference to the sections describing the commands and functions concerned
will usually reveal the cause of this error message.

Range

Return

Stack Full

Str Ovfl

Str Complex

Syntax

Type

An attempt has been made to access an element of an array outside its
previoudy defined dimensions.

An attempt has been made to execute a RETURN or POP without a
corresponding GOSUB.

FOR loops, GOSUBSs and/or parentheses in expressions have been nested
too deeply, causing a stack overflow.

An attempt has been made to exceed the maximum length of a string
(255 characters).

A string expression is too long or complex and needs to. be broken into
smaller sections.

A typing error has been made, or a command/function has been wrongly
formatted.

A numeric quantity has been found where a string type was expected,
or vice versa.

The following error messages apply only to the Disc version:

Dir Full

Disc RJII

Disc L ocked

Disc Seek

The directory Isfull up.
No more spaceis available on the disc.

An attempt has been made to write to a write-protected disc (or under
CP/M to aread-only disc.

An attempt has been made to access a sector that is not on the disc
(usualy in random-access files, when the record required is off the disc).

47

File Exists An attempt has been madeto REName afile to an aready existing
ore.

File Locked An attempt has been made to write to afile that has been LOCKed.

No File Therequired file cannot be foundin the diredory (not given by casstte
tape).

A completelist of the error messages, together with their error numbers, isgiven at Appendix
A of this manual.

2. ERROR HANDLING WITHIN BASIC

ONERRGOTO <L> ON ERR GOSUB <L>

Spedal forms of the ON statement, which do, havever, work in an entirely different
manner. These two commands are used for handing error routines from within a BASIC
program rather than forcing abandonment of exeaution.

They simply set an internal flag so that, if an error occurs AFTER the command, a
GOTO or GOSUB will be made to line <L>, where aroutine will perform whatever action
has been programmed (by the user) to overcome that error. This allows usto forget about,
for example, testing for division by zero within a program; the error is simply allowed to
occur and is then handled by a subroutine.

If an ON ERR GOSUB statement is used, the last statement in the errorhandling routine
shoud be a RETURN, as with ather GOSUBs (or use POP and go where you will!).
Exeaution returns to the statement FOLL OWING that where the eror occurred.

Notes:
) Any error must occur AFTER the ON ERR statement.
(i) The ON ERRflag revertsto namal after the first error (in case you have an error

in the error routine!), so this ould be set again, by another ON ERR statement, either at
the end of the aror routine, or soon after re-entering the main program.

(iii) To restore the ON ERR flag to normal within a program, or after a program has
terminated with a STOP (as oppased to an END), use OFF ERR as previously mentioned.
The flag reverts automaticdly upon rormal termination of a program.

(iv) Within the error-handling routine, the number of the error that has occurred (see
sedion 1of this chapter) ispassd in ERR, while the line onwhich the error occurred is
passedin ERL.

ON EOF GOTO <L> ON EOF GOSUB <L>

Asfor ON ERR above, except that this deads pecificdly with the encounter of an end-of -
file on reaing. There is an eror messge (End d Text Error) which deals with this
occurrence, and so this coud easly be handed hy means of an ON ERR statement.
However, sinceit is often useful to hande the end-of-file condition separately, the ON EOF
statement has been included. The only difference in exeaution of an ON EOF routine is that
the ON EOF flag is NOT reset —it staysin force, so that a subsequent EOF will aso invoke

48

the same routine (unless another ON EOF statement has been encountered). For this reason,
an OFF EOF statement should be used when the end-of-file condition no longer needs to be
handled. Note also that, if both ON ERR and ON EOF are in force, ON EOF has priority for
end-of-file conditions.

OFF ERR or OFF EOF Turns off the ON ERR and ON EOF modes respectively, if
either of these have been previously turned on. OFF ERR will cause any errors which
subsequently occur to be displayed at the console, while OFF EOF will cause any subsequent
end-of-file to give an END OF TEXT ERROR, or to be routed through an ON ERR routine, if
that mode is till on. Nothing happens if the appropriate mode is already off, and both
modes are automatically turned off if the program endsin anormal way.

ERR Returns the number of the last error that occurred. This
function is particularly useful within ON ERR routines, to find out what error actually
occurred.

ERRS$ Returns the error STRING message, without the word
‘Error’, corresponding to the last error that occurred. This saves having to flag every possible
kind of error withinan ON ERR routine, when one in particular may be expected.

Example: Suppose the last error wasa SYNTAX ERROR (it oftenis!).

ERR returns the number 2.

ERRS$ returns the string " Syntax".

ERL Returnstheline number at which the last error occurred.

3.ERROR MESSAGE TABLE CONSTRUCTION AND EXTENSION

Aswell as command and function extension (see Chapter VIII), XBASIC alows the addition
of user-defined error messages. The error messages are normally formed in a table pointed to
by ERRTAB (see PTR, Chapter VII .1), in asimilar way to the reserved words:

B reak Nex tSyntaxRetur n..
C27265616B CE657874D3796E 746178 D265 74 75 72 6E
Code: O 1 2 3

Any standard ASCII characters may be included here, including spaces, unlike the case for
reserved words above, so that an error message may consist of several words, if need be.
Again, an &80 code must terminate the table.

The word ‘Error’ is supplied automatically on the end of the message (except for ‘Break’,
which is not strictly an error, but is trapped in the same manner as an error). To call up an
error, a machine-code jump should be made to the routine ERROR (see Appendix C under
Useful Internal Routines), passing the error code number in the E register. If the error
message is in thetable, it will be printed outinthe usual way, and the user returned to

49

Direct mode (unless, of course, an ON ERR statement is in forcel). If the error number is
larger than the number of messages, the number itself is printed, followed by ‘Error’.

Example: Suppose a PTR 4,&9F00 command is performed, and location &9F00 contains
& 80. Then a subsequent syntax error will result in the message:

2 Error appearing on the screen.

Up to 128 error messages may be contained in this table, which is known asthe Standard
Error table. In addition, up to a further 128 error messages, numbering from &80 to & FF,
may be supplied in an Auxiliary Error table, pointed to by AUXERR (accessed by
PTR(5)). This table contains a single &80 code as supplied, so that the user may add error
messages without affecting the standard table, if desired (the standard error table as
supplied allows no room for expansion by the user, although the user may expand it by
recreating the table elsewhere and adding to it, or even replace the messages by those of
his’lher own choosing, when fed up with the messages supplied - How about a ‘Not
Understood Error’ instead of * Syntax Error'?!)

50
VII. MACHINE-CODE LINKAGE TO XBASIC

1. MACHINE-CODE RELATED COMMANDSFUNCTIONS

XBASIC contains extensive facilities for alowing access of machine-code routines and
data, over and above the command/function extension capability described in Chapter VIII.
The following commands and functions are available for this purpose:

CALL <I> Calls a machine-code subroutine starting at the address
given by the expression <I>. The user need not worry about pushing registers, as long as the
routine is terminated with a COH (RET) code, which will automatically return control to
BASIC. Note that the pointer to the current position in the program, text will be available at
thetop of stack, if needed.

Example:
CALL 3840 will cause the program to jump to a routine at location
& OF00 (note that CALL & FOO would have the same effect).

CALL(<E>) CALL may aso be used asa FUNCTION, inwhich case the
working is very much altered. Here, we may pass any expression as an argument to the
function, having previously set the location USRLOC in the scratch-pad (set it by means of
the PTR 9,<I> ingtruction, described later in this section). This defines the location of the
required machine-code routine. The argument is passed into the FPA (Floating-Point
Accumulator), from which it may be accessed by one of the routines described in Appendix
C. On return, any result may be stored in the FPA, and this is then returned as the result of
the function.

CALL used in this form is very much like USR in many other BASIC's. We fedl that to
alow CALL in both forms is both more flexible and more easily adapted to use with other
BASICS.

POKE<I><J1>,<J2>,..,<Jn> Places the values of the expressions <J1> to <Jn> into
memory starting at location <I>. Each of these expressions occupies a single byte, so must be
in the range 0-255.

Example:
0) POKE 16384,132 puts 132 (=& 84) into location 16384 (=& 4000).
(i) POKE &5100,& 77,&34results in the numbers &77 and &34 being placed into
locations &5100 and & 5101 respectively.

DOKE <I><I1><I2>,.. <In> Places the values of the expressions <I1> to <In> into
memory starting at location <I>. This is like POKE, but each expression is placed into
TWO bytes, the first byte being the lower significant byte.

Examples:
0) DOKE 16384,5764 resultsin the numbers &84 and &16 being placed into the
locations &4000 and &4001 respectively (16384=& 4000, 5764 =& 1684).
(i) DOKE &5100, &77, &1234 results in the numbers & 77, &00, &34, and &12
being placed into locations & 5100 to & 5103 consecutively.

51

PEEK (<I>) Returns an integer in the range 0-255, which represents the
contents of the memory location (<I>).

DEEK(<I>) Returns an integer in the range -32768 to 32767
representing the contents of memory locations <I> and <I+1>. The byte <I+1> is taken as
the most significant byte.

Example: Suppose location &4000 contains &C4, and &4001 contains &06.
DEEK (&4000) returns 1732 (or &06C4).

PTR <J><I> Allows the user to set selected scratch-pad locations,
without using POKE or DOKE, but using the number <J> to select the location, and <I> to
be the new value. <J> may be chosen as follows:

0 -HTEXT Default or ‘hard’ pointer to start of BASIC program.

1 -TEXT Pointer to tart of BASIC program (modified by HOLD).

2 -SCMD Pointer to standard reserved word table.

3 -AUXCMD Pointer to auxiliary (user) reserved word table.

4 -ERRTAB Pointer to normal error message table.

5 -AUXERR Pointer to auxiliary error message table.

6 --SADR Pointer to standard address table.

7 -SFNADR Pointer to standard function table.

8 -AUXADR Pointer to auxiliary addresstable.

9 --USRLOC Pointer to user machine-code routine (CALL as funct.)

10 - DEVPTR Pointer to list of available I/O devices.

11 - DEFLST No. of linesto ‘LIST’ at atime.

12 -- BUFPTR Pointer to start of input buffer.

13 - BUFLEN Length of input buffer.

14 -TXTTOP Pointer to end of BASIC program.

15 - VARTOP Pointer to end of simple variable space.

16 - ARRTOP Pointer to end of array space.

17 - STRBOT Pointer to bottom of string space.

