Z80 EDITOR
ASSEMBLER PACKAGE

NASCOM 1 COMPUTEP

w4t NE - IF YBU HAVE LESS THAN 16K DF ADDITIONAL
MEHORY, YOU MUST MAKE A& MINOR CHANGE 10 THE FABT
LOADER PROGRAM EEFORE EXECUTING 11, LHANGE THE
STACK FOINTER VALUE AT LOC 8C51 & GCE2 10 THE.TOP
OF YOUR HERORY (LOW EYTE FIRET) WITH THE WAGRUD

K COnNAND. THER EXECUIE F&iﬁ SEEE RE DECERIRED

FPublished by:

SiIGVIA ACC‘.E}UNT!NG A

& MAI\LASBEMENT $ER\J'ECES LD
Software Unit.

c/o Nascom Mtcr‘c::mmguter*s

S92 Broad Street, Chesham, Buf::ka

PRICE £330 00

SIGMA ACCOUNTING & MANAGEMENT SERVICES LTD

Information Bulletin

Welcome to ZEAP! You have bought an extremely powerful software
product which we hope you will enjoy using. It enables you to
edit and assemble Z80 Assembly language programs on the

NASCOM 1 computer.

It is important that you complete your software registration

form and return it promptly. Only if this form is returned

are we able to provide you with updates, patches or other
information about ZEAP, or a replacement for a corrupted tape.

ZEAP has been extensively tested, but few packages as powerful
as this are completely free of bugs. If you come across
anything you believe to be a bug, please complete and return
the ZEAP Comment Form in the back of your manual. We will

try to take your comments into account on future updates.

Further enhancements to ZEAP are planned including a ROM based
version with additional capabilities. These will be announced
via your NASCOM dealer and the INMC newsletter.

If you have difficulty, please first check that you are
following the correct procedures. The ZEAP manual should be
read at least twice. It is a terse document. Similarly other
documentation should be carefully studied. Some users have
experienced difficulty because they have been accustomed to

hand assembly in which abbreviations are followed and they

have not used the Z80 Assembly language code in the exact manner
defined - eg:

IN A, 2 instead of IN A, (2) (latter is correct)

If you cannot identify the cause of a coding error, study one
of the Assembly Language manuals/books listed in the manual.

After you have loaded ZEAP into your NASCOM from the ZEAP tape,
you are advised to make a back up copy by dumping ZEAP in
NASBUG format (OFOO - 1IB1ll) to another tape. Then keep your -
original ZEAP tape in a clean, dry, dust free and (if possible)
controlled temperature environment. Do not store it near
mains power points, etc. Please remember that you may make
back up copies of ZEAP for your own personal use.. You may not
make copies for use by others, as gifts, loans, or for sale.

We hope that ZEAP will help you write some good programs easily
and quickly.

Directors: GW.Roughton MA, PU.Ward FCA
Regd Office: 12 John. Street, London WE1 Regd. No. NBBSN0 England

1)

2)

3)

4)

ZEAP REGISTRATION FORM - COPY NO

5

REGISTRATION

Please complete this form and send it to SIGMA in order to
enable us to advise you when there are future enhancements

to ZEAP. This registration will enable you to obtain updated
copies of ZEAP 1.0 for a period of one year from the date

the form is received at a nominal copy cost.

COPYRIGHT

ZEAP (including the manual, tape and associated documentation)
is copyright 1978 by Sigma Accounting & Management Services Ltd.
It is supplied for single end use only. It is a condition

that purchasers agree: ‘

l) Only to use ZEAP on their own NASCOM 1 machine.

2) Not to part with ZEAP to anyone, to lend 'it, to sell it,
' to dispose of it to any third party, nor to give it to
a third party or friend.

3) Only to make copies for normal precautionary back up
purposes and not to make copies to give away for
supply either as a gift or for sale in any shape or
form to anyone else.

You may not make copies for use by others as gifts, for loan
or for sale.

It is further agreed that copying in any other form or
unauthorised disclosure of the software will cause considerable
damage to Sigma and that this damage is substantially greater
than the value of the software, tapes and the documentation
that may be involved.

RETURN OF THIS FORM

Two copies of this form are enclosed. Please return one, duly
signed, to: :

Sigma Accounting & Management Services Ltd
c/o Nascom Microcomputers

92 Broad Street

Chesham

Bucks

DECLARATION

On behalf of the organisation/individual purchasing this copy

of ZEAP, I agree to the terms of this form.

Signature ' ' Date

Name (CAPS PLEASE)

Address

BKHNU\IUDC&NJNH1NKBSEhMAhUM3EhﬂEﬁTﬁEﬂEHNﬂCEEBCﬂD

ZEAP PROGRAM PACK

Contains the following:

1.

2.

3.
@

4.

5.

Directors: GW. Roughton MA. PJ Wardg FCA .
Rega. Office: 12 John Street., Londor WECT Reged. No MB88510 Enqlgr\d

ZEAP MANUAL

A full description of how to
use ZEAP including:

l. A listing of the ZEAP
object code

2. A listing of the ZEAP
loader object code

3. ZEAP comment forms
4. The 280 instruction set

ZEAP CASSETTE

Individually serial numbered
and quality checked, contains
copies of ZEAP preceded by a
fast loader.

LOADING INSTRUCTIONS

A description leaflet explaining
precisely how to load ZEAP
into your NASCOM. ’

ZEAP REFERENCE CARD

A handy reference card
containing the ZEAP editor
instructions and assembler
options.

SOFTWARE REGISTRATION FORM

Ensures that you receive any
patches or other useful
information about ZEAP.

SECTION

[-
* .

L)
W N =

NN N
»
N

W N =

WWwWwWwwwwwwwwww
N~ wwww N
.

N

APPENDICES -

UHEZEQEMEOO W

CONTENTS

INTRODUCTION
AIMS OF ZEAP A
COMPARISON WITH THE ZILOG ASSEMBLER
MACHINE REQUIREMENTS

THE ZEAP EDITOR
EDITOR OPERATION
ZEAP EDITOR COMMANDS

THE ZEAP ASSEMBLER |
ASSEMBLER OPERATION
EXPRESSIONS
SOURCE STATEMENT SYNTAX

LABELS

INSTRUCTION FORMAT

COMMENT LINES
ASSEMBLER OPTIONS
ASSEMBLER DIRECTIVES
ASSEMBLY LISTING
OBJECT GENERATION

TAPE OBJECT

MEMORY OBJECT

ZEAP OPERATION

ZEAP ERROR CODES

ZEAP EDITOR COMMANDS
ASSEMBLER DIRECTIVES
ASSEMBLER OPTIONS

Z80 INSTRUCTION SET
ZEAP INTERNAL REGISTERS
ASCII CODE TABLE
OBJECT CODE LISTING
COMMENT FORM

PAGE

O~ U

13

24
25
26
28
28
29
30
31
32
33
34
34
34

35
36
39
42
43
45
49
50
51
56

PREFACE

This manual is laid out in two complementary parts.

Sections 1 to 3 describe the ZEAP package informally and are
designed to be read in order.

The appendices following provide a useful reference section,
and define all the elements of ZEAP formally, directing the
user to the appropriate section in the first half of the
manual where more information and examples are to be found.

Those familiar with the workings of micro-computer assemblers
and BASIC-type line editors may find it easier to read the
appendices first, although this is not recommended to those
who do not fully understand the terms used.

The reader should not be dismayed, however. ZEAP is easy

. to use and yet powerful enough for his requirements.

If information or guidance is required on the Z80 Assembly
Language itself, you are advised to consult the Mostek or

"Zilog 280 Assembly Language manual. Other publications which

may prove helpful include:

The Z80 Microcomputer Handbook by William Barden
(Published by Howard W Sams & Co., Inc.)

Z80 Instruction Handbook by Nat Wadsworth
(Published by Scientific Computer Consultants Inc.)

7280 Programming for Logic Design by Adam Osborne et al
(Published by Osborne & Associates Inc.)

NOTATION

The following notation is used in this manual:

£ hexadecimal number

(x) . X is optional

(x)... X is optional and may be repeated
indefinitely

In general, output from ZEAP is underlined whereas user
input is not.

Wabne o es ke s fow

1. INTRODUCTION

ZEAP (2-80 Editor/Assembler Package) is a memory resident text
editor and symbolic assembler designed for use with the NASCOM 1
microcomputer. '

The assembler translates mnemonic codes as defined in the 2Z-80
microcode language into executable machine instructions, allowing
user control over memory allocation, and symbolic names for MPU
registers and instruction or data addresses. It incorporates
comprehensive syntax checking and error message generation,

and allows object code to be generated on cassette tape or

stored directly in memory.

The editor allows for entry, examination, correction and permanent
storage of source programs which are held in memory during editing
and assembly.

The memory resident nature of ZEAP allows entry, assembly, testing,
correction and re-assembly of source programs without the '
necessity of using cassette tape at any stage, since editor,
assembler, source program and object program may reside in memory
simultaneously. This makes ZEAP very easy and quick to use.

AIMS OF ZEAP

ZEAP was produced with the intention of providing a
compact editor/assembler package for the NASCOM 1
microcomputer. The following requirements were laid
down during the design of the package:

*

*

Minimum memory requirements

Minimum extra hardware requirements

Maximum cqmpatibility with existing assemblers
Ability to edit, assemble, execute and then re-edit
the program with the minimum use of external storage

(eg. cassette tape)

Ability to store source programs on cassette tape and
then re-~load them at a later stage

Ability to store more than one source program at a
time in memory

Maximum use of NASBUG sub-routines
Ability to drive an ASCII terminal attached to the UART

Ability to generatevobject code in NASBUG format, to
be subsequently loaded using NASBUG's LOAD function

The result is an editor/assembler package requiring 5K
bytes of user RAM (1K basic + 4K expansion kit), of which

- ZEAP uses under 3K bytes, leaving 2K bytes spare for

source programs and object code. ‘

The ZEAP editor provides the following functions:

*

*

Fully dynamic source buffer allocation
Insertion, deletién and replacement of lines
Context editing of individual lines

String searching

Automatic line number generation for block entry of
source programs

Complete resequencing of source program line numbers
/.