18 - STKBOT Pointer to bottom of stack area.

19 - VRAM Pointer to bottom of ‘internal VDU’ area.

20 -LIMIT Pointer to top of RAM used by Xtal BASIC.

21 - TOPRAM Pointer to top byte of RAM available to user.

22 -LNNO Current line number being executed.

23 - DATLN Line number of current DATA statement (undefined
before a READ statement has been done).

24 - DATPTR Pointer to current position in DATA datement (if using
READ statements). Can be m oved to specified line by
RESTORE <L > statement.

Any value for <J> outside thisrange will result in a RANGE ERROR. The advantage of
using this command rather than the more usual method of POKEs or DOKESs is that the same
command may be used in different versions of XBASIC without modifying the programs
in which it is used, even though the scratch-pad area may sometimes be in a different
place (e.g, the scratch-pad areafor NAS-SYS/INAS-DOS is at 1000H, on the CP/M version it
isat 0100H, and soon). It may not entirely achieve compatibility, since users are bound to use
some other scratch-pad locations not in this list, but will reduce the modifications needed.

CARE!! Like POKE and DOKE, this command can be ‘lethd’ if applied
indiscriminately, since no checks can be made to see if theaterationsare being made to

52

non-existent tables, locations within areas already used, etc. For example, the CLEAR
command (see Chapter 11.3) should be used to set up the LIMIT and STKBOT locations, not
PTR 20,<I> and PTR 18,<I> respectively.

The current value of any of the PTR locations may be accessed by using PTR as a function,
with the argument representing the desired location.

Example:
A=PTR(12) puts the start address of the current input buffer area into
variable A.
HEX$(<I>,<J>) Returns the Hexadecimal string corresponding to the number

<I> (the integer part only, I'm afraid!), as a string of <J> characters, where <J> must be
<=4. If <J> is omitted, a value of 4 isassumed. The number is ‘padded’ with leading
zeroes, if needed and, if <J> istoo small for the number to be returned, only the lower <J>
significant digits will be returned. This ‘fixed’ format is preferred to the ‘floating’ point used
for numbers, since most applications with hexadecimal numbers require 2- or 4-digit
outpuit.

Examples:

HEX$(1234) returns the string "04D2".
HEX$(100,2) returns the string "64".
HEX$ (356,2) also returns the string "64".

2. LOADING AND SAVING MACHINE-CODE FILES

As previously described in several places within this manual, a protected area may be set
aside for the storage of machine-code routines and data, by means of the CLEAR command.
With this in mind, the facility exists for loading and saving memory within this area,
using the normal LOAD and SAVE commands. This may be achieved by using the file type
"OBJ' to specify thatit is machine-code routines or datato be loaded or saved, as opposed
to aBASIC program.

Examples:

LOAD "T: ROUTINES. OBJ' Loads the machine-code routines or data from the
file "ROUTINES. OBJ' on tape drive T, into the area reserved for them in the memory map
(reserved by the CLEAR command). If the size of the file is larger than the area reserved, a
MEM FULL ERROR will occur.

SAVE "A:MCSTUFF.OBJ' <I1><I2> Saves the area of memory starting from
address <I1> and ending at address <I2> to disc drive A. Both <I1> and <I2> MUST be
specified, and <12> must be larger than <I1>, otherwise nothing will actually be saved.
Although intended for saving routines for use in the ‘machine-code area’ (see memory map,
Appendix B), thereisno restriction on the actual area of memory saved.

53
VIIl. COMMAND/FUNCTION EXTENSION

In 1979 Crystal introduced in Xtal BASIC a capability which is still, at the time of writing,
unique to their versions of BASIC, it allows the creation of an auxiliary reserved word table
of up to 64 extrareserved words. This means that machine-code routines can be written and
added to the interpreter as if they were commands and functions aready built into the
language. Some knowledge of machine-code programming is needed to take real
advantage of this facility, and users who have not yet experienced machine code are
advised to get studying! The ability to create what is, in effect, a personalised BASIC
conforming to your own requirements is an extremely powerful tool indeed.

1. PROGRAM STORAGE

Before describing the method of adding auxiliary reserved words, it would be helpful to
consider the way in which aprogram is stored within the text area. Many users will already
realise that XBASIC does not actually use aline as typed, but instead shortens each
reserved word into a unique single or two-byte ‘token’, this speeds up program execution, and
also saves storage space. In addition, a null byte is appended to each line, so that we have a
delimiter between each line of text (i.e, each numbered line). The line number isstored as
a two-byte quantity (hexadecimal), and an additional two byte number is stored, which gives
the offset to the start of the next linein the program text.

To illustrate this point, consider the following line of program text, stored in memory:
300 FOR I1=0 TO 9: PRINT SQR(I): NEXT: END
A normal text editor would store thislinein memory in the form of ASCII codes thus:

300 FOR | =0 TO 9 : PRI NT S Q
3330 30 20 46 4F 52 20 49 3D 30 20 54 4F 20 39 3A 20 50 52 49 4E 54 20 53 51

R(1): NEXT: EN D<CR>
52 28 49 29 3A 20 4E 45 58 54 3A 45 4E 44 0D

This would be abbreviated by XBASIC, into the following form:

300 FOR | = 0 TOO9 : PRINT SQR(|) : NEXT: END
1B002C018F20497E302072 393A20A220 D92849293A 209B 3A 8E00

Here, the first two bytes give the offset to the next line (thisis &001B, as you will find if you
count, starting from O at the first byte of the offset). The next pair gives the line number
(&012C= 300). Finaly, you will note that the spaces are significant, and remain in the text.
They make virtually no difference to the operating speed of XBASIC programs, and allow the
user tolay out programs in the way that suits him/her. Removing them does, of course,
save space, but this should be not be done at the expense of readability unless absolutely
necessary.

Note that even ‘=’ is treated as areserved word, although it has only one character anyway.

54

Thisis so that execution will be faster when scanning for relational operators (including ‘<’
and *>").

The above format still appliesif the line isthe last in the program, since we always indicate
the end of the program text by means of a null pair, i.e, the last THREE bytes of a XBASIC
program are 00. The pointer TXTTOP always points one ABOVE the last byte.

Since variable names and constants use ASCII codes from 0 to &5F (lower case variable
names are internally converted to upper case immediately after entry), we may use codes
&60 to &FF to represent our reserved words, and XBASIC actualy uses codes & 6F to
&E9.

Within REM and DATA statements and between double quotes, however, this
compression does not occur, so that all ASCII codes, including lower case letters and
graphic characters, may be included in these cases.

LIST ‘blows up’ the reserved word codes (but not within quotes, REM or DATA
statements!) into the actual words used, so that the user is not normally aware that all of
thisis going on.

2. RESERVED-WORD CONSTRUCTION

The reserved word table appears within the interpreter asa long string of reserved words
held together, and separation is achieved by setting the top bit of the first byte in each word.
In XBASIC the start of the table looks like this:

SPC(STEPTAB(TH EN...éc
7B D3504328 D354 4550 D4414228 DA 4845 4E
Token: 6F 70 71 72

The first byte of this table is the total number of reserved words alocated (&7B, or 123 in
this case), in case a corrupted program should happen to contain a non-existent token.

Thisis, in fact, not the best place to look at the table, since all of these words are specia, in
that they are not commands/functions in their own right, but appear only in certain
statements. If we look a bit further through the table, we pass through the arithmetic and
relational operators, and finally arrive at the commands:

A UTOCHAI NCL EA RCL O S E..&c.
C15554 4F C34841494E C34C454152 C34C4F5345...
Token: 80 81 82 83

Associated with each command or function is an address, where the routine for executing it
may be found. All of these addresses build into an address table which, a RUN time, is
indexed according to the token supplied. This meansthat:

a. Thereserved word table is NOT used (or needed) at RUN time, only the address table.
b. All commands/functions may be accessed at RUN time at the same speed, so that the
order in which they appear within the tablesisimmaterial.

55

3. THE AUXILIARY TABLES

This much is done in asimilar way on many BASIC' S the point about XBASIC is that it
has TWO reserved word tables, one of which is empty, and may be expanded by the user. All
user-defined reserved words are stored as TWO- byte tokens, the first one always being & FF,
to digtinguish them from the inbuilt reserved words. These words are stored in an
AUXILIARY reserved word table, with their addresses being stored in an auxiliary
address table. Both of these occupy no space within the interpreter, and so the user must
create extra space in memory for the tables, in addition to that needed for the actua
routines themselves.

Earlier versions of Xtal BASIC used a fixed area of RAM for holding the tables, but
XBASIC uses thetwo pointers AUXCMD and AUXADR in the scratchpad area, which may
be set up by means of the PTR command (Chapter VII.1). Hence the user may make
his/her tables as big or as small as desired, the only requirement being that the last byte of
the auxiliary reserved word table MUST be an 80H code, and MUST have the correct total
of reserved words given at its start.

4. COMMANDSAND FUNCTIONS

There is an important distinction to be borne in mind when creating commands or functions
and each will be checked by BASIC for correct syntax when being used. If the reserved word
isto be used as a function, the word MUST end witha ‘(" (ASCIlI &28) to indicate that an
argument isto follow.

In a command routine, the HL register pair is treasted as the text pointer and, on entry,
holds the memory address of the first non-space character following the command word in
the program text. On exit, HL should point to the statement separator (‘:’)or the end-of -
line byte 00. A simple RET instruction may be used to get back to BASIC. No other registers
need to be preserved.

In a function routine, on the other hand, the text pointer has already been PUSHed onto the
stack, and should be POPped and incremented to find the value of the argument. The routine
amost aways has a specid end, since a closing parenthesis ‘)’ MUST follow the argument
expression.

Note: If an auxiliary reserved word has been defined and used in a program, but has
subsequently been cleared from the tables (or the tables themselves have been re-initialised),
the program will still be LISTable, but all references to that word will display as a
decimal number preceded by a question-mark (e.g,764).

5. HOW TO ENTER. EXTRA RESERVED WORDS

Without any further ado, let us now give the step-by-step method for adding extra words to
XBASIC:

a. Decide whether the new words are to become a permanent part of XBASIC, or are just to
be added on temporarily. For example, you may have some ‘Tool-kit' type commands
which may be required to assist with development of a BASIC program.