Loading and dumping of source programs to and from
cassette tape

Listing of selected source program lines on the screen
or on an ASCII terminal .

L

.-

* Self checking checksum for easy detection of hardware
faults or user program malfunction

The ZEAP assembler provides the following functions:

* Full range of options including control of source
listing, object generation and error processing

* Numbered error messages pin-pointing the exact cause
of the error ' /

* Object generation in NASBUG format onto cassette tape,
or directly to memory

* Formatted source listing on the screen or on an
ASCII terminal

The editor, assembler, source program and optional object
program may all reside in memory at the same time, enabling
maximum ease of entry, assembly, testing, correction and
re-assembly of source programs with minimum use of

external storage.

The assembler source code follows closely that defined in
the ZILOG assembler, the differences being noted in
section 1.2. ’

Editor operation is described in section 2, while the
assembler's function is defined in section 3.

It should be noted that because of the commitment to
minimum memory requirements, error checking of user input
is kept to an absolute minimum. Failure to follow the
instructions precisely will thus in some cases result in
unpredictable errors or ZEAP itself becoming corrupted.

~Limits, formats, arguments, etc must be adhered to

precisely.

1.2

COMPARISON WITH THE ZILOG ASSEMBLER

The operation of the ZEAP assembler is very similar
in most respects to the ZILOG Z80 assembler. The
following differences should be noted, however:

*

‘Expressions may contain only the operators "+"

and "-", and no parenthetical grouping is

allowed. Expressions may be enclosed in parentheses
to represent memory addresses. Evaluation is from
left to right. A leading "-" is allowed.

Hexadecimal numbers must be preceded by a "£".

The "H" suffix form is not supported. The default
number base is decimal. Octal and binary numbers
are not supported.

Labels must begin in the first column at the
source line, directly after the single space
following the sequence number. Only one label is
permitted on a line. The use of a ":" suffix

to indicate a label is not supported. Statements
without labels must leave the first column blank,
except for comments, which may begin in the first

column with a ";".

The following assembler directives (pseudo-ops)
are not supported:

MACRO
- ENDM
COND
ENDC
DEFL
END

A single ASCII character code may be included in an
expression by preceding it with a double quote sign,
e.g. "A = £41. This facility replaces the DEFB

's' assembler directive.

Fields and/or expressions may be separated by one
or more spaces and/or commas. The space and the
comma are syntactically equivalent in all contexts
within the assembly language.

MACHINE REQUIREMENTS

ZEAP uses under 3K bytes of memory, not including
source program storage. Thus a minimum of 4K bytes

of memory is required in addition to the basic
NASCOM 1.

With a cassette recorder the user can store source
programs on cassette tape for reloading at a later time.
The assembler can output NASBUG format object code to

tape which can be subsequently loaded using NASBUG's
LOAD function.

ZEAP contains routines to drive an ASCII terminal
attached to the UART for hard copy or source listings.
However, this item is entirely optional and ZEAP will
function perfectly without it.

The minimum system is:

A working basic NASCOM 1
A television or monitor

A minimum of 4K bytes of additional memory
A cassette recorder

THE ZEAP EDITOR

The ZEAP editor provides the means by which source
programs may be entered, examined and altered by
the user.

2.1 EDITOR OPERATION

After ZEAP has been loaded, control is passed to the editor
as described in APPENDIX A. = .) ‘

The editor prompt will be displayed (":") indicating that
the ZEAP editor is ready to accept editor commands.

The editor is a line editor in which source lines are
identified by line numbers (sequence numbers), each line
of source code being identified with a unique

number. The editor also has powerful context editing
capabilities not normally available with this type of
editor.

A sequence number may be any decimal number from 1 to 9999.
Leading zeros may be omitted. The sequence number is
always followed by a single space to separate it from the
actual source line, egq.

1000 SAMPLE LINE

The actual source line is "SAMPLE LINE". The source line -
itself may of course contain leading spaces, eg.

2000 ANOTHER LINE

The space after "2000" is the separator, but the next
two spaces are part of the source line.

A line of source code may be entered by typing a sequence
number, followed by a space, followed by the source line,
followed by the New Line key. The editor stores the line
of source code in memory and prompts (":") for the next
editor command.

The source program is sorted automatically in ascending
segquence number order. Thus

.20 THIS IS THE THIRD LINE
10 THIS IS THE FIRST LINE
712 THIS IS THE SECOND LINE

would cause the lines to be stored in the order indicated.

Typing a sequence number directly followed by a New Line
causes that line to be deleted. Thus

S e12

would cause line 12 to be deleted.

Typing'fhe sequencé number of a line which already exists
followed by a new source line causes the old line to be
replaced by the new line. Thus

320 THIS IS NOW THE SECOND LINE

13

would cause line 20 to be replaced with the indicated text.

Thus all requirements for inserting, deleting and changing
lines of source code are provided by the above techniques.

In addition to the above facilities, there are a number
of commands for examining and manipulating the source
program. To take full advantage of NASBUG's command
decoding routines, these commands have been implemented
with single letter mnemonic codes. These commands are
described below in section 2.2. ‘

All source lines are stored in an area of memory called
the EDIT BUFFER. All editor commands operate on the
information contained in the Edit Buffer. The size of
the source program is limited only by the amount of
memory available. .

At all times during ZEAP operation the address of
first free memory location is displayed in
hexadecimal in the top right hand corner of the
screen. This address is that of the first location
not used by ZEAP for the source program and the
symbol table. It is also the default origin
address for the assembler. Care must be taken that
this number does not exceed the address of the
highest memory location.

Any time before the New Line key:-is depressed, a line may
be edited using the Backspace key as described in the.
NASCOM 1 Software Notes. In addition, the character "!"
(Shift "1") may be used to delete the entire line. When
"!" is depressed, a "!" will appear on the screen at the
current cursor position, indicating that the line has been
deleted, and the editor prompt ":" is displayed ready for

the next user input, egq.

:50 THIS LINE IS WRONK! ("!" key pressed)
(prompt displayed)

[ee]

In this case, line 50 would not have been entered into
the Edit Buffer.

At any time when ZEAP is in the process of displaying
information (eg. when listing or assembling the source
program) the user may interrupt the process by depressing
the "!" key. ZEAP will immediately abandon its current

processing and display the editor prompt ":" tao indicate
that it is ready to process editor commands.

- 12 -

~ “«

Alternatively the "?" ‘key (Shift "/") may be used under

the same circumstances to temporarily hold the execution

of ZEAP so that the contents of the screen can be

examined at length. When the user wishes to resume

execution, depressing any key will restart ZEAP where

it left off, and processing will continue. 1In summary :
"!" Delete line; abandon execution

"2" Hold execution (resumed by pressing any key)

Error messages from the ZEAP editor are of the form
ERROR nn

where nn is the error number. An explanation of ZEAP
error codes is given in Appendix B. The most common
editor message is

ERROR 99

meaning that the last line of user input was illegal
or unrecognisable as an editor command or line of source
code.

If the first character of an input line is blank, the
line is ignored by the editor.

2.2

nyw

- 13 -

ZEAP EDITOR COMMANDS

The following discussion is independent of any knowledge
of the 280 assembly language, and therefore the source
lines shown are not suitable for assembly by the ZEAP
assembler.

Suppose the following lines are entered:
:20 LINE 2

:10 LINE 1
:30 LINE 3

foo |

The user can examine the contents of part or all of the
Edit Buffer using the "V" editor command. ("V" is a

mnemonic for VDU List). Thus
iV 10 10
0010 LINE 1
:V 10 20 ,
0010 LINE 1
0020 LINE 2
=V 20
0020 LINE 2
0030 _LINE 3
sV
0010 LINE 1
0020 LINE 2
- 0030 LINE 3

4
—

Also note

tV 5 15

0010 LINE 1
V19 '
3V 20 10

IV 1000

The last three commands cause no display.

In summary:

Display lines m to n inclusive

Display lines from m to the end of the
buffer

Display the entire contents of the
source buffer .

< <<
==
o]

The space following "yt s optional, but if both m and n
are specified, they must be separated by one or more
spaces.

" U"

- 14 -

When a source program has been entered by the user using
the ZEAP editor, it is useful to be able to store all or
part of it on cassette tape. This is achieved by the "y»
editor command ("y" is a mnemonic for UART List). TIts
syntax is the same as that of the "y" command. Its
operation is identical except that each line displayed is
also output to the UART in a format which allows the

line to be reloaded subsequently by the editor. Thus

U
0010 LINE 1
0020 LINE 2

0030 LINE 3

.
23

would cause those lines displayed to be stored on an
attached cassette recorder. '

There is no identifiable Load command provided with ZEAP.
Loading of source programs stored on tape using the "y"
editor command is performed simply by switching the
cassette recorder on while the editor prompt is displayed.
ZEAP scans both the keyboard and the UART input during
editor operation, and so source lines input from tape
will be interpreted as if they had been entered manually.
Thus playing back the above tape when the ZEAP editor
prompt is displayed would cause the following display:

:0010 LINE 1
:0020 LINE 2
:0030 LINE 3

and the three lines would be entered into the Edit Buffer
as if they had been typed on the keyboard.

If the user attaches an ASCII terminal (teletype or
equivalent) to the UART the "U" editor command can be
used to obtain hard copy of all or part of the source
program. The output of the "U" editor command is
formatted with both NASBUG New Line characters and

ASCII Carriage Return and Line Feed characters to support
this facility. Thus, with an attached ASCII terminal

U 10 20
0010 LINE 1
0020 LINE 2

and the two lines displayed are also printed on the terminal.

- 15 -
"I" The ZEAP editor provides a convenient facility for the
manual entry of blocks of source code, namely the "I"
editor command("I" is a mnemonic for Auto Input). If

the user enters
I 40
the editor responds

and any input up to the New Line key is interpreted as
Line 40. Suppose the following is typed:

:0040 LINE 4

: 0050
After New Line is depressed the editor increments the
sequence number by 10 and displays the new sequence
number, ready for the entry of the next line of code,
and so on:

:0050 LINE 5
10060 LINE 6
. : 0070

Note that the necessary space following the sequence
number is inserted by ZEAP, so that the user need not
type it.

It is possible to edit the sequence number using the
Backspace key. Entering these backspaces, followed by
95, followed by a space at this stage would result in
the display

+0095
and then line 95 could be éntered

: 0095 LINE 7
: 0105

Note that the increment of 10 is applied to the sequencé
number of the last line entered, and not of the last line
displayed by ZEAP.

'Exit from Auto Input mode (which is the name given to
the above behaviour) is achieved by typing "!"

(Shift "1") which deletes the current line and causes
the usual editor prompt to be displayed, thus:

:0105 ! (user types "!")

.
—

- 16 -

Note that if it had existed prior to the above sequence
of commands, line 105 would not have been deleted. Only
the line of entry displayed would be deleted. To delete
line 105, it would be necessary to enter the number 105
followed by the New Line key, not the "!" key as above.

If the number after the "I" is omitted, the éditor
displays

:0010
initially.
If a second number is typed after the "I", it is used

as the sequence number increment. It must be less
than 100. Thus:

:I 100 3 :

0100 (New line pressed)
0lo3 (New line pressed)
0l06 (":" pressed)

So. in summary

I Enter Auto Input mode at line 10 with
increments of 10

Is Enter Auto Input mode at line s with
increments of 10

I si Enter Auto Input mode at line s with
increments of i

"X Deleting a block of source code is made easier by the
"X" editor command("X" is a mnemonic for eXpunge).
"X"must always be followed by two numbers, separated by
a space, which are the sequence numbers of the first
and last lines to be deleted. All lines between and
including these lines are deleted. Thus :

iV
0010 LINE

- 0020 LINE

0030 _LINE

0040 LINE

0050 LINE

0060 LINE

0095 LINE

i~ [ON LN [L [

:X 36 70
0010 LINE

1

0020 LINE 2

0030 LINE

3

0095 LINE

1

:X 95

ERROR 99

X 95 95
:V

0010 LINE 1

- 0020 LINE

1
2

0030 LINE

3

Note that an attempt to use X with only one line number
produced an error message.

To delete the éntire edit buffer, the user should enter

:X 1 9999

This command does the job of a NEW or CLEAR utility in
‘similar editors.

Iﬂ summary
Xmn

Delete lines m to n inclusive

llzll

.-

The limitation of line replacement as a method of
correcting minor mistakes is clear from the following
example:

40 ILNE 4

To interchange the "I" and the "L" requires that the
whole line be re-entered. A powerful alternative is
provided in the ZEAP editor. Entering

:Z 40
causes the following two lines to be displayed:

:0040 ILNE 4
*

ZEAP has now entered Edit mode. The arrow under the first
digit of the sequence number is the cursor. The user

can advance the pointer to the position where the
correction is to be made by depressing the space bar
appropriately. After pressing it six times the display
is:

:0040 ILNE 4
4 (6 spaces typed)

Now the offending letter "L" can be deleted by typing
"<" (shift ","), thus

: 0040 INE 4 :
4 (u<n typed)

Note that all the characters to the right of the cursor
have been moved up to fill the gap left by the deleted
"L" Now, using the backspace key, the cursor can be

~positioned under the "I", before which an L is to be

inserted:

:0040 INE 4
4 (Backspace typed)

Now to make room for the L the ">" (shift ".") is used:

:0040 INE 4
y .

Note that all the characters above and to the right of
the cursor are shifted one place right to make room for
the insertion. Finally typing "L" will give

:0040 LINE 4
Ar
The "L" is inserted at the position of the cursor,

which is then advanced one place.

- 30 -

COMMENT LINES

A comment line must begin with a ";", and all characters
thereafter will be ignored by the assembler, except that
they will appear on the assembly listing. The first

29 characters will be displayed on the assembly listing
on the screen.

3.4

" O“

ASSEMBLER OPTIONS

The "O" editor command allows various options to be set
which define the output required from the assembler

(0O is a mnemonic for Options). The "0" may be followed
by a single hexadecimal mask defining which options are
ON and which are OFF. This mask is obtained by adding up
the option codes of those options desired ON. Thus

20 1A
would set assembler options MEMORY, TAPE and PASS 2 on,
and NO LIST and TTY off (1A = 10 + 08 + 02 Hex). If no
number follows the "O" all assembler options are set to
the default values (ie. all off).
In summary:

0 x set assembler options from mask x
o) set all assembler options off

Appendix E contains a full account of each assembler
option.

ASSEMBLER DIRECTIVES

The six assembler directives supported by ZEAP give
the user the ability to control the generation of
object code addresses, and to generate tables or
liberal strings.

DEFB, DEFW and DEFM all cause the generation of
object code for one or more bytes, words (double-
bytes) and ASCII characters respectively.

EQU allows the direct assignment of an expression

- value to a symbolic name.

ORG and DEFS alter the assembly address ("$") so
that assembler programs may be assembled at any
address, and to allow for space for storage of
intermediate results and other variable information.

A full account of the assembler directives is
given in Appendix D.

3.6

ASSEMBLY LISTING

A line of assembly listing takes the following form:

aaaa cccccccc ssss bbbbbb mmmm pppppppPPPPPPPPPPP

The explanation of the fields is as follows:

aaaa

ccceeccece

SSss

bbbbbb

PPPe oo «s

4 digit hexadecimal address of the
instruction being assembled, except in
a DEFB, DEFW or DEFM assembler directive,

.where it is the address of the first byte

of code generated, and in a EQU, ORG or
DEFS assembler directive, where it is the
value of the expression in the operand
field.

2 to 8 hexadecimal digits representing

the object code for the instruction, except
in a DEFB, DEFW or DEFM assembler directive
it contains only the first byte or word
generated as appropriate.

4 digit sequence number of the current
source line.

1 to 6 character label of the current source
line. 1If no label is present, this field is
left blank.

2 to 4 character instruction mnemonic or
assembler directive.

Operand and comment fields directly from
source line.

If the source line is a comment (first character ";"),
fields aaaa and cccccccce are left blank, and the comment
is copied directly after the sequence number.

If the line contains an error, field cccccccc will contain

ERROR nn

and no object code is generated. A truncation error
is reported on the following line, but the object
generation is not suppressed.

Since the assembler formats the listing, there is no
need to tabulate source programs. The fields of each
source statement will be correctly formatted by the

assembler.

For example the source line

0040 BIM LD A,1l

would appear in the assembly listing as

.aaaa 3EO1

0040 BIM LD A,l

where aaaa is the,current value of the location c¢ounter

(”$") .

3.7
3.7.1

OBJECT GENERATION
TAPE OBJECT

If the TAPE assembler option is on, object code is
output through the UART to an attached cassette recorder
in NASBUG format. Any block of object code in which the
number of bytes generated is not an exact multiple of
eight (the length of a NASBUG record) is padded out with
random data. Provided the object code is generated in
strict address order this will cause no trouble to the
user.

Object code generated in this manner can be loaded
using NASBUG's "L" command as if the data had been saved
using "D". The user should make a note of the execution
address of his program from the source listing so that
he may correctly begin execution of his program.

The tape LED is used by ZEAP in the same way as it is
by NASBUG, and may be used as a direct or indirect
indication to start the cassette recorder as described
in the NASCOM 1 documentation.

MEMORY OBJECT

If the MEMORY assembler option is on, object code is
assembled direct to memory. Object instructions and -
data are written as they are assembled to the
appropriate memory address. Great care must be exercised
when using this option, as NO CHECK is made that object
code is not overwriting the Edit Buffer or ZEAP itself,
or even that there is RAM at the address where the
object code is being written. If no ORG assembler
directive appears in the source program, assembly will
begin at the first available byte of RAM not being used
by ZEAP, as displayed in the corner of the screen, but .
the user should bear in mind that the object program may
overflow available memory with no warning.

A program so assembled may be executed by entering NASBUG
using the ZEAP "N" editor command and executing the
object code using NASBUG's. "E" command. The object
program should set the stack pointer to a free area of
memory if the stack is to be used, so that ZEAP's own
stack does not overflow.

If the object program works incorrectly it may be
necessary to reload ZEAP from tape, and enter the source
program again. For this reason it is recommended that
the source program be saved on tape before testing an
object program, in case valuable data is lost and has to
be typed in again.

APPENDIX A

ZEAP OPERATION

ZEAP should be loaded from the tape provided. First the loader
should be loaded using the "L" command. This will cause a short
program to be placed at location £0C50. Object code for this
program is given in the latter part of Appendix I. Zeap itself
is then loaded by executing from £0C50. Any lines containing a
check sum error will be scrolled up on the screen and may be
corrected from the object code listing in Appendix I.

ZEAP loads at £1000 and is about 2.82K bytes in length. The
area from EOFOO0 to E£EOFFF is used as ZEAP's register storage
and stack space. The source buffer begins directly after ZEAP.
The area from £0C50 to EOEFF is not used by ZEAP, and may
therefore contain programs or other user information.

To execute ZEAP enter:
>EFO00

If the "N" editor command is used to return to NASBUG, ZEAP
may be re-entered by entering:

>EF00
provided that it has not been corrupted. In this case the edit
buffer will be intact but the assembler options will have been
reset.
A limit on the memory used for source program storage can be
imposed, eg. to stop the edit buffer from overflowing higher
than £3000 enter:

>EFO0 3000

when executing ZEAP. The default setting is the last limit °
specified (or E5000 initially).

-;?6..