56

You may then wish to drop those routines later, so that the space may be utilised by the
program developed. To do all of this, use the CLEAR command to set aside a machine-
code area at the top of the memory space, put your routine(s) and tables in there, either storing
them in a .OBJ file (see Chapter VI11.2) or POKE/DOKEing them from a BASIC program.
Temporary extensions may be removed by executing a‘Cold Start’ to XBASIC. Itis quitein
order for a BASIC program to define its own reserved words, which it will use itself later on
within the program, and then to remove these extra words on compl etion.

If, on the other hand, you wish to make a permanent addition to the system, this may be
done by moving up the HTEXT pointer (using a PTR 0,<I> command), so that the routing(s)
and tables may be placed in the area created. They then become a natural extension to the
interpreter, which may subsequently be saved to disc or tape (as your operating system
alows). Inthiscase, it isadvisable to make the auxiliary tables larger than required, so
that additional extensions may then use the same tables.

The simplified memory maps below illustrate the two methods:

Permanent Extensions: Temporary Extensions:
TOPRAM: TOPRAM:
fLimiT STACK ROUTINES/TABLES
STACK: LIMIT:
VARIABLES, etc. STACK
TXTTORP: STKBOT:
PROGRAM VARIABLES, etc
TEXT: TXTTORP:
HTEXT ROUTINES/TABLES TEXT PROGRAM
XBASIC HTEXT XBASIC
INTERPRETER INTERPRETER

For the remainder of the discussion, it is assumed that only one command or function is
being entered, athough clearly the same instructions apply to the addition of several words at
once.

b. Having found our free area, write the machine-code routine for performing the
command/function within this area. This may be POKEd in from XBASIC, or entered from
within the machine-code monitor of your machine.

c. The name of the routine, its reserved word, must now be written into the Auxiliary
Reserved Word Table (pointed to by AUXCMD) as a set of ASCII codes, the first letter
having its top bit set, as shown in section 2 of this Chapter. Do not forget to set up or
modify the first byte of the table for the number of reserved words in the table, otherwise
the command/function will return an error when later invoked! The address of the table
held in AUXCMD may be entered from within BASIC by means of a PTR 3,<I> command,
if desired.

d. The appropriate address in the Auxiliary Address Table (which is pointed to by AUXADR)
is then set up for the start of the newly entered machine -code routine so that, when the
command or function isinvoked, this routine will be executed.

57

be executed. The address of this table may be set up in AUXADR by means of a PTR 8,<I>
command, if desired. NOTE: This also applies to c., above. Do NOT use the PTR
command to set up the Auxiliary Tables when making permanent extensions, because the
next ‘Cold Start’ will simply remove them! For permanent extensions, set the pointersin
the ' default scratctpad’ (which is copied to the scratchpad area whenever a ‘Cold Start’ is
executed). The necessary addresses are given at the end of Appendix D.

e. If permanent extensions have been made, save anew copy of XBASIC ontotape or disc
before running it up, not forgetting to include the area added to the end of the Interpreter!

f. Re-enter XBASIC via either the COLD START or the WARM START entry points given
in Chapter 0, if the above operations were carried out from within the monitor of your
machine.

Your new reserved word will nhow behave exactly as though it had always been a part of
XBASIC (if there are no bugs in the routine!!). Now is the time to try the examples of extra
reserved words given in Appendix D, which should illustrate these instructions.

AWFULLY IMPORTANT NOTE: In scanning the reserved word tables for the
compression of text typed in, the Auxiliary Reserved Word Table is scanned before the
Standard Reserved Word Table, so that it is possible to use complete words from the
exigting table as part or whole of Auxiliary words. Thus the following would be perfectly
acceptabl e as reserved words:

PRINTUSING SINH DELAY VALUE
and would not affect the appropriate existing reserved words which they replace.

However, if READ wasincluded in the Auxiliary tables, it would assume priority over
the existing word READ, with rather interesting results! In particular, a . XBS file containing
READ statements would continueto execute the existing READ statement, but any lines
added to that program would correspond to the new. .READ command, if READ was typed
into any of those lines. This option should therefore be used with some care.

APPENDIX A -- INDEX TO RESERVED WORDS AND ERROR MESSAGES
1.RESERVED WORDS

A complete list of reserved words is given below, together with their associated ‘tokens
and main pages on which descriptions of their, may be found. The TYPE column tells
whether the word is a Command, Function, Separator (i.e, it appears only as a part of
another statement, e.g, THEN in an IF statement), or Operator, and CF indicates that the
word may be used either as a Command or Function. An asterisk indicates that the word is

58

only availablein the disc version of XBASIC.

APPEND
ASC
ATN
AUTO
CALL
CHAIN
CHR$
CLEAR
CLOSE
CLS
CONT
COos
CREATE
DATA
DEEK
DEF
DEL
DIM
DIR
DOKE
DRIVE
ELSE
END
EOF
ERA
ERR
ERL
EVAL
EXP
FN
FMT
FOR

HEX

74
75
76
77
78
7D
7E
F
c4
TA
Bl
C5
C6
80
B8
81
Cc7
82
83
84
85
Cc8
86
87
C9
88
89
8A
B2
8B
8C
8D
8E
E2
B3
EO
El
CA
CB
E3
BO
8F

CODE
DECIMAL

116
117
118
119
120
125
126
127
196
122
177
197
198
128
184
129
199
130
131
132
133
200
134
135
201
136
137
138
178
139
140
141
142
226
179
224
225
202
203
227
176
143

PAGE
TYPE

0

*

WONOOS000TMO0OTON00OTMORonNNidoNmoocooocoo

*
(@)

OO0OTmmmmT

W N
BNN~N~N~N~NN~NNN

P WOWNNNDELENDEDERPRPWOWAONERPNUOUONONEERPOERNERPOERDNDN
OFRP~NWWOOONOONNORPORPNPONWOOOOOOUIAONDNO

GOsuUB
GOTO
HOLD
HEX$
IF
INCH
INP
INPUT
INT
IOM
KBD
LEFT$
LEN
LET
LIST
LN
LOAD
LOCK
LOG
MGE
MID$
MOD
MON
MULS$
NEW
NEXT
NOT
NULL
OFF
ON
OPEN
OR
ouT
PEEK
Pl
POINT
POKE
POP
POS
PRINT
PTR
READ
REM
REN
RENUM
RESET
RESTORE
RETURN
RIGHT$
RND
RUN
SAVE
SCRN$
SEP
SET
SGN
SIN
SIZE
SPC
SPEED

90
91
92
CcC
93
E4
CD
94
CE
B9
E5
DD
CF
95
96
DO
97
B4
D1
98
DE
79
99
E6
9A
9B
E7
BA
9C
9D
9E
7B
9F
D2
E8
D3
AO
Al
D4
A2
BB
A3
A4
BS
A5
A6
A7
A8
DF
D5
A9
AA
D6
BC
AB
D7
D8
E9
6F
BD

144
145
146
204
147
228
205
148
206
185
229
221
207
149
150
208
151
180
209
152
222
121
153
230
154
155
231
186
156
157
158
123
159
210
232
211
160
161
212
162
187
163
164
181
165
166
167
168
223
213
169
170
214
188
171
215
216
233
111
189

a
(]

QOoTooTMTTNRYMOTTOTO00

0O020To0oO0TNMTTNMOCO00Q MO0 TMOOCTOM

T

b

*
(@)

@]
4

VTTTOZMNOOTTOO00

17
17
14
52
17
23,25,39
30
17,39
23
10,31
23,26
26
26
17
11
23
12
22
28
14
26
7
11
26
11
16
7
33
48
19,47
37
7
30
51
23
24
50
17
24
19,38
51
20
21
22
14
21
21
17
26
24
13
13
26
30
21
24
24
24
24
33

[e2]
o

SQR D9 217 F 24
STEP 70 112 S 16
STOP AC 172 C 21
STR$ DA 218 F 26
SWAP AD 173 C 21
TAB 71 113 S 24
TAN DB 219 F 25
TO 72 114 S 16
THEN 73 115 S 17
UNLOCK B6 182 *C 22
VAL DC 220 F 26
VERIFY AE 174 C 13
WAIT AF 175 C 30
WIDTH BE 190 CF 33
XOR 7C 124 O 7
ZONE BF 191 CF 33
2. ERROR MESSAGES
CODE

HEX DECIMAL
Break 00 0
Next 01 1
Syntax 02 2
Return 03 3
Data 04 4
Qty 05 5
Ovfl 06 6
Mem Full o7 7
Branch 08 8
Range 09 9
Dimension 0A 10
Division 0B 11
Stack Full oC 12
Type oD 13
Cmd OE 14
Str Ovfl OF 15
Str Complex 10 16
Cont 11 17
FN Defn 12 18
Operand 13 19
Bad Data 14 20
End of Text 15 21
File 16 22
Drive Select 17 23
File Type 18 24
DISC ERRORS: Only available in the disc version
No File 19 25
File Exists 1A 26
File Locked 1B 27
Disc Locked 1C 28
Disc Seek 1D 29
Disc Full 1E 30

Dir Full 1F 31

61
APPENDIX B— HARDWARE CONFIGURATION (CASSETTE VERSION)

1MEMORY MAP FOR XBASIC

TOPRAM
FREE SPACE FOR
MACHINE-CODE
ROUTINES LIMIT
INTERNAL ‘VDU’
FOR EDITOR VRAM
XBASIC
STACK STKBOT
STRINGS
STRBOT
(FREE SPACE—
FIGURE RETURNED
BY ‘SIZE’)
ARRTOP
ARRAY S VARTOP
SIMPLE
VARIABLES TXTTOP
XBASIC
PROGRAM TEXT TEXT (normally same asHTEXT
modified by hold
HTEXT

The interpreter itself occupiesthe aea& 1000to &41FF.

2. XBASIC SCRATCH-PAD LOCATIONS

The scratch-pad is divided into two perts - that part which must beinitialised with certain
default values, according to the hardware being used, and the part which simply requires
setting to zero. The ‘default’ area is infact copied from an areawithin the interpreter cdled
the HARD scratchpad, starting at HTEXT, which may be found at 3A7CH. The default
settings for this area ae shown in the table below, given for the tape version:

1000 XCOLD: JP XCOLD1 ; ENTRY TO ‘COLD START' ROUTINE
1003 XWARM: JP XWARM1 ; ENTRY TO ‘WARM START’ ROUTINE

LOC.