APPENDIX B

ZEAP ERROR CODES

ERROR 00 CORE FULL

The source line just entered would cause an overflow
of the edit buffer. The source line was not entered
into the buffer. However, if the line was to replace
an existing line, the original line was deleted.

ERROR 01 RESEQUENCE OVERFLOW

During the execution of a RESEQUENCE editor command _
the line number became greater than 9999. The source
file is resequenced starting with line 1 in steps of 1.

ERROR 02 AUTO INPUT OVERFLOW

In AUTO-INPUT mode the line number became greater than
9999. AUTO-INPUT mode is abandoned.

ERROR 03 NON-EXISTENT LINE

An attempt was made to edit a non-existent line with
the "Z" editor command.

ERROR 10 UNRECOGNISABLE STATEMENT

A label is more than 6 characters, or a mnemonic is
more than 4 characters or omitted. The statement is
ignored.

ERROR 20 UNKNOWN MNEMONIC

The op-code field contains an unrecognisable mnemonic.
The statement is ignored.

ERROR 21 CONTEXT ERROR

The combination of op-code and operand types encountered
is illegal or a mnemonic is too short. The statement is
ignored. ’

ERROR 22 INDEX REGISTER ERROR

IX or IY is used where only HL is permitted, or in a
JP (IX) or JP (1Y) instruction, the displacement is
non-zero. The statement is ignored.

ERROR 23 TRUNCATION ERROR

An 8 bit operand is greater than 255 or less than -128
or an index register displacement value is greater than
127 or less than -128, or a relative branch offset is
greater than 129 or less than -126, or a bit number in a
BIT, SET or RES instruction is greater than 7 or less
than O, or an address in an RST instruction is illegal,
or the mode in an IM instruction is not O, 1 or 2. The
value in question is truncated and assembly of the
statement continues.

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

24 TOO MANY REGISTERS

A register symbol appears in an assembler directive
operand, or more than one register appears in an
instruction operand. The statement is ignored.

25 REGISTER MISMATCHED

The combination of first and second operand types is
illegal. The statement is ignored.

26 ILLEGAL CHARACTER

The operands field contains a character whose meaning
is unassigned in the syntax of the assembly language.
The statement is ignored.

27 ILLEGAL OPERAND

The combination of a register and a label or constant
in this context is illegal. The statement is ignored.

28 PARENTHESIS ERROR

A left parenthesis occurs in an assembler directive
operand, or more than one left parenthesis occurs in
an instruction operand. The statement is ignored.

30 LABEL NOT FOUND

A symbol in an expression does not occur in the label
field of any statement in the source code. The
statement is ignored.

31 . LABEL REDEFINED

The symbol in the label field has previously appeared
in a label field, or is a register name. The label is
ignored and the rest of the statement is assembled.

40 DIRECTIVE ERROR

In an assembler directive, too few or too many operands
appear. The statement is ignored.

41 ILLEGAL FORWARD REFERENCE

A label symbol in an EQU, ORG or DEFS assembler directive
is defined after the directive is encountered. The
statement is ignored.

50 ERRORS IN ASSEMBLY

There were errors flagged in the previous assembly.

ERROR 90 CHECKSUM ERROR

ERROR

Part of ZEAP has been corrupted due to hardware errors
or user tampering. If ZEAP is not reloaded,
unpredictable errors may occur.

99 ILLEGAL COMMAND

An unrecognisable editor command or an ill-formed source
code line was entered. The input line is ignored.

The following symbols are used.

APPENDIX C

ZEAP EDITOR COMMANDS

unless otherwise stated.

All numbers are decimal

Yy sequence number (ie. source line number)

m first sequence number to which command is applied

(default 1)

n last sequence number to which command is applied
(default 9999)

s starting sequence number {(default 10)

i increment (default 10)

x hexadecimal option mask

h hexadecimal number

Numbers are separated from the command letter and from each

other

by one or more spaces.

If n is explicitly specified then m must be also.
If i is explicitly specified then s must be also.

A mn

ASSEMBLE SOURCE PROGRAM (ASSEMBLE)

Causes assembly of the indicated portion of the
source program, with the options defined by the last

SET ASSEMBLER OPTIONS command in effect.
for more details.

ENTER AUTO-INPUT MODE (AUTO-INPUT)

See section 3

Causes the ZEAP editor to enter AUTO-INPUT mode. The
number s is displayed, followed by a space. The user
may then enter a line of source code terminated by

the New Line key, whereupon that line of
into the edit buffer, i is added to s,
and the new sequence number is displayed.
continue to enter source code as long as
number remains less than 10000.

code is entered

The user may
the sequence

Exit from AUTO-INPUT mode is achieved by entering the

line delete character, "!" (shift "1").
then prompts for the next command.

The editor

RETURN TO NASBUG (NASBUG)

Causes ZEAP to return control to NASBUG, allowing any
of NASBUG's monitor commands to be used, for example

to alter any of ZEAP's internal registers in accordance
with Appendix G, or to execute a program assembled in
memory.

Provided the area of memory used by ZEAP is unchanged
during NASBUG operation, ZEAP may be re-entered with .
the edit buffer intact, in accordance with the procedure
described in Appendix A.

F/string/FIND STRING (FIND)

FT

Searches for a specified string in the edit buffer, and
if found, opens the line containing it for editing.

The form "F/string/" is used to search from the beginning
of the edit buffer for a character string of up to six
characters. The "/" represents a delimeter character,
which may be any character, except space, but which
must follow directly after the "F". If the second
delimeter is omitted or the string is more than six
characters long the command is treated as an "FT"
command (described below). If the string is found, the
line containing it is displayed and opened for editing
(see EDIT SOURCE LINE). If the string is not found the
ZEAP editor prompts for the next command.

The form "F" is used to search for the string specified
in the most recent "F/string/" command, starting from
the last occurence of that string found, instead of from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.

The form "FT" is used to search for the string specified
in the most recent "F/string/" command, starting from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.

SET ASSEMBLER OPTIONS (OPTIONS)
Sets assembler options speéified by the hexadecimal
number x. The options and their hexadecimal codes are
as follows. See section 3.4 for more details.

ol SUPPRESS SOURCE LISTING (NO LIST)

+

+ 02 OBJECT CODE TO MEMORY (MEMORY)
+ 04 SOURCE LISTING TO TTY (TTY)

+ 08 OBJECT CODE TO TAPE (TAPE)

+ 10 FORCE SECOND PASS (PASS 2)

-+

20 ADJUST RELATIVE JUMP OFFSETS (ADJUST REL)

Initially all options‘are off.

- 30 -

COMMENT LINES

A comment line must begin with a ";", and all characters
thereafter will be ignored by the assembler, except that
they will appear on the assembly listing. The first

29 characters will be displayed on the assembly listing
on the screen.

3.4

" O“

ASSEMBLER OPTIONS

The "O" editor command allows various options to be set
which define the output required from the assembler

(0O is a mnemonic for Options). The "0" may be followed
by a single hexadecimal mask defining which options are
ON and which are OFF. This mask is obtained by adding up
the option codes of those options desired ON. Thus

20 1A
would set assembler options MEMORY, TAPE and PASS 2 on,
and NO LIST and TTY off (1A = 10 + 08 + 02 Hex). If no
number follows the "O" all assembler options are set to
the default values (ie. all off).
In summary:

0 x set assembler options from mask x
o) set all assembler options off

Appendix E contains a full account of each assembler
option.

ASSEMBLER DIRECTIVES

The six assembler directives supported by ZEAP give
the user the ability to control the generation of
object code addresses, and to generate tables or
liberal strings.

DEFB, DEFW and DEFM all cause the generation of
object code for one or more bytes, words (double-
bytes) and ASCII characters respectively.

EQU allows the direct assignment of an expression

- value to a symbolic name.

ORG and DEFS alter the assembly address ("$") so
that assembler programs may be assembled at any
address, and to allow for space for storage of
intermediate results and other variable information.

A full account of the assembler directives is
given in Appendix D.

3.6

ASSEMBLY LISTING

A line of assembly listing takes the following form:

aaaa cccccccc ssss bbbbbb mmmm pppppppPPPPPPPPPPP

The explanation of the fields is as follows:

aaaa

ccceeccece

SSss

bbbbbb

PPPe oo «s

4 digit hexadecimal address of the
instruction being assembled, except in
a DEFB, DEFW or DEFM assembler directive,

.where it is the address of the first byte

of code generated, and in a EQU, ORG or
DEFS assembler directive, where it is the
value of the expression in the operand
field.

2 to 8 hexadecimal digits representing

the object code for the instruction, except
in a DEFB, DEFW or DEFM assembler directive
it contains only the first byte or word
generated as appropriate.

4 digit sequence number of the current
source line.

1 to 6 character label of the current source
line. 1If no label is present, this field is
left blank.

2 to 4 character instruction mnemonic or
assembler directive.

Operand and comment fields directly from
source line.

If the source line is a comment (first character ";"),
fields aaaa and cccccccce are left blank, and the comment
is copied directly after the sequence number.

If the line contains an error, field cccccccc will contain

ERROR nn

and no object code is generated. A truncation error
is reported on the following line, but the object
generation is not suppressed.

Since the assembler formats the listing, there is no
need to tabulate source programs. The fields of each
source statement will be correctly formatted by the

assembler.

For example the source line

0040 BIM LD A,1l

would appear in the assembly listing as

.aaaa 3EO1

0040 BIM LD A,l

where aaaa is the,current value of the location c¢ounter

(”$") .

3.7
3.7.1

OBJECT GENERATION
TAPE OBJECT

If the TAPE assembler option is on, object code is
output through the UART to an attached cassette recorder
in NASBUG format. Any block of object code in which the
number of bytes generated is not an exact multiple of
eight (the length of a NASBUG record) is padded out with
random data. Provided the object code is generated in
strict address order this will cause no trouble to the
user.

Object code generated in this manner can be loaded
using NASBUG's "L" command as if the data had been saved
using "D". The user should make a note of the execution
address of his program from the source listing so that
he may correctly begin execution of his program.

The tape LED is used by ZEAP in the same way as it is
by NASBUG, and may be used as a direct or indirect
indication to start the cassette recorder as described
in the NASCOM 1 documentation.

MEMORY OBJECT

If the MEMORY assembler option is on, object code is
assembled direct to memory. Object instructions and -
data are written as they are assembled to the
appropriate memory address. Great care must be exercised
when using this option, as NO CHECK is made that object
code is not overwriting the Edit Buffer or ZEAP itself,
or even that there is RAM at the address where the
object code is being written. If no ORG assembler
directive appears in the source program, assembly will
begin at the first available byte of RAM not being used
by ZEAP, as displayed in the corner of the screen, but .
the user should bear in mind that the object program may
overflow available memory with no warning.

A program so assembled may be executed by entering NASBUG
using the ZEAP "N" editor command and executing the
object code using NASBUG's. "E" command. The object
program should set the stack pointer to a free area of
memory if the stack is to be used, so that ZEAP's own
stack does not overflow.

If the object program works incorrectly it may be
necessary to reload ZEAP from tape, and enter the source
program again. For this reason it is recommended that
the source program be saved on tape before testing an
object program, in case valuable data is lost and has to
be typed in again.

APPENDIX A

ZEAP OPERATION

ZEAP should be loaded from the tape provided. First the loader
should be loaded using the "L" command. This will cause a short
program to be placed at location £0C50. Object code for this
program is given in the latter part of Appendix I. Zeap itself
is then loaded by executing from £0C50. Any lines containing a
check sum error will be scrolled up on the screen and may be
corrected from the object code listing in Appendix I.

ZEAP loads at £1000 and is about 2.82K bytes in length. The
area from EOFOO0 to E£EOFFF is used as ZEAP's register storage
and stack space. The source buffer begins directly after ZEAP.
The area from £0C50 to EOEFF is not used by ZEAP, and may
therefore contain programs or other user information.

To execute ZEAP enter:
>EFO00

If the "N" editor command is used to return to NASBUG, ZEAP
may be re-entered by entering:

>EF00
provided that it has not been corrupted. In this case the edit
buffer will be intact but the assembler options will have been
reset.
A limit on the memory used for source program storage can be
imposed, eg. to stop the edit buffer from overflowing higher
than £3000 enter:

>EFO0 3000

when executing ZEAP. The default setting is the last limit °
specified (or E5000 initially).

-;?6..

APPENDIX B

ZEAP ERROR CODES

ERROR 00 CORE FULL

The source line just entered would cause an overflow
of the edit buffer. The source line was not entered
into the buffer. However, if the line was to replace
an existing line, the original line was deleted.

ERROR 01 RESEQUENCE OVERFLOW

During the execution of a RESEQUENCE editor command _
the line number became greater than 9999. The source
file is resequenced starting with line 1 in steps of 1.

ERROR 02 AUTO INPUT OVERFLOW

In AUTO-INPUT mode the line number became greater than
9999. AUTO-INPUT mode is abandoned.

ERROR 03 NON-EXISTENT LINE

An attempt was made to edit a non-existent line with
the "Z" editor command.

ERROR 10 UNRECOGNISABLE STATEMENT

A label is more than 6 characters, or a mnemonic is
more than 4 characters or omitted. The statement is
ignored.

ERROR 20 UNKNOWN MNEMONIC

The op-code field contains an unrecognisable mnemonic.
The statement is ignored.

ERROR 21 CONTEXT ERROR

The combination of op-code and operand types encountered
is illegal or a mnemonic is too short. The statement is
ignored. ’

ERROR 22 INDEX REGISTER ERROR

IX or IY is used where only HL is permitted, or in a
JP (IX) or JP (1Y) instruction, the displacement is
non-zero. The statement is ignored.

ERROR 23 TRUNCATION ERROR

An 8 bit operand is greater than 255 or less than -128
or an index register displacement value is greater than
127 or less than -128, or a relative branch offset is
greater than 129 or less than -126, or a bit number in a
BIT, SET or RES instruction is greater than 7 or less
than O, or an address in an RST instruction is illegal,
or the mode in an IM instruction is not O, 1 or 2. The
value in question is truncated and assembly of the
statement continues.

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

24 TOO MANY REGISTERS

A register symbol appears in an assembler directive
operand, or more than one register appears in an
instruction operand. The statement is ignored.

25 REGISTER MISMATCHED

The combination of first and second operand types is
illegal. The statement is ignored.

26 ILLEGAL CHARACTER

The operands field contains a character whose meaning
is unassigned in the syntax of the assembly language.
The statement is ignored.

27 ILLEGAL OPERAND

The combination of a register and a label or constant
in this context is illegal. The statement is ignored.

28 PARENTHESIS ERROR

A left parenthesis occurs in an assembler directive
operand, or more than one left parenthesis occurs in
an instruction operand. The statement is ignored.

30 LABEL NOT FOUND

A symbol in an expression does not occur in the label
field of any statement in the source code. The
statement is ignored.

31 . LABEL REDEFINED

The symbol in the label field has previously appeared
in a label field, or is a register name. The label is
ignored and the rest of the statement is assembled.

40 DIRECTIVE ERROR

In an assembler directive, too few or too many operands
appear. The statement is ignored.

41 ILLEGAL FORWARD REFERENCE

A label symbol in an EQU, ORG or DEFS assembler directive
is defined after the directive is encountered. The
statement is ignored.

50 ERRORS IN ASSEMBLY

There were errors flagged in the previous assembly.

ERROR 90 CHECKSUM ERROR

ERROR

Part of ZEAP has been corrupted due to hardware errors
or user tampering. If ZEAP is not reloaded,
unpredictable errors may occur.

99 ILLEGAL COMMAND

An unrecognisable editor command or an ill-formed source
code line was entered. The input line is ignored.

The following symbols are used.

APPENDIX C

ZEAP EDITOR COMMANDS

unless otherwise stated.

All numbers are decimal

Yy sequence number (ie. source line number)

m first sequence number to which command is applied

(default 1)

n last sequence number to which command is applied
(default 9999)

s starting sequence number {(default 10)

i increment (default 10)

x hexadecimal option mask

h hexadecimal number

Numbers are separated from the command letter and from each

other

by one or more spaces.

If n is explicitly specified then m must be also.
If i is explicitly specified then s must be also.

A mn

ASSEMBLE SOURCE PROGRAM (ASSEMBLE)

Causes assembly of the indicated portion of the
source program, with the options defined by the last

SET ASSEMBLER OPTIONS command in effect.
for more details.

ENTER AUTO-INPUT MODE (AUTO-INPUT)

See section 3

Causes the ZEAP editor to enter AUTO-INPUT mode. The
number s is displayed, followed by a space. The user
may then enter a line of source code terminated by

the New Line key, whereupon that line of
into the edit buffer, i is added to s,
and the new sequence number is displayed.
continue to enter source code as long as
number remains less than 10000.

code is entered

The user may
the sequence

Exit from AUTO-INPUT mode is achieved by entering the

line delete character, "!" (shift "1").
then prompts for the next command.

The editor

RETURN TO NASBUG (NASBUG)

Causes ZEAP to return control to NASBUG, allowing any
of NASBUG's monitor commands to be used, for example

to alter any of ZEAP's internal registers in accordance
with Appendix G, or to execute a program assembled in
memory.

Provided the area of memory used by ZEAP is unchanged
during NASBUG operation, ZEAP may be re-entered with .
the edit buffer intact, in accordance with the procedure
described in Appendix A.

F/string/FIND STRING (FIND)

FT

Searches for a specified string in the edit buffer, and
if found, opens the line containing it for editing.

The form "F/string/" is used to search from the beginning
of the edit buffer for a character string of up to six
characters. The "/" represents a delimeter character,
which may be any character, except space, but which
must follow directly after the "F". If the second
delimeter is omitted or the string is more than six
characters long the command is treated as an "FT"
command (described below). If the string is found, the
line containing it is displayed and opened for editing
(see EDIT SOURCE LINE). If the string is not found the
ZEAP editor prompts for the next command.

The form "F" is used to search for the string specified
in the most recent "F/string/" command, starting from
the last occurence of that string found, instead of from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.

The form "FT" is used to search for the string specified
in the most recent "F/string/" command, starting from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.

SET ASSEMBLER OPTIONS (OPTIONS)
Sets assembler options speéified by the hexadecimal
number x. The options and their hexadecimal codes are
as follows. See section 3.4 for more details.

ol SUPPRESS SOURCE LISTING (NO LIST)

+

+ 02 OBJECT CODE TO MEMORY (MEMORY)
+ 04 SOURCE LISTING TO TTY (TTY)

+ 08 OBJECT CODE TO TAPE (TAPE)

+ 10 FORCE SECOND PASS (PASS 2)

-+

20 ADJUST RELATIVE JUMP OFFSETS (ADJUST REL)

Initially all options‘are off.

-, 41 -

Rs i RESEQUENCE SOURCE CODE (RESEQUENCE)

Remembers all the statements in the edit buffer so
that the first line is given the number s, and subsequent
lines s+i s+2i, etc. as for the "I" editor command.

Umn LISTING TO UART (SAVE)

Causes the indicated portion of the source program to -
be output to the UART, and simultaneously displayed on
the screen.

The output through the UART is formatted to drive either
a cassette tape recorder, so that any portion of the
source program may be stored permanently and loaded
subsequently by ZEAP, or an ASCII terminal to obtain a
hard copy listing of any portion of the source program.

Vmn ~ LISTING TO VDU (LIST)

Causes the indicated portion of the source program to
be displayed on the screen.

Xmn BLOCK DELETE (DELETE)

Causes all source lines numbered M +to n inclusive to
be deleted. Both m and n must be specified.