1006
1008
100A
100C
100E
1010
1012
1014
1016
1018
101A
101C
101E
101F
1021
1025
1026
1027
1028
1029
102B
102D
102E
1030
1031
1032
1033
1034

1035
1036
1037
1039
103B
103C
103D
103E
103F
1040
1041
1043
1045
1047
1049
104B
104D
104F
1051
1053
1055
1057
1059
105B
105D
105F

NAME

TEXT:
SCMD:
AUXCMD:
ERRTAB:
AUXERR:
SADR:
SFNADR;:
AUXADR;:
USRLOC:
DEVPTR:
DEFLST:
BUFPTR:
BUFLEN:
RNDMOD:
RNDNO:
NDISCS:
NTAPES:
XLEN:
YLEN:
VDUSIZ:
STKSIZ:
DEFDRV:
IOMOD:
TXFIGS:
SEPRTR:
TABCHR:
WIDTHT:
ZWIDTH:

ABOVE ISCOPIED AREA - BELOW ISAREA INITIALISED TO ZERO

WIDTH:
PRTCOL:
ROWCOL.:
CURPOS:
VSPEED:
NULCNT:
KEYIN:
PRTCHR:
ODEV:
IDEV:
TXTTOP:
VARTOP:
ARRTOP:
STRBOT:
STKBOT:
VRAM:
LIMIT:
TOPRAM:
LNNO:
DATLN:
DATPTR:
TXTPTR:
EXPPTR:
LNNZ:
TXTPTZ:
ENDLST:

62

DEFAULT VALUE REMARKS

&4201
&3E35
&3FC9
&3DSE
&3E34
&3FCB
&4053

0

&15CA
&342D
65535
&0C80

127

1
&8047B7C9
0

1

48

16

&0300
&0100
&13(T-A’
&FFFE

0

&2C ("))
&20 (")

36

14

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

NNNNNNNNNNNNNNNNNRPRPRPRPRPENNREPRE

: PTRTO START OF BASIC PROGRAM (PTR(1))
. PTR TO STANDARD CMD TABLE (PTR(2))
: PTRTO AUXILIARY CMD TABLE (PTR(3))
: PTR TO STANDARD ERROR TABLE (PTR(4))
: PTRTO AUXILIARY ERROR TABLE (PTR(5))
: PTRTO STANDARD ADDRTABLE (PTR(6))

: PTR TO STANDARD FN ADDR TABLE (PTR(7))

; PTRTO AUXILIARY ADDR TABLE
 PTRTOUSER ‘CALL’ ROUTINE

; PTRTO START OF I/O DEVICES
yLINESTO' LIST' AT ATIME

; PTR TO INPUT BUFFER AREA

; LENGTH OF INPUT BUFFER

(PTR (8))
(PTR(9))
(PTR(10))
(PTR(11))
(PTR(12))
(PTR(13))

; MODE OF RANDOM No. (INTEGER/REAL)

; HOLDS LAST RANDOM No. (0.780148)

; No. OF DISCS ALLOWED
; No. OF TAPES ALLOWED
; VDU COL SIZE

; VDU ROW SIZE

; SCREEN SIZE (XLEN*YLEN)

; STACK SIZE

: CURRENT TAPE/DISC DRIVE
: O/P MODE, USED BY EDITOR, ETC (IOM(0-15))

; NUMERIC DISPLAY FORMAT FOR FMT
(SEP)

; SEPARATOR FOR ‘INPUT’
; CHARACTERFOR ' TAB'

FUNCTION

: END OF VDU LINE FOR ZONING (ZONE(0))
(ZONE(1))

; PRINT ZONE WIDTH

; WIDTH FOR PRINTOUT
; PRINT COLUMN

; CURRENT CURSOR COORDs
; LOCATION OF INTERNAL CURSOR
; DELAY FOR CHARACTER O/P

; NULLS AFTER CR?

; INPUT CHARACTER FROM QUIKCK
; LAST OUTPUT CHARACTER
; CURRENT OUTPUT DEVICE

; CURRENT INPUT DEVICE

; PTRTO END OF BASIC PROGRAM
; PTR TO END OF VAR SPACE

; PTR TO END OF ARRAY SPACE
 PTRTOBOTTOM OF STR. SPACE
 PTRTOBOTTOM OF STACK AREA
; PTRTO START OF VDU AREA

; PTRTO TOP OF USED AREA

; PTRTOTOPBYTE OF RAM

; CURRENT LINE NO.

(WIDTH)

(POS(0))
(POS(1 or 2))

(SPEED)
(NULL)

(PTR(14))
(PTR(15))
(PTR(16))
(PTR(17))
(PTR(18))
(PTR(19))
(PTR(20))
(PTR(21))
(PTR(22)

: LINE NO. OF CURRENT DATA STATEMENT (PTR(23))

; CURRENT POSN. IN DATA STATEMENT

(PTR(24))

; SAVE TEXT PTR AT START OF STATEMENT
» SAVE TEXT PTR IN EXPRESSION

;' OLD'

LINE PTR FOR CONT

; ‘'OLD’ TEXT PTR FOR CONT

; LAST LINE FOR LIST

63

1061 PTR: DEFS ; GENERAL-PURPOSE POINTER

1063 PTR1: DEFS ; GENERAL-PURPOSE POINTER

1065 DIMFLG: DEFS ; FLAG FOR DIM/FNDVAR ROUTINES
1066 NTYPE: DEFS ; TYPE OF EXPRESSION EVALUATED
1067 VTYPE: DEFS ; VAR/ARRAY TYPE USED BY FNDVAR

1068 STRFLG: DEFS
1069 GARPTR: DEFS
106B ASNPTR: DEFS
106D STRPTR: DEFS
106F STRLST: DEFS
1079 CHAR: DEFS
107B CHRADR: DEFS
107D RDFLAG: DEFS
107E FPA: DEFS
1082 TEMP: DEFS
1083 PTRTXT: DEFS
1094 TXNEXP: DEFS
1095 TXNBUF: DEFS
109D ZERMOD: DEFS
109E ERRMOD: DEFS
109F ONERRLN: DEFS
10A1 ERRNO: DEFS
10A2 ERRLN: DEFS
10A4 EOFMOD: DEFS
10A5 ONEOFLN: DEFS
10A7 STKSAV: DEFS
10A9 VDATTS DEFS
10C9 ASCFLG: DEFS
10CA FDESC: DEFS
10CE OTDESC: DEFS

; FLAG TO INDICATE HOUSE-CLEAN DONE
; GARBAGE-COLLECT POINTER
 TEMP.PTRFOR" LET'
; PTR TO END OF STRLST
0 ; STR SUB-EXPRESSION LIST
; TEMP. STRING ‘ACCUMULATOR’
; ADDR. ASSOCIATED WITH CHAR
; IN READ/INPUT, FLAG TO SHOW WHICH
; FPACCUMULATOR
; LOC. USED IN F.P CALCULATION
7 ; TEXT AREA FOR FORMING NUMBERS
; TEMP. EXPONENT VALUE FOR FORMATTING NUMBERS
; DIGIT BUFFER FOR FORMATTING NUMBERS
; COPY OF CURRENT ERROR MODE (FOR" STOF')
; CURRENT ERROR MODE
; LINE NO. OF ON ERR STATEMENT
; NO. OF LAST ERROR GENERATED
; LINE NO. OF LAST ERROR
; CURRENT EOF MODE
; LINE NO. OF ON EOF STATEMENT
; SAVE STACK FOR ON ERR.. STUFF
2 ; START-OF-LINE ROW' LIST FOR INTERNAL ' VDU’
; FLAG TO SHOW WE ARE HANDLING .ASC FILE
; CURRENT FILE DESCRIPTOR NAME
; O/P FILE DESCRIPTOR NAME
10D2 INDESC: DEFS ; I/P FILE DESCRIPTOR NAME
10D6 FILTYP: DEFS ; STORE TYPE OF FILE IN SAVE & LOAD
10D7 FSPEC: DEFS 28H ; FIXED FILE SPEC. AREA, FOR SAVE, LOAD, etc
10FF FBUFF: DEFS 80H ;BUFFER FOR FSPEC

PRARADRNRPWNNRNRPNRRPORRPREPARNNENNNRRRENN

3INPUT/OQUTPUT

As described in Chapter 1V, the I/O device specification is given by IOLIST, pointed to by
DEVPTR. As supplied, the devices are asfollows:

0 - Normal Nascom VDU, 48x16, but with all 16 lines scrolling. This overcomes the ‘top-
line printing’ problems apparent when using NAS-SYS 1, where printing a character to the
non-scrolling line resulted in the cursor moving to the bottom of the screen, accompanied by a
scroll of the screen!

Input device 0 isthe NASCOM keyboard.

1 - Output to serial printer, using bit 7 of port 0as DTR connection. This alows handshaking,
and a1 on bit 7 indicates that the printer is ready to receive data from the RS232 port.

Theinput device 1 iscurrently asfor device O.

2 - Output to and Input from the RS232 port, in the usua way (i.e, with no specia
handshake connections).

64

The user can, of course, define higher own IOLIST, for the various other 1/0O possihilities,
and is referred to Chapter IV.1 for the relevant details.

4. GRAPHICS SUPPORT

SET, RESET and POINT have already been described in Chapter 111.1 and 111.3. All that
need be said here is that the resolution provided by these ‘dot’ graphics is 96 by 48 (0-95 and
0-47 being the respective ranges). Coordinates outside these ranges may be specified, up
to a maximum of 255, with ‘wrap-around'.

Those used to Nascom ROM BASIC should note that SET and RESET may NOT be used
with parentheses around the coordinate pair, and that the vertical coordinate works more
logicaly (i.e, O is at the very top of the screen, with 47 at the very bottom), rather than
making specia exceptions for the ‘ non-scrolling row’.

65
APPENDIX C - XBASIC USEFUL SUBROUTINES
Note: All of the addresses given within this appendix are specified in Hexadecimal. This
appendix has been provided for assisting the generation of extrareserved words in an efficient
manner. It is not complete, but we think that the most useful routines are al present in this
list?

1.ERROR MESSAGES

Not much more need be said about this than has aready been covered in Chapter VI,
except to give the address of the routine ERROR, which actually handles errors, and may be
found at 15CF. The only register which matters here is E, which contains the error
number, as defined in Chapter V1. It is not necessary to CALL thisroutine, just jump toit!