Zy EDIT SOURCE LINE (EDIT)

Displays line y and opens for edit. The following keys
are available for specified functions:

Space Move pointer right
Backspace ~Move pointer left
">"(shift".") Insert

"<" (Shift",") Delete

New line Leave edit

"!" (shift "1") Abandon edit

P h SET MEMORY OFFSET (OFFSET)

Set to h the number to be added to the logical assembly
address to obtain the physical location of the object
code in memory when the MEMORY assembler option is on.

Qh SET I/0 RATES (RATES)

Set the inter-character delay to cc hex and the end of
line delay (for use with the U editor command_and TTY
assembler option) to dd hex, where h = ccdd.

- 42 -

APPENDIX D

ASSEMBLER DIRECTIVES

label EQU exp (; comment) EQUATE SYMBOL

The label is given the value of the 16 bit expression

in the operand field. All symbols appearing in the
expression must have been previously defined. No object
code is generated. The label may not be redefined.

label ORG exp (; comment) SET ORIGIN

The location counter ($) is given the value of the

16 bit expression in the operand field. All symbols
appearing in the expression must have been previously
defined. No object code is generated. Assembley
continued at the new origin. If a label is present,
it is given the value of the expression.

(label) DEFS exp (; comment) DEFINE SPACE

The location counter ($) is increased by the value of
the 16 bit expression in the operand field. All symbols
appearing in the expression must have been previously
defined. No object code is generated. Assembly
continues after a block of memory of length exp .

If a label is present, it is given the original value

of the location counter ($).

(label) DEFB exp (,exp).... (; comment) DEFINE BYTE

For each 16 bit expression one byte of code is generated
with the value of that expression. Expressions may
contain forward references. If a label is present,

it is given the value of the address of the first byte
of code generated.

(label) DEFW exp (, exp).... (; comment) DEFINE WORD

For each 16 bit expression two bytes of code are
generated with the value of that expression, the low
order 8 bits occupying the first byte and the high order
8 bits the second. Expression may contain forward
references. If a label is present, it is given the value
at the address of the first byte of code generated.

(label) DEFM /string/ (; comment) DEFINE MESSAGE

The "/" may be any character except blank or comma. For
each character after the first delimeter until the
second delimeter or the end of the line is encountered,
one byte of code is generated having the value of the
ASCII code for that character, with bit 7 zero. Any
characters may appear between the delimeters. Characters
" after the second occurence of the delimeter are ignored.
If a label is present, it is given the value of the
address of the first byte of code generated.

APPENDIX E

ASSEMBLER OPTIONS

Assembler options are set by the OPTIONS editor command. All
assembler options must be explicitly specified as on or off,

and remain in effect until the next OPTIONS editor command is
issued, or until ZEAP is reloaded. All assembler options are
initially off, and are all switched off whenever ZEAP is re-entered.

Assembler options are selected as ON by adding the hexadecimal
option codes of the desired assembler options together. Thus
the TTY and PASS 2 assembler options would be selected as on
by entering the command "O 14". If no mask is specified, all”
options are set to the default off state.

+01 SUPPRESS SOURCE LISTING (NO LISTING)

During the second pass, no source listing will be
displayed on the screen. - Lines containing errors
will, however, still be displayed.

+02 | OBJECT CODE TO MEMORY (MEMORY)

During the second pass, the object code will be
assembled directly into memory. No check is made to
see that the object code is not overwriting parts of
ZEAP and/or the edit buffer, nor that there is read/
write memory at the address where code is being
written. See section 3.7 for more details.

+04 SOURCE LISTING TO TTY (TTY)

During the second pass, any source listing will be
listed on an ASCII terminal attached to the UART. If
the NO LIST assembler option is on, only those lines
containing errors will be listed. The output from the
UART is not suitable for storage on cassette tape.

This assembler option may not be used in conjunction
with the TAPE assembler option, described below.

+08 OBJECT CODE TO TAPE (TAPE)

During the second pass, the object code will be dumped
in NASBUG format to a cassette tape recorder attached
to the UART. The object program may be subsequently
loaded using NASBUG's LOAD function, and executed under
NASBUG control. No object code is written to memory
(unless the MEMORY assembler option is on) so that
object' code cannot overwrite ZEAP or the edit buffer.

This assembler option may not be used in conjunctibn
with the TTY assembler option, described above.

[]

+10

+20

FORCE SECOND PASS (PASS 2)

Normally if errors are detected during the first pass,
the second pass is supressed. If this assembler option
is on, however, the second pass will be executed
regardless. :

ADJUST RELATIVE JUMP. OFFSETS (ADJUST REL)

Different standards in implementing the JR and similar
instructions by different manufacturers. The assembler
normally expects the argument to a relative jump
instruction to be an expression which is the offset from
the location of the current instruction to the
destination, eqg.

JR Z,3 ; BRANCH ROUND LD INSTRUCTION
LD (SWITCH), A
RET

or, more conveniently

JR Z, RETURN - g
LD (SWITCH), A
RETURN RET

The ADJUST REL assembler option causes the assembler to
automatically subtract the value of g from the argument
of each relative jump instruction, so that the
presentation of the source code is in line with absolute
jump and call instructions. Thus with the ADJUST REL
assembler option set, the following code now achieves
the desired result

JR %, RETURN
LD (SWITCH), A

RETURN RET

ox
JR 8+3
LD (SWITCH), A
RET

Note that the first two examples would probably give
a truncation error if the ADJUST REL assembler option
is set. The convention adopted must be fixed
throughout the whole program.

APPENDIX F

INSTRUCTION SET

The executable instruction set is defined in the ZILOG
publication 280-CPU Technical Manual, and in the MOSTEK
publication Z80 Micro Computer Devices Technical Manual.
a full explanation of the instruction set one should have
these manuals together with the assembly language programming
manuals published by either company. A summary of the
executable mnemonics is set out below.

For

EXECUTABLE INSTRUCTIONS

--------------------- -\—

“APC HL,SS ADD WITH CARRY REG. PAIR SS TO HL
ﬁ"i’A,S ADD WITH CARRY OPERAND S TO ACC.
AD A,N ADD VALUE N TO ACC.
ADD A.R ADD REG. R TO ACC.
ADD A-,(HL) ADD LOCATION (HL) TO ACC.
ADD A-(IX4D) ADD LOCATIONCIX+D) TO ACC
ADD A,(IY4D) ADD LOCATION (IY+D) TO ACC.
ADD HL,SS ADD REG. PAIR SS TO HL
ADD IX,PP ADD REG. PAIR PP TO IX
ADD IY-,RR ADD REG. PAIR RR TO IY
AND S LOGICAL °'AND' OF OPERAND S AND ACC.
31T Bs(HL) TEST BIT B OF LOCATION (HL)
‘BIT B,(IX4#D) TEST BIT B OF LOCATION (IX+D)
'RIT B,(IY+D) TEST BIT B OF LOCATION (1IY+D)
BIT B.,R TEST BIT B OF REG. R
CALL CC,NN CALL SUBROUTINE AT LOCATION NN IF CONDITION CC IF TRUE
CALL NN UNCONDITIONAL CALL SUBROUTINE AT LOCATION NN
CCF COMPLEMENT CARRY FLAG
cP S COMPARE OPERAND S WITH ACC.
CPD COMPARE LOCATION (HL) AND ACC.DECREMENT HL AND BC
* UNTIL CB=0
c COMPARE LOCATION(HL) AND ACC. DECREMENT HL AND BC, REPEAT
cPI COMPARE LOCATION (HL) AND ACC. INCREMENT HL AND DECREMENT BC
CPIR COMPARE LOCATION (HL) AND ACC. INCREMENT HL, DECREMENT BC REPEA’
UNTIL BC=0 ' ,
cPL COMPLEMENT ACC. (1°'S COMP)
DAA DECIMAL ADJUST ACC.
DEC M DECREMENT OPERAND M
DEC IX DECREMENT 1IX
DEC IV DECREMENT 1Y
DEC SS. DECREMENT REG. PAIR SS
DI DISABLE INTERRUPTS
DJNZ E DECREMENT B AND JUMP RELATIVE IF B=0
E1 ~ ENABLE INTERRUPTS
EX (SP),HL EXCHANGE THE LOCATION (SP) AND HL
EX (SP),IX EXCHANGE THE LOCATION (SP) AND IX
st (SP),1Y EXCHANGE THE LOCATION (SP) AND 1Y
£EX AF,AF’® EXCHANGE THE CONTENTS OF AF AND AF®
E X DE ,HL EXCHANGE THE CONTENTS OF DE AND HL
IEXX EXCHANGE THE CONTENTS OF BC, DE, HL WITH CONTENTS OF BC', DE',
HL®, RESPECTIVELY :
HALT HALT (WAIT FOR INTERRUPT OR RESET)
M 0 SET INTERRUPT MODE O
I 1 SET INTERRUPT MODE 1
I 2 SET INTERRUPT MODE 2

LD
LD

i LoD

: LDDR

LD
" LDIR

| NEG

| Nop
OR

| OTDR

ouT
ouT
ouTD
ouTl

POP
POP
poe
PUSH
PUSH
PUSH
RES
RET
RET
RETI
RETN
Ri
R
RLC
RLC
- RLC
' RLC
RLCA
RLD
RR
RRA
RRC
RRCA
RRD
RST
S3¢
S&C
SCr
SET
SET
SET
SEY
SLA
SRA
SRL
Su3
XOR

SP,1X
SP.1Y

(¢),R
(N ,A

1X
Iy
QaQ
IX
1Y
QQ
B,M

cc

M

(HL)
(IX+D)
(IYy+D)
R

P
A,S
HL,SS

Bs(HL)
B,(IX+D)
Br(1Y+D)
B,R

nnEx 2

LOAD SP
LOAD SP
LOAD LO

RESET BIT B

RETURN
RETURN
RETURN
RETURN
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
ROTATE
RESTART
SUBTRAC
SUBTRAC
SET CAR

SET BIT 8

SET BIT

"SET BIT

SET BIT
SHIFT 0

B 3 sl e A Rl

-.46 -

WITH IX
WITH 1Y :
CATION (DE) WITH

LOCATION (HL),DECREMENT DE, HL AND BC

LOAD LOCATION (DE) WITH LOCATION (HL), DECREMENT DE, HL AND BC,
REPEAT _UNTIL BC=0
LOAD LOCATION (DE) WITH LOCATION (HL), INCRFMENT DE.,» HL.,
DECREMENT BC
LOAD LOCATION (DE) WITH LOCATION (HL), INCREMENT DE, HL,
DECREMENT BC AND REPEAT UNTIL BC=0
NEGATE ACC. (2°'S COMPLEMENT)
NO OPERATION
LOGICAL ‘OR' OR OPERAND S AND ACC.
LOAD OUTPUT PORT (C) WITH LOCATION (HL) DECREMENT HL AND B,
REPEAT UNTIL B=0
LOAD OUTPUT PORT (C) WITH LOCATION (HL), INCREMENT HL, DECREMEN’
B, REPEAT UNTIL B=0 ‘
LOAD OUTPUT PORT (€) WITH REG. R
LOAD OQUTPUT PORT (N) WITH ACC.
LOAD OUTPUT PORT (C) WITH LOCATION (HL), DECREMENT HL AND B
LOAD OUTPUT PORT (C) WITH LOCATION (HL), INCREMENT HL AND
DECREMENT 3
LOAD 1X WITH TOP OF STACK

LOAD IY WITH TOP OF STACK
LOAD REG. PAIR Q@ WITH TOP OF STACK
LOAD IX ONTO STACK
LOAD IY ONTO STACK
LOAD REG. PAIR Q@Q ONTO STACK

OF OPERAND ™
FROM SUBROUTINE :
FROM SUBROUTINE IF CONDITION CC IS TRUE

FROM INTERRUPT _ .

FROM NON MASKABLE INTERRUPT

LEFT THROUGH CARRY OPERAND M

LEFT ACC. THROUGH CARRY

LOCATION (HL) LEFT CIKCULAR

LOCATION (IX+D) LEFT CIRCULAR

LOCATION (IY+D) LEFT CIRCULAR

REG. R LEFT CIRCULAR : .

LEFT CIRCULAR ACC.

DIGIT LEFT AND RIGHT BETWEEN ACC. AND LOCATION (HL)
RIGHT THROUGH CARRY -OPERAND M '
RIGHT ACC. THROUGH CARRY

OPERAND M RIGHT CIRCULAR

RIGHT CIRCULAR ACC.

DIGIT RIGHT AND LEFT BETWEEN ACC.
TO LOCATION P .

T OPERAND S FROM ACC. WITH CARRY
T REG. PAIR SS FROM HL WITH CARRY
RY FLAG (C=1)

OF LOCATION (HL)

8 OF LOCATION C(IX+D)

B OF LOCATION (IY+D)

8 OF REG. R

PERAND M LEFT ARITHMETIC

AND LOCATION (HL)

B .

SHIFT OPERAND M RIGHT ARITHMETIC
SHIFT OPERAND M RISHT LOGICAL

SUBTRAC
EXCi UIST1

T OPERAND S FROM ACC.

VE 'OR' NDPERAND © ANDN AFCF

IN
IN
INC
INC
INC
INC
INC
INC
INC
IND
INDR

As(N)
R,(C)
(HL)
IX
(IX+D)
1Y
(1Y+D)
R

SS

(HL)
(1
(1Y)
CC, NN
NN

C.E

E

NC-,E
NZ,E
Z,E '
A,(BC)
A, (DE)
Al

A, (NN)
A-R
(BC,A

. (DEJ,A

(HL) »N
DD, NN
HL » (NN)
(HL),R
1,A
IX+NN
IX, (NN)
(IX+D),N
(IX+D),R
IY,NN
1Y, (NN)
(IY+D) /N
(IY+D),R
(NN),A
(NN),DD
(NN)D #HL
(NN),IX
(NN),1Y
RsA

R+ (HL)
R,CIX+D)
R,(YIY+D)
R.N
R+R"®
SP,HL

LOAD THE ACC.
LOAD THE RESG.

INCREMENT
INCREMENT
INCREMENT
INCREMENT
INCREMENT
INCREMENT
INCREMENT

WITH INPUT FROM DEVICE N
R WITH INPUT FROM DEVICE (C)

LOCATION (HL)

IX

LOCATION (IX+D)

1Y

LOCATION (1IY+D)

RE
REG.

G. R

PAIR SS

LOAD LOCATION (HL) WITH INPUT FROM
LOAD LOCATION (HL) WITH INPUT FROM
DECREMENT B, REPEAT UNTIL B=0

LOAD LOCATION (HL) WITH INPUT FROM

PORT
PORT

PORT

AND DECREMENT B

LOAD LOCATION (HL) WITH INPUT FROM

DECREMENT B,
UNCONDITIONAL JUMP TO (HL)
UNCONDITIONAL JUMP TO (IX)
UNCONDITIONAL JUMP TO (IY)
JUMP TO LOCATION NN IF CONDITION CC IS TRUE
UNCONDITIONAL

JUMP

RELATIVE

UNCONDITIONAL

JUMP
Jump
JUMP
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

RELATIVE
RELATIVE
RELATIVE
ACC.
ACC.
ACC.
ACC.
ACC.
LOCATION
LOCATION
LOCATION
REG.

WITH LOCATION
WITH LOCATION
WITH 1

WITH LOCATION
WITH REG. R

PORT

REPEAT UNTIL B=0 ;

JUMP TO LOCATION NN

TO PC+E IF CARRY=1

JUMP RELATIVE TO PC+E

TO PC+E IF CARRY=0

TO PC+E IF NON ZERO (Z=0)
TO PC+E IF ZERO (2=1)
(BC)

(DE)

NN
(BC) WITH

(DE) WITH
(HL) WITH

ACC.
ACC.
VALUE N

PAIR DD WITH VALUE NN

HL WITH LOCATION (NN)

LOCATION

(HL) WITH REG. R

I WITH ACC. .
IX WITH VALUE NN
IX WITH LOCATION (NN)

LOCATION
LOCATION

(IX+D) WITH VALUE N
(IX+D) WITH REG. R

IY WITH VALUE NN
1Y WITH LOCATION (NN)

LOCATION
LOCATION
LOCAT 10N
LOCATION
LOCATION
LOCATION
LOCATION
R WITH
REG. R
REG. R
REG. R
REG. R
REG. R

(IY+D) WITH VALUE N
(IY+D) WITH REG. R
(NN) WITH ACC.
(NN) WITH REG.
(NN) WITH HL
(NN) WITH IX
(NN) WITH (1Y)

PAIR DD

ACC.
WITH
WITH
WITH
WITH
WITH

LOCATION (HL)
LOCATION (1IX+D)
LOCATION (1Y+D)
VALUE N

REG. R'

SP WITH HL

).
<,

()2

.

DECREMENT HL AND
DECREMENT HL AND

AND INCREMENT HL

INCREMENT HL AND

- 48 -
PSEUDO INSTRUCTIONS
I
i ORG NN SETS LOCATION COUNTER (LC) TO NN
£QU NN ‘ ASSIGNS VALUE NN TO LABEL
DEFS E INCREMENTS LC BY VALUE OF EXPRESSION E
DEFB E(,E)... DEFINES BYTE(S) AS E
- DEFW E(,E)... DEFINES WORD(S) AS E
‘ DEFM /S/ ASSIGNS STRING S TO LABEL

TN My wesa 2 AR ey

- 49 -

APPENDIX G

; ‘ ZEAP INTERNAL REGISTERS

The contents of a number of memory locations used by ZEAP may
be of interest to the user. The user is cautioned to use
these registers only as directed. Any uses other than those
documented below may cduse unpredictable results.

A¥l 16 bit values are stored with the least significant 8 bits
first. :

£F09 - EFOA BUFP

This 16 bit value is the address of the edit buffer.

i The first two bytes of the edit buffer itself

contain a 16 bit value which is one more than the
address at the end of the edit buffer. Thus if

BUFP contained £1BOD and £1BOD - £1BOE contained
£1B83, then the extent of the edit buffer would -
be £1BOD to £1B82, and could be dumped under NASBUG
control using ,

>D 1BOD 1B82
or

>W IBOD 1B83 (using B-Bug or NASBUG 4)

£EF22 - £F23 OUTCH

This 16 bit value is the address of the external
output routine. It is initially set to the NASBUG
entry point, SRLOUT. The user may substitute the
address of a routine which outputs the ASCII
character contained in register A. All registers
must be preserved through this routine, except AF.
A routine for driving a high speed parallel printer
might be substituted for example. All output from
the "U" editor command and under the TTY assembler
option is routed through OUTCH, but output from the
TAPE assembler option is directly through SRLOUT.

APPENDIX H

ASCII CODE TABLE

~All values in hexadecimal.

Bit 7 (parity) is zero.