2. USER-FUNCTION TERMINATION ROUTINES

1185 FNBIT: ; RETURN BIT VALUE IN CARRY FLAG.

1188 FNENDB: ; RETURN BYTEVALUEIN A.

118B FNENDI: ; RETURN INTEGER VALUE IN AB (high bytein A).
118E FNENDF: ; RETURN NUMERIC VALUE IN FPA (floating point).
1191 FNEND: ; RETURN EXPR. VALUE IN FPA (may be a string).

These routines should NOT be CALLed, but used to terminate your function routine. The
routines all assume that the text pointer is on stack, so that the registers may contain anything
on entry to these routines (except, of course, for the ones returning results!). Also, see
section 8 of this appendix for the use of STREND, the usual way of returning string results.

3. GENERAL -PURPOSE TEXT SCANNING ROUTINES

As explained in Chapter VIII, XBASIC uses the HL register pair as the pointer to the current
position in the program text. The following routines make use of this:

RDLN 3587 Readsin aline of text from the keyboard or current input device to the
BUFFER, pointed to by BUFPTR. This makes use of the editing facilities described in
Chapter 1, according to the IOM setting currently in use. On entry, if ‘Line Edit’ mode isin
force, the character contained in A is printed as a prompt at the start of the line.

On exit, the carry flag is set if the line has been abandoned by <ESC>, butis reset if <CR>
has been used to complete the line. In this case, the line in the buffer is terminated with a 00
byte, and HL isleft pointing to one byte before the start of the buffer. Registers affected: A
and HL.

PR 34E7 Print character in A register, to VDU or current output device. The side-
effect of this is that the location PRTCOL is adjusted to give the correct column on the
screen/printer, for TABS, etc. In addition, adelay is imposed if the SPEED command has
been used to ow down the print rate.

66

PRTNUM 11FC Prints the contents in the HL register pair asan integer in the range
0-65535. All registers nay be affected.

PRM 11B9 Prints the message immediately following the sub-routine call,
terminated by having the MSB of the last character set. This means that al other character
codes must have ASCII valuesin the range 0-& 7F. Thus, to print "Hello there", we do:

CDB911 48656C 6C6F207478 7572 E5
Hel | o t here

On exit, A holdsthe last character printed, still with itstop bit set, and the return addressis
that immediately following the last character in the message. No other registers are
affected.

CPHLDE 1197 Compare HL and DE and return flags set as follows: Carry - Set if
HL<DE, reset if HL>=DE. Zero - Set if HL=DE. Registers affected: A.

LTRCHK 11DF Places the character contained at (HL) in A, and teststo seeif itisa
letter in the range A -Z (i.e, acapita letter). Carry is Reset if it is a capital letter, and Set if it
isany other character. No other register is affected.

LWRTST 11D0 Loads character from (HL) into A and, if in the range &60-& 7F,
converts it to upper-case (in the range &40-&5F). Only A and the flags are affected.

IGBLK 11AA Increments HL, until the first non-space character is found. On
return, A contains the character found, and HL points to that character. Z flag is set if at the
end of statement (null or *:’ found), and C flag set if numeric character found (0-9).

TSTC 11A2 Test character at (HL), ensuring that it is the same as that specified
immediately after the call. If not, a Syntax Error occurs. This is effectively a four-byte call,
e.g, CD xx xx 28 looksfor a ‘(* . A containsthe test character, and HL points to the next
non-blank character following the tested one. Note that we may also use this routine to test for
areserved word token.

TSTCOM 119D
RPARN 1192 Special cases of TSTC, test for comma ‘,” and right parenthesis ‘)’
respectively. These only require 3 bytesinstead of four, though!

FNDLN 123B Searches for the line in the program text given by DE, from the
start of text. Returns with the following conditions:

Carry and Zero set: Line found, BC pointsto start of line, HL points to start of following
line (or to 0000 if thelinefound isthelast in the text), as described in Chapter VIII.1 .

Carry reset, Zero set: Line not found, and end of text reached. BC then pointsto the start of
thelast line of text, and HL=0000.

67

Carry and Zero reset: Line not found, but we nave found a line with a number larger than
that searched for, BC pointing to that line, and HL pointing to the next line (or 0000).

Other registers affected: A will be affected, but DE will remain unchanged.

NXTLN 123E Asfor FNDLN above, but this tine searches for the line given in DE
from the current position in the text, given in HL.

COMPRSS 1761 Routine to take a line of text in the buffer starting at the location
given in HL, and terminated by a 00 byte, arid which generates the same line in the
compressed format given above, in the input buffer (BUFFER). Note that the new lineis
ALWAYS shorter than the original. In normal use, when entering a line of text into a
program, the compressed line overlays the input line, since the pointer to the original text is
aways in front of that to the compressed text. In addition, the line number is not considered
here, since HL is pointing at the next non-blank character after the line number (if one has
been used). COMPRSS does NOT generate a compressed line number nor the pointer to the
next line.

Registers affected: All. HL points to one byte before the start of the buffer on exit, DE
points to the last byte plus two in the compressed line, and C holds the number of bytesin the
compressed line, plus four to take account of the space needed for the line number and
pointer.

4. FLOATING-POINT FEATURES

a. Representation of floating-point numbers.

A floating-point number in XBASIC is stored in four consecutive bytes. There are four
bytes reserved within the scratch-pad, used for floating-point calculations, called the
Floating-Point Accumulator (FPA), and a further byte TEMP is used by the f.p routines for
storing temporary calculations. Apart from these, only the registers and the stack are used for
f.p calculations.

The high byte of the FPA is the exponent, whichisa signed power of two. Note that the
sign bit is 0 if NEGATIVE, 1 if POSITIVE (for a reason which will become apparent later).
The lower 3 bytes form a signed mantissa, thetop bit of the top byte being the sign
(thistime O if POSITIVE, 1if NEGATIVE!). The mantissais a number between 0 and 1, with
the binary point coming above the top bit.

If welet e = Exponent byte, and m = Mantissa bytes, we express any f.p number N as:
N= (1+m)* 21 (el),

with the added convention that any number with a zero exponent is taken as 0. Now we see
why 1 isused for a positive sign on the exponent - e=01 must represent 21(-128), and O is
clearly smaller than this (not much!). Note that e=80 represents 21(-1), or O5upto 1
(depending on the value of m). The advantage of using this convention for O is that we can
initialise variables and arrays simply by filling them with O's (each element is then zero).

This is still probably as clear as mud(!), so let's have a few examples, to illustrate the
system:

68

Decimal Number Hex (f.p) representation Remarks
0 00 00 00 00 Zero

1 81 00 00 00 210

2 82 00 00 00 211

3 82 40 00 00 15211
-3 82 C000 00

3.141593 82 49 OF DB Pi
0.6931472 80 31 7218 Ln(2)
65536 91 00 00 00 2116

The RANGE over which we can operate is determined by e, and is thus:
21(-128) < N < 21127, whichis 2.938736 * 101 (-39) to 1.701412 * 10438.

The ACCURACY of calculations is determined by the length of n, which in this case
represents 1 part in 2 24, or an error of < 5.960464 * 10t (-8), which is better than 7 sig. figs.
However, to try and account for rounding errors, we alow one guard digit, and so you will
note that al numbers are printed to 6 sig. figs (even this does not ALWAY S account for ALL
errors, and you will note, for instance, that 314 is displayed as 81.0001, and not 81, asit
should be! Thisis mainly dueto problems with conversion from binary to decimal, aswell
as the accuracy of the method used for calculating powers).

b. Floating-point functions and operators.

The addresses of the single-argument f.p functions are as follows. In each case, the
argument is taken from the FPA on entry, and the result returned in it on exit:

LOG 2A51 LN 2A5D EXP 2D14
SIN 2D9%4 COS 2D8E TAN 2D7A
ATN 2D54 RND 2B00 ABS 2C2A
SGN 2C36 INT 2C8A SQR 2CC7

By ‘operators’ we mean those in which we are dealing with TWO f.p quantities. In general,
we do acalculation in the form a= b o a, where a= contents of FPA, b = contents of top four
bytes of stack, and o is the operation performed. On the stack, the top pair of bytes
represent the exponent (high byte) and top byte of mantissa. For each operator, there is
another entry point (given a suffix ‘1), in which b is stored in the BCDE registers. Here, B
contains the exponent, C the high byte of the mantissa, and DE the rest of the mantissa. We
call the set of four registers used in this way the Floating-Point Register (FPR). The result of
any of these operationsis, of course, returned in the FPA.

ADD 295B ADD1 2970 SUB 296B SUB1 2960
MULT 2A9C MULT1 2A9E DIV 2AEE DIV1 2AFO
POWER 2CDO POWER12CD2 ADDN 2962 SUBN 2967
MOD 2B75 MOD1 2B77 MUL10 2BA4 DIV10 2AE2

Note: POWER is actually calculated as: X 1Y = EXP (Y * LOG(X)), with the convention
that X 1 0=1for X>=0and 0% Y=0for Y>0, and X 1Y isnot defined for X<0 or for X=0
and Y <0.

MUL 10 and DIV 10 respectively multiply and divide the contents of the FPA by 10, leaving
theresult in the FPA.

ADDN and SUBN are like ADD1 and SUB1, except that HL points to a memory location
at which b may be found. Y ou can place a constant here, or even a temporary result, if you

69

wish. XBASIC stores alargetable of constants within the Interpreter, and here are some of
the more useful ones:

HALFPI 2FOB Pi/2 HALF 2FOF 05
TWOPI 2F07 Pi*2 QTR 2F13 0.25
ONE 2ECD 1 NEGONE 2EC9 -1

c. Other useful F.P routines.

STKFPA 2C51 Returns with the FPA on the stack, in the form shown above. Destroys
the DE registers.

LDFPR 2C5E Copiesthe FPA to the FPR, leaving HL pointing to TEMP.

STFPR 2C76 Copies the FPR to the FPA, without affecting any registers.

HLTFPA 2C73 Copies the four bytes starting at (HL) into the FPR AND FPA, leaving
HL pointing to the byte following the block of four.

HLTFPR 2C61 Copies the four bytes starting at (HL) into the FPR, leaving HL as
above, but not affecting the FPA.

FPATHL 2C7F Copies the FPA into the four bytes starting at (HL), leaving HL as
above, DE pointing to TEMP, B=00 and A= exponent of FPA.

FPRTHL 2C6A Copies the FPR into the four bytes starting at (HL), leaving HL asin
HLTFPA, but no other registers affected.

DETOHL 2C82 As above, but copies the four bytes starting at (DE) to those starting at
(HL).

CHKSGN 2C1B Test sign of FPA, returning A=00 if FPA=0, A=01 if FPA>0 and A=FF

if FPA<O Thisdoes not change any other registers.

CHGSGN 2C2E Changes the sign of the FPA, turning it from a positive to a negative
number, or vice versa. This affects A and HL.

d. Polynomial evaluation.

XBASIC uses routines called POLY and POLY1 to evaluate polynomials for the
transcendental functions LOG, EXP, SIN, and ATN. All of the others are derived from
these ‘big four’. Both of these functions use HL on entry to point to a table of
coefficients, and these are then used to form the required polynomial. The first byte of the
table gives the number of coefficients, and each coefficient then follows (highest order
coefficient first), stored in four bytes as usual. The result is, of course, returned inthe FPA.
Now, let us assume that the FPA holds a number X on entry, and Y on exit to/from these
routines, and that there are n+1 coefficients CO-Cn:

POLY1 2DEO Returnsan evauation of apolynomial of the form:

Y=C0 + C1* X+C2* X12+C3* X13 +.....+Cn*X 1 n
Thetablelooks like this:
n+1 Cn ... C3 C2 C1 cCo
HL points here on entry.
POLY 2DD1 Returnsan evaluation of apolynomial of the form:
Y=C0*X + C1*X13 + C2*X15 + Cn*X1(2*n+1),
and the table looks the same as above.

70
All other registers nay be affected by these routines.

SINTAB 2EF6 LOGTAB 2EA3 ATNTAB 2ED1 EXPTAB 2EBO are the ones
used within XBASIC, but they won't look like they do in your standard mathematics books,
because we use a specia method known as CHEBY SHEV economisation to calculate
these functionsto the required degree of accuracy and the same degree of efficiency over the
appropriate range of values.

5. EXPRESSIONS AND FUNCTIONS

To get a number or a complicated expression containing numbers, functions and operators,
into the f.p format described in the preceding paragraphs, we use a set of very powerful
routines to evaluate then. In all of the following cases, HL points to the position in the
text where the expression is to be found and, unless otherwise stated, al register contents may
change:

EXPR 255A The genera expression evaluation routine, for calculating both numeric
AND string expressions. The numeric result (or string pointer in the case of string
expressions) issimply returned in the FPA, and NTYPE contains the type of expression
returned (O for numeric, 1 for string). The expression can be as simple or as complicated as
desired, and may even contain logical or relational operators.

EXNMCK 2541 As for EXPR, but only accepts a numeric expression, and returns
" Type Error' |, if asig expression isfound.

PARNZ 261C Asfor EXPR, but expects the expression to be enclosed inside parentheses
(), returning ‘ Syntax Error’ if not.

PARN 2556 As for PARNZ, but only looks for a left bracket ‘(, so that more
expressions can be evaluated, perhaps separated by commas (use TSTCOM to test for
separating commas), finally finishing with RPARN to test for the right bracket.

FCHNUM 2F34 Testsfor af.p number (NB, NOT an expression, just a numeric constant),
leaving HL pointing to the first non-numeric text character. Examples of values accepted
by thisroutine are:

1 234 -51.76548 (rounded to-51.7655)
-1.23E-07 & 7FE (hexadecimal value, taken as 2046)

The result is returned in the FPA.

GETNM 251C Like FCHNUM, but this time the number must be an integer in the range
0-65529, and ‘Syntax Error’ is returned if it is not in this range. The number is returned in
DE, and HL again pointsto the first non-numeric character. Thisroutineis mainly used for
fetching line numbersin the text (e.g, after GOTO or GOSUB statements). This routine leaves
BC unaffected.

TXTNUM 2FD4

TXT1 2FD7 Converts the number in the FPA into an ASCII format number, starting at
PRTTXT (or at the position given by HL in the case of TXT1). The format in which the
number is returned depends upon the FW statement that isin force (i.e, the number of leading
and trailing figures given in the number). This is aso dictated by the scratch-pad
location TXFIGS, which contains the number of leading figures allowed in its top half, and
the number of trailing figuresin its bottom half (e.g, if TXFIGS contains 42H, we have 4

71
leading figures and two decimal places.

The number stored is terminated by a 00 byte, and the routine returns with HL at its origina
value.

UEXINT 24E7 Asfor EXNMCK, but thistime makes the expression into an integer,
which must be in the range -65535 to +65535, returning the result in DE, as a signed 16-bit
quantity. Note that, due to the range allowed, equivalent positive and negative values
may be used interchangeably, e.g, -65535 is equivalent to +1.

INTEXP 24F4 Asfor UEXINT, but restricts the range to 0 to +65535.

[255 250D Here, we restrict the range to 0 to +255, and the result isreturned in A as
well as DE (D=00, of course).

In these last three routines, ‘Qty Error’ is returned if the number is not in the correct range
described.

6. ROUTINESTO PRODUCE NUMERIC RESULTS

It is often necessary, after obtaining one or more numeric expressions arid doing some
manipulation, to return a numeric result. If the result is an f.p number, there is no problem -
we just return the result in the FPA. If we have an integer result, we can use the
following routines to return the result in the FPA suitably converted. Note that these may be
CALLed, unlike the function terminating routines described earlier.

FORMNUM 146B Converts a two-byte integer (-32768 to 32767) into an f.p
number. Trie integer is stored in the A and B registers (high byte in A), and al of the other
registers are affected.

FORMPOS 13E1 Asfor FORMNUM, but returns the number unsigned, i.e,

it assumes the number to be in the range 0-65535. In this case, the integer is taken from HL
on entry.

7. TYPE CHECKING ROUTINES

There are three routines provided for checking the type of variable returned by a sub-
EXpression or expression:

NUMCHK 2544 Ensures that the expression just evaluated is a number.
STRCHK 2547 Ensuresthat the expression just evaluated is a string.

TYPMCH 2549 Checks that the type of one expression matches another. Thisis done by
making the Accumulator represent the type of the first expression (0 if numeric, 1 if string).

In al of these cases, we return a TYPE ERROR if the wrong type was found, and the
NTY PE contains the type of the expression last evaluated. Only the A register and flags are
affected by these routines.

72

8. STRING EXPRESSIONS

We aready know that we may use EXPR to return the pointer to a string expression in
the first two bytes of the FPA. In order to process the string correctly, we use the following
routine:

FCHSTR 2309 Thisdoes acall to STRCHK (to ensure that the expression just evaluated
was a string), and exits with HL pointing to the length byte of the string expression. It also
checks to see whether the string was a ‘temporary’ sub-expression. String sub-expressions are
stored at STRLST in the scratchpad, and serve to stack the pointers to strings which are
created within an expresson and then forgotten about when the expression has been
completely evaluated. We use CHAR to store the current ‘temporary string’ (for example, the
result of concatenating several strings, which, until assigned to a variable, would have
nowhere to keep its pointer).

Registers affected: Apart from HL, the contents of al of the registers are modified, but their
values are not important.

LEN1 233E If you want to use LEN, you should in fact use this routine, which calls
FCHSTR, and then returns the length of the string in A. HL till points to the length byte.
TYPE issetto 0, toindicate a numeric result, and soisD.

ASC1 234D Similarly, use this routine where you want to use ASC. Thiscalls LEN1,
returns the address of the start of the string in DE, and the first character in A. HL is left
pointing to the LAST byte of the string pointer, not the first, as it was in the above two
Cases.

STRSPC 21C5 Creates space for a new string within the string space, the required
space being given by A. All other registers are affected. If there isinsufficient string space, a
‘house-cleaning’ operation is initiated, which removes al strings to which there is no
longer a pointer (i.e, the string variable which was pointing to it has now been assigned to
another string). DE isleft pointing to the first byte of this free space, and STRBOT islowered
by the appropriate amount.

ASNSTR 2173 Asfor STRSPC, but then assigns this string space to the ‘temporary
String accumulator’ (CHAR), writing the length to CHAR, and the start address to CHAR+2.
Thisisthustheroutineto useif it isdesired to create a string in a user-defined function, since
it is now an easy matter to copy your string into this space, and then use STREND (see
below). Registers affected: All, but HL finishes pointing to CHAR, DE still points to the start
of the created space, and A containsits length.

STREND 21A6 Sets the first two bytes of the FPA to the next position in the sub-
expression list, and. then moves the temporary string pointer from CHAR into that position,
thus freeing CHAR for another string, if necessary. This provides the correct way to end a
user-defined string function. If the sub-expression list at STRLST is full, a STR COMPLEX
ERROR is returned. Thisis a rare occurrence, since the only types of string manipulation
that occur do not require stacking (e.g, you DON'T need to do this:

A$="HELLO"+(A$+(B$+ES))

It is alowed, however, so we must allow for ‘idiots’ within the programming fraternity!)

73

Thisroutine dso sets NTYPE to 1, indicating a string result. Registers affected: All. This
routine should never be called as a Sub-routine, since it expects to find the text pointer on
stack, and this will be found in HL at the end of the routine. SO, ensure that the text
pointer isimmediately available on stack, and then JUMP to this routine, when you useit!

9. DYNAMIC ALLOCATION OF STRING SPACE

A string may have any length from O to 255 characters, or 0 to 255 bytes, whereas a
numeric variable occupies just 4 bytes, a fixed length. In order to make storage allocation
more efficient, we therefore use a separate ‘string space’ area in addition to the ‘variable
space . The variable space contains pointers to the various strings used, while the string
space contains the actual strings themselves. No separators are needed within the string
space to tell us where one string ends and the next one starts, because the pointers
contain both the start address and the length of the string (this needs only 3 bytes, but we
actually use 4 in order that string pointers occupy the same space as numeric variables).

When we DIMension a string array, we use up variable space in setting up the pointers, but

we do NOT at that stage use up any string space, since no strings have actualy been
assigned.

10. INTERNAL STORAGE OF VARIABLESAND ARRAYS

a. Storage of variables.

Let us first look at the storage of variables, both string and numeric. Each string and
number, as it is defined in the program, is searched for in the list from (TXTTOP) to
(VARTORP). If it is not found, the list is extended by increasing VARPTR by eight bytes
(and moving the arrays up eight bytes, if necessary), arid then inserting the following
information:

First four bytes: Ihe first five characters of the variable name, in reverse order. In order to
‘squeeze them in’, we use five bits to represent the first character (in the range &00 to & 1A
corresponding to A -Z), and six bits for subsequent characters (the range being &01 to & 0A
and &12to &2B corresponding to 0-9 and A - Z. Note that & 00 represents no character, for
variable names of less than five characters).

The first character thus occupies the top five bits of byte four, while the other characters, if
used, are placed in the first three bytes.

The bottom three bits of byte four are reserved for the TY PE of the variable, bit 0 being set
for string variables, bit 1 set for integer variables (both bits reset thus represent ordinary
numerics!), and bit 2 is set if the'variable’ is actualy a user-defined function (of the
DEF FN variety!) more about that |ater.

Examples:
A stores as: 00 00 0000
AB stores as: 13 00 0000
AB$ stores as: 13 00 0001
XYZ$ stores as: AB 0A 00 B9
HOUSE% stores as: 16 69 823A

...and soon.

74

Remaining four bytes: These contain the number or string, stored in the same manner as
they would be in the FPA, i.e, High byte is exponent, lower three are mantissa. In the case of
strings, the high pair give the start of thestring in the string space area, while the bottom
byte actually gives the length of the string.

Here are some complete examples:

A=3 stores as: 00 00 000000 00 4082
XYZ$="hdlo" : AB 0OA 00 B9 0500 FB 8B, where we are assuming that the
string "hello" is stored at & 8BFB.

b. Storage of defined functions.

There is a specia type of ‘variable’, although it may not seem as such, arid that is the DEF
FN function. Here, the function is defined within the variable space just as anumeric
variable, except that bit 2 of the fourth byte is set (to distinguish it from a numeric or string
variable), arid the other four bytes contain two pointers. The first pointer gives the address
within the program at which the expression on the right-hand side of the DEF statement may
be found, while the second gives the address within the variable space at which the
argument variable of the DEF statement may be found. Example: Suppose we have a
DEF statement as the first line of a program, that the text starts at &4201, and the variable
space at &4300:

10 DEF FN HSN(X)=(EXP(X)-EXP(-X))/2 Thisisthe Hyperbolic sine
Thisis at the address stored in the variable space.

If the program is RUN, the variable space should look like this:
4300: 1F 09 00 3C 10 42 OC 43 00 00 00 B8 xx xx XX XX
This isthe address of the CONTENTS of the argument.
And hereis the address of the expression shown above (as an exercise,
work it out and verify it!).

Note that, if the argument variable name already exists (X in this case), that variable will be
used (we do not create a new one), but its value is stacked away before the function is
evaluated.

c. Storage of arrays.

An array isjust an ordered set of variables, so, aswe would expect, each array element is
stored in the same way as a numeric or string variable, in four bytes. However, some extra
overhead isneeded to define the type and extent of the array, arid thisis done as follows:

First four bytes: Asfor variables.

Bytes five and six: Give an offset to the start of the next array in memory. Byte seven: Gives
the number of dimensions inthearray. Let uscall this number N.

Bytes eight to 2*N+7: Pairs giving the size of each dimension in turn, used to calculate the
required offset to obtain a particular array element, and to ensure that an array access is within
the required bounds. The remaining bytes: Contain the elements of the array.

As this is rather complicated, let us have an example, of the array created by means of the
following DIM statement:

10 DIM XY (22,5,4)

75

Thisis athree-dimensional array, containing a total of 23*6*5=690 elements (remember, we
count from zero in XBASIC!). It should look like this:

2A 00 00 B8 CF OA 03 0500 06 00 17 00 XX XX€etC.
Here are the three dimension pairs.
The number of dimensions.
And this is the offset to the next array (or to the end of the list if
there are no more arrays).

We calculate the offset as: <No. of elements>*4 + 2*N + 1, where the No of elements is
found by multiplying together al of the dimension pairs. Note that the dimension pairs are
stored in the opposite order to that in which they were giveninthe DIM statement, and that
the actual numbers stored are one greater than those given. Note also that, in the case where
we are not using a DIM statement, the dimension pairs are each made equal to 000B (10
+1), and the number of dimensions worked out from the number of expressions given in the
subscripts.

Finaly, when an array is set up in the above manner, the space set aside for the elements is
filled with 00s which means that each element 1S, effectively, set to zero (or made to
point to a null string, in the case of a string). Note that an array is set up, if it does not exist,
whichever side of an assignment it appears on, unlike variables (see a. above).

11. ROUTINE FOR ACCESSING VARIABLESDIRECTLY

It is often necessary to access a numeric or string variable directly, rather than allow any type
of expression and, indeed, to return a SYNTAX ERROR if an expression is attempted instead
of just avariable name.

FNDVAR 277D Genera routine for accessing variables, depending on
value of VTYPE.

a. Simple variable or array element expected. VTYPE=0 on entry.
DE points to the contents of the variable on return.

b. Entire array expected. VTY PE=1 on entry.
This is the case in which we refer to the array as a whole,
without any parentheses. On return, BC points to the
location containing the no. of dimensions and DE contains
the offset to the next array.

c. Simple variable ONLY . expected. VTYPE>1 on entry. Otherwise as a
An example of thiscaseisinthe FOR statement, where
we have a SYNTAX ERROR if the control variable is
given as an array element. The routine itself does not
actually return the error in this case -- it simply leaves
HL pointingtothe ‘(.

In all of these cases, HL starts pointing to the first character of the variable/array name, and
finishes pointing to the first character AFTER the end of the name. If this routine is called
with VTYPE non-zero, you should make it zero again sometime before returning from the
routinein which you call FNDVAR.

76
APPENDIX D -- EXAMPLES OF EXTRA COMMANDSFUNCTIONS

To hdp illustrate the method for command/function extension given in Chapter VIII, let us
try afew examples. It is assumed that we are constructing a permanent set of additions to
XBASIC, the Auxiliary Reserved Word Table starting at location &4200, the Auxiliary
Address Table at &4240 and the actual routines starting from location & 4260. Clearly, these
addresses are given purely for the sake of example, and the user may care to use different
areas.

Before entering the monitor to add these extras, move HTEXT up first to &4400, by
doing a PTR 0,&4400, to reserve space for al of the ‘extras described below.

1. HOME

XBASIC does not have a reserved word to home the cursor to the top left-hand corner of
the screen, although it does have a command to clear the screen (CLS). XBASIC can be
made to perform a <HOME> by means of a PRINT CHR$(1); ,where the semi-colon
would be very important here, since a<CRLF> would otherwise be output aswell.

However, it is only necessary to write a short routine to output the <HOME> code, and
then to define a new reserved word HOME to execute it, and we may then use this
command whenever required. The routine used is as follows:

-200: 3EO01 HOME: LD A0l ; <HOME> CODE IN ACCUMULATOR
-263: C3E734 JP PR ; OUTPUT IT

-265: ; 5BYTESTOTAL

The reserved wore table is next constructed:

-201: C84F 4D 45 HOME

Lastly, the address tableis set up:

-240: 6042 Point to HOME routine.

PR is the routine internal to XBASIC that outputs a single character given in the
Accumulator to the current output device. It is one of a set of useful general-purpose routines

that the user may wish to utilise for his’her own additions. The list of these routines and
their addresses are given at Appendix C.

2. RAD
RAD is a degree to radian conversion function. It takes a floating point expression in

degrees and convertsit to radians by multiplying it by PI1/180.
First, the machine-code routine:

4265: E1 RAD: POP HL ; RETRIEVE TEXT POINTER
23 INC HL
CD 41 25 CALL EXNMCK ; FETCHF.PEXPRIN FPA

01 OE7B LD BC, 7BOEH ; GET PI/180INTO FPR

77

11 35 FA LD DE,FA35H

ES PUSH HL ; SAVE TEXT POINTER AGAIN

CD 9E 2A CALL MULT1 ; DOMULTIPLICATION

C39111 JP FNEND ; TEST FOR ') AND RETURN
4277 ; 18BYTESTOTAL

Next, the reserved word table:

4205 D24144 3 RAD (

Finaly, the address table is extended:

4242 65 & Point to RAD routine.
On re-entering BASIC in the usua way, try the following:

PRINT SIN(RAD(30))
5 the sine of 30 degrees.

3. EXTRA TRANSCENDENTAL FUNCTIONS

By using mathematical identities, we can easily obtain a host of extrafunctions, with no
grea use of memory. The advantage of having them done in this way is that we can save time
which would otherwise be wasted in scanning text, e.g, it is much better to do TAN(X) than
to do SIN(X)/COS(X).

The following identities are employed:

ASN(X) =ATN(X/SQR(1-X*X)) arcsin(x)
ACS(X) =(PI/2)-ASN(X) arccos(x)
HCS(X) =(EXP(X)+EXP(-X))/2 cosh(x)
HSN(X) =(EXP(X)-EXP(-X))/2 sinh(x)
HTN(X) =1-2/(1+EXP(X*2))) tanh(x)

Although HTN(X) could be done a HSN(X)/HCS(X), we need only do 1cdl of EXP by the
method adopted-, rather than the four needed atherwise. Some more useful routines are
included here, and are explained asfollows:

4277 CDE8 42 ASN: CALL TFN : ASN(X)
427A: CD51 2C ASNL: CALL STKFPA ;STACK X
CD5E 2C CALL LDFPR
CD9E 2A CALL MULT1 ;X%2
21 CD 2E LD HL,ONE
CD67 29 CALL SUBN D 1-X¥a2
CDC7 2C CALL SQR : SQR(1-X%:2)
Cl1 D1 POP BCDE ;UNSTACK X
3A 81 10 LD A,(FPA+3) : SFECIAL CASE FOR ASN(1)=PI/2
B7 OR A
28 0C R ZACS2
CDFO 2A CALL DIVl : X/ SQR(1-X¥2)
C3 54 2D P ATN : ATN(X/ SQR(1-X¥22))

420A: CDE8 42 ACS CALL TEN
CD7A 42 ACSL: CALL ASN1
21 0B 2F ACS2: LD HL,HALFPI

42A6:

42AF:

42B7

42C2

42DC:

42E8:

42F4:

42FC:

4309

C3 67
CD E8

29
42

CD DC 42

CD 6D
21 81
7E
B7
C8
35
Cco

CD E8

29
10

42

CD DC 42

CD 70

18 ED

CD E8
CDFC
CD 14

29

42
42
2D

21 CD 2E

E5
CD 62
CDF4
CD FC
El
C3 67

CD 14
CD 51
CDF4
Cl1 D1
c9

El
E3
23
CD 41
11 91
E3
D5
E9

01 00
51
59
C3 FO

21 81
7E
B7
C8
34
Co
1E 06
C3 CF

29
42
42
29
2D

2C
42

25
11

81

10

15

HSN:
HSN1:

HALVE:

HCS:
HCS1:

HTN:
HTNI:

HSN2:

TFEN:

RECIP:

DOUBLE:

JP
CALL
CALL
CALL
LD
LD
OR
RET
DEC
RET

CALL
CALL
CALL
JR

CALL
CALL
CALL
LD
PUSH
CALL
CALL
CALL
POP
JP

CALL
CALL
CALL
POP
RET

POP
EX
INC
CALL
LD
EX
PUSH
JP

LD
LD,

JP

LD
LD
OR
RZ
INC
RNZ
LD
JP

78

SUBN * PI/2-ASN(X)

TFN

HSN2

SUB1 : EXP(X)-EXP(-X)

HL,FPA+3 ; DIVIDE-BY-2 BY JUST
A(HL) :DECREMENTING EXPONENT
A

z - NOT IF FPA=0

(HL)

TFN

HSN2

ADD1 - EXP(X)+EXP(-X)

HALVE

TFN

DOUBLE ; X*2

EXP : EXP(X*2)

HL,ONE

HL

ADDN - 1+EXP(X*2)

RECIP ; U(1+EXP(X*2))

DOUBLE ; 2/(1+EXP(X*2))

HL

SUBN - 1-2/(1+EXP(X*2))

EXP : GET EXP(X) AND EXP (-X)
STKFPA

RECIP ; DOEXP(-X) AS VEXP(X)
BC,DE

HL - ROUTINE TO EVALUATE THE
(SP)HL ; EXPRESSON BETWEEN THE
HL : BRACKETS, FOR USER-DEFINED

EXNMCK ; FUNCTIONS.
DE,FNEND ; WILL EVENTUALLY RETURN TO
HL,(SP) ;FNEND

DE
(HL) : JUMP TO RETURN ADDRESS
BC,8100 ; CALCULATE RECIPROCAL
D,C
EC : FPR=1
DIV1
HL,FPA+3 ; DOUBLE FPA BY INCREMENTING
A(HL) ; EXPONENT
A
- NOT IF FPA=0!
(HL)
E,06
ERROR ; OVERFLOW IF EXPONENT=FF
- SIZE 146BYTES

79

Next, the function names:

4209: C1 53 4E 28 C1 43 53 28 ASN(ACY(
4211: C853 4E 28 C8 43 53 28 HSN(HCY(
4219: C8 54 4E 28 HTN(

And, finally, the addresses:

4244: 77 42 9A 42 A6 42 B7 42 C2 42

424E:

4.L0C

It is often useful to be able to obtain the location in memory where the contents of a variable
may be found. A variable name or array element MUST be specified as the argument, and the
memory location of the start of the contents of the variable is returned as a result. In the case
of astring variable, the address of the start of the actual string is returned.

4309: E1 LOC: POP HL
23 INC HL
CD 7D 27 CALL FNDVAR
E5 PUSH HL
3A 66 10 LD A, (NTYPE)
B7 OR A
EB EX DE, HL
28 OA JR Z,LOC1
23 INC HL : IF STRING, GET ACTUAL STRING
23 INC HL : ADDRESS, NOT JUST POINTER
7E LD A, (HL)
23 INC HL
66 LD H, (HL)
6F LD L,A
AF XOR A
32 66 10 LD (NTYPE), A
CDEl1 13 LOC1:CALL FORMPOS
C391 11 JP FNEND
4326:.
The function name:
421D: CC4F 43 28 LOC(

4221:
And its address
424E: 09 43
4250:

5. UCS$

This function returns a string corresponding to the argument (which is also a string), with all
lower-case letters converted to upper-case:

4326: E1 UCS$
23
CD 5A 25
CD 92 11
ES
CD 4D 11
2B
2B
2B
7E
D5
CD 73 21
El
47
7E UC1L:
CD DO 11
12
13
23
10 F7
C3 A621

4348:
The function name:

4221: D5 43 53 24 28
4226: 80

And its address

4250: 26 43

80

POP HL

INC HL

CALL EXPR

CALL RPARN

PUSH HL

CALL ASC1

DEC HL

DEC HL

DEC HL

LD A, (HL)

PUSH DE

CALL ASNSTR

POP HL

LD B,A

LD A, (HL)

CALL LWRTST

LD (DE),A

INC DE

INC HL

DINZ UCL

JP STREND
UCSH(

; GET CLOSING BRACKET

; AND PUSH TEXT POINTERS

; MAKE NEW STRING

; CONVERT LOWER-CASE LETTER
; AND PLACE IN NEW STRING

The number of reserved words should now be added at location &4200, this being 9, if al of
these extra commands and functions have been entered. Also, do not forget to put the code
&80 at the end of the Auxiliary Reserved Word Table.

Finally, the pointers to the Auxiliary Tables should be changed to point to the new tables, by
modifying the DEFAULT Auxiliary pointers:

3A88: 00 42
3A02: 40 42

Note that this cannot be done by means of the PTR command in BASIC, owing to the fact that

the next ‘ Cold Start’ would restore the old values.

We hope that this set of examples will give the user many more ideas!

81
APPENDIX E - TRANSLATOR FOR NASCOM ROM AND TAPE BASIC PROGRAMS

XBASIC will not run programs written for ROM BASIC or tape BASIC as they stand, for
two reasons; the reserved word ‘tokens are different, and the tape loading format is
different.

A small program is therefore provided, on the reverse side of the XBASIC cassette, called
NLOAD.XBS. Thisis a BASIC program, which loads the actual trandator routine (in afile
called NLOAD.OBJ, which follows NLOAD.XBS on the tape). As well as loading the
trandator routine, NLOAD.XBS also sets up the user command and address pointers for the
extracommand ("NLOAD") that is added to the system.

You should therefore load XBASIC and execute it at 1000 in the usua way. Then type
LOAD "NLOAD.XBS', press<ENTER> and press‘PLAY’ on the cassette recorder to load
the NLOAD program. When this has loaded type RUN, and turn the cassette to ‘PLAY’
again to load the file NLOAD. OBJ. When this has loaded (Ok will be displayed) you can
load a ROM BASIC program by simply typing NLOAD and then pressing <ENTER>. Now
press ‘PLAY’ onthe cassette recorder. The program name will be displayed, in asimilar
format to the normal ROM. BASIC display, and the program will then be loaded in the
same way as for XBASIC programs (a Bad Data Error occurs, if a bad block is read). A
short pause will then occur, while the program is being ‘transated’. On the completion of
the trandation, the * Ok’ prompt will reappear, and the program. may now be RUN, LISTed or
modified as a normal XBASIC program..

Note the following ‘incompatibilities’ which are dealt with by the trandator :

a. SCREEN X, Y commands are converted to PRINT@ X, Y. NASCOM BASIC treats the
top line of the screen asline 16, whereas Xtal BASIC treats it as line O, out, happily, this
will cause no problems, since XBASIC ‘wraps around’ in both directions, and so no further
modification is needed.

b. The LINES command, if found, will be converted to a ‘:’, since that command is not
provided (or needed) in XBASIC.

c. SET(X.Y) and RESET(X,Y) are trandated to SET X, Y and RESET X, Y
respectively since the brackets would cause a Syntax Error in XBASIC. The trandlator
alows for expressions containing brackets within these two commands, so that SET(X
(1, Y(1)) would become SET X(1),Y(I) , for example.

Another incompatibility hereis that, in ROM BASIC, SET and RESET use coordinates
in the ranges 1-96 and 1-48, whereas XBASIC uses 0-95 and 0-47. However, XBASIC again
allows these to wraps around’ so that the only effect will usualy be to shift the graphic
display one position to theright.

d. USR(X) istrandated to CALL(X). However, this may still not work, since machine-code
routines used formerly with USR may cal internal BASIC sub-routines, which will no
longer be available in those locations under XBASIC. These routines should therefore be
modified to run under XBASIC.

Of course, the user will now probably want to take advantage of some of the extra features
of XBASIC, to improve the efficiency of the programs, but should in all but a few cases
require no .modifications to run programs that have previoudy seen created under ROM
BASIC.

INDEX
Item Page
+ 7
- 7
1 7
* 7
/ 7
> 7
= 7
< 7
ABS 22
AND 7
APPEND 38
ASC 25
ATN 22
AUTO 12
CALL 50
CHAIN 14
CHR$ 25
CLEAR 16
CLOSE 38
CLS 16
CONT 16
COS 23
CREATE 37
DATA 20
DEEK 51
DEF 27
DEL 11
DIM 16
DIR 21
DOKE 50
DRIVE 37
ELSE 17
END 16
EOF 48
ERA 22
ERR 48
ERL 48
EVAL 23
EXP 23
FN 27
FMT 31
FOR 16
GOsuB 17
GOTO 17
HOLD 14
HEX$ 52
IF 17
INCH 23,25,39

INP 30

Item Page

INPUT 17,39
INT 23
IOM 10,31
KBD 23,26
LEFTS 26
LEN 26
LET 17
LIST 11
LN 23
LOAD 12
LOCK 22
LOG 28
MGE 14
MID$ 26
MOD 7
MON 11
MUL$ 26
NEW 11
NEXT 16
NOT 7
NULL 33
OFF 48
ON 19, 47
OPEN 37
OR 7
ouT 30
PEEK 51
Pl 23
POINT 24
POKE 50
POP 17
POS 24
PRINT 19, 38
PTR 51
READ 20
REM 21
REN 22
RENUM 14
RESET 21
RESTORE 21
RETURN 17
RIGHT$ 26
RND 24
RUN 13
SAVE 13
SCRN$ 26
SEP 30
SET 21
SGN 24
SIN 24
SIZE 24
SPC 24

SPEED 33

ltem

SOR
STEP
STOP
STR$
SWAP
TAB
TAN

TO
THEN
UNLOCK
VAL
VERIFY
WAIT
WIDTH
XOR
ZONE

Page

24
16
21
26
21
24
25
16
17
22
26
13
30
33

33