NUL 00 | DLE 10 20 o 30 @ 40 P 50 ~ 60| p 70

SOH 01 | DCl 11 !o21 1 31 A 41 Q0 51 a 61| g 71

STX 02 | DC2 12 "o22 2 32 B 42 R 52 b 62| r 72

ETX 03 | DC3 13 £ 23 3 33 Cc 43 S 53 c 63| s 73

EOT 04 | DC4 14 $ 24 4 34 D 44 T 54 d 64f t 74

ENQ O5 | NAK 15 $§ 25 5 35 E 45 U 55| e 65| u 75

¥k |ACK 06 | SYN 16 | & 26 6 36 F 46 Vv 56 f 66| v 76
= BEL O7 | ETB 17 vo27 7 37 G 47 W 57 g. 67| w 77
ofpies 08| cavis | (28| 8 38 | H 48 | X 58 | h 68| x 78
A HT 09 | EM 19) 29 9 39 I 49 Y 59 i 69| y 79
. |LF oa| suB 1la * 2 : 3A J 4A Z S5A j 6A| z 7A
“TI'VT OB | ESC 1B + 2B ; 3B K 4B L sB k 6B| { 7B
FF OC | FS 1C , 2C < 3C L 4cC \ 5C 1 6c| | 7c

CR OD| GS 1D - 2D = 3D M 4D 3 5D m 6D} } 7D

SO OE | RS 1E . 2E > 3E K 4E | 1 5E n 6E| ~ 7E

SI OF | VS 1F / 2F ? 3F O A4F + 5SF o 6F | DEL 7F

The following control codes are used by NASBUG:

1D
1E
1F

Backspace
Clear screen
New line

APPENDIX I

OBJECT CODE LISTING

Location 100E, 100F, 1010 & 1011 contain the Ascii equivalent

of your copy no.

below, please substitute the correct Ascii values for your
copy number.

1.

ZEAP LISTING

If you enter ZEAP manually from the listing

ZEAP 1.0 (C) 1979 SIGMA ACCOUNTING & MGMT SERVICES LTD

01/719/79 2105 HRS

Loc 0 1 2 3 4 5 6 7

(N O O N U I I |

8

48

9

A

OF00 ¢3 09 18 (TA 18)[AA 18,00 - 50j0p0 18)

B

c

D

E

“18]{D07 0

4F

F_
00 00+00 00[70]

178 161

49105 _17,

00

30
20
OA
40
E2
14
AO
ED
06
8F
B8
14
08
49
00
4D
D3
41
98
20
02
CE
83
0]
52
67
D2
03
AO
54
4C
c6
2C

82

30
41
04
04
FQ
8C
14
4F
F2
c1
03
D2
03
4E
E7
FE
02
c1
05
OA
43
45
10
83
83
80
BB
43
04
7A
D&
68
01

ZEAP 1.0 (O)

01719779

LoC
1210
1220
1230
1240
1250
1260
1270
1280
1290
12A0
1280
12¢0
1200

- 12E0

12F0
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
13A0
1380
13¢0
1300
13E0
13F0
1400
1410
1420
1430
1440
1450
1460
1470

0
c3
01
co
63
62
34
7E
30
FD
07
30

TE

c8
1B
BA
B?
7A
F6
52
42
D6
19
03
7C
2A
51
€1
19
D5
2A
1F
30
F3
E3
oF
E1
18
cB
c9

1
66
c5

38

28
64
4B
20
62
7E
07
E5

08

21
B8
CA
c9
F6
c9
c1
cs
30
D1
3A
CE
09
00
9
3A
ch
10
OF
F2
c1
37
cDh
3F

Fé.
7F

TE

2
01
24
01
26
30
12
7
FE
F4
07
2A
23
D6
28
73
09
7F
03
D5
E3
D8
13
1113
00
OF
3E
3E
24
88
OF
18
13

-C1

ED
86
pO
ch
11
cé6

3
4E
01
DO
24
68
44
23
05
38
FD
30
46
10
18
12
E1
A3
aJ1
co
c1
FE
18
0c
'
SE
FF
go
OF
14
18
37
13
¢5
52
13
c8
71
00

01

2105 HRS

4

DA

o
36
22
62
4F
7E
38
]2}
[&s
OF
23

30

cB
23
D1
07
0B
90
5
OA
EA
32
67
23
B7
co
18
(B
2D
ch
E3
c5
E1
c8
18
14
08
9F

5
2A
28
02
66
64
12
E6
73
28
F3
85
66
FA
TE
30
E3
9F
02
13
ED

00

2A
OF
c9
56
cg
OA
DE
71

.CD

88

co

18
EB
SE
EB
P8
E5
DR

- 52 -

7
c3
c9
34

38
53
FE
FD
FE
c7
30
06
39
28
D9
FE
€8
F8
04
co
54
0c
7¢C
23
c9
47
3E
2B
oo
13
3E
14
co
56
56
B7
EB
18
23

8
2E
6C
02
36
3F
12
70
7E
03
C4
01
00
FD
FB
c9
80
FD
18
23
98
50D
3A
BS
AF
2A
co
OA
ES
co
38
30
E3
89
28

2B

3E
cb
0cC
56

1979 SIGMA ACCOUNTING &

9
01
12
CF
34
12
D9
38
F5
3p
18
24
ED
7E
2B
FD
23
cB
FA
22
13
29
o8
co
47
09
35
co
ED
69
F3
CA
B
14
SE
ES
AD
32
36
28

MGMT SERVICES LTD

G an e G AR S A G DGR WP G P TR M G S G R W G G G GG G G ED GRS D G5 GD GF GD TR Gn G Es SR ER T dn 0G5 G T o W e

A
53
D8
32
32
08
E1
32
87

.30

78
81
F3
23
77
56
00
ES
18
1
29
oc
3A
4F
OF
00
0A

b1: 3

12
B
E3
71
8
E1
2A
12
02
20
ES

B
b0
62
01
66
3F
01
4F
20
1]
18
08
E1
81
23
Fe
D5
4LE
2A
OF
c9
19
FE
OF
ED
73
co
19
2E
30
78
17
23
71
c1
oc
c8
E1
EB
2A

6A
32
D2

2k

12
E3
A8
i8
3C

4F

[43
47
Fd
[43
E3
D9
()
18
EB
21
29
02
OF
B1
23
Fé6
3E
OF
Fé4
28
23
oA
0
€1
oc
2B
23
22
OE

2

00
01
60
6A
12
B
08
06
3C
30
4F
06

18
07

D9
c9
Fé6
ED

_ED

1A
5F
20
6F
c9
co
F8
0A
00
13
5B
14
28
ES
09
52
14
14
E1
52

o

01719779

Loc
1480
149¢
1440
1480
14¢0
1400
14E0
14F0
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
15A0
1580
15¢0
1500
15€0
15F0
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
16A0
1680
16€0
1600
16E0
15F0

0
E1
38
D8
F8
(o)
cd
00
cs
cB
F7
OF
EB
0c
3E
20
67
25

06

18
14

49

20
ED
20
47
08
01
28
02

oc.

oc
co
23
01
FE
11
22
23
18
17

1
c9
gA
ES
E1
82
88
cd
98
48
45
co
FE
EB
-
21
F1
20
c8
03
8
20

6F

48
F5
16
’B
E1
08
23
FD

22

2E
cob
32
20
11
1B
28
DD
EF

2
7t
0E
32
8
14

14

89
E3
20
E1l
88
23

28

48
78
[
42
40
B7
45
€9
FO
08
04
F1
b
18
ES
22
77
19
164
87
OF
28
OF
OF
F6
E1
3A

3
12
€o
69
61
10
18
14
co
0o
18
14
28
E3
3E
E6
7C
70
3E
ED
28
3E
cB
OF
10
28
2B
ED
ED
1F
01.
OF
co
13

OF

34
ED
23
E1
2A
00

2105 HRS

4
13
FE

0F

co
F7
F8
FE
88
ED
BS
16
05
18
24
30
20
E6
41
52
10
26
01
5F
02
05
02
43
58
OF
E1
E1
BD
c8
co
21
BO
23
7E
18
cb

5 6
€D EC
58 08
21 59
37 €9
04 €9
06 0O
28 20
14 38
53 F2
ED 53
00 SF
€D 4C
51 €8
20 oE
F5 BO
06 CB
91 B2
20 2€
EB E1
18 05
€3 €3
SE 28
20 0A
F1 C9
EF 2E
cp 3C
48 0C
19 OF
9 €9
cof2a
1718
73 23
E7 17
53 08
18 3E
ES 11
B7 20
OF 18
BD 1&

7
18
0OE

oF-

(B
13
ES
20
10
OF
a0
FE
13
71
c8
47
FC
6F
ES
c8
cB
17
54

04

o

1F

g2
78
19

I R N D |

79 -

oc

B

FB
72
11
01
AO
12
EC
09
21

8
23
98
4LE
59
10
FD
E3
E3
18
OF
AD
18
28
50
OF
B4
ED
B
48
D8
Y
BF
05

28

05
FD
77
co

0cC

00
E1
EB
01

09

12

OF

2A
E1
4A

9
7€
FE
23
€O
FD
66
o 2
FD
07
€B
20
07
6D
20
OF
67
58
58
28
E3
2A
01
28
02
c9
c¢C
B
E1
L4
22
D6
cob
co
00
00
CDh
1A
18
co
0B

MGMT SERVICES LTD

PR p————— e . L X R P R R X N A R L A Kl K R

60 20

28 18
02 2A
28 E3
7A FE
E6 01
£6 30
FO 16
20 03
3€ 27
F2 14
cB 00
43 4B
00 SE
10 f8
32 02
43 08B
cs 01
SE CC
02)3A
c9/[2A
€O B2
2A 09
30 F2
3A 4C
21 4¢
7E 3¢
28 13
C4 86
03 02
ES 7E

20

ZEAP 1.0 (C) 1979 SIGMA ACCOUNTING &

01/19/79

LOC
1700
1710
1720
1730
1740
1750
176U
1770
1730
1790
17A0
1780
17¢0
1700
17€0
17F0
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
18A0

.18B0

18C0O
1800
180
18F0
1900
1910
1920

. 1930

1940
1950
1960
1970

0
7F
79
28
2F
28
08
86
10
¢
ED
38
38
14
22
3D
52
23
FE
6F
28
OF
AF
2R
28
11
03
66 -
3A
€2
8A
1F
cB
o
22
E1
OF
E6
co-
C4
28

I

1
7
]2
ED
E1
26
]
13
20
21
52
24
31
Gc
1D
3E
52
3E
02
22
OF
22
AE
07
OA
EE
10

28

4B
1A
08
E6
00
3
13
E1
£1
0D
67
b9
22

2
11
36
B&
FE
FE
FE
18
6E
76
ES
E1
cob
ED
OF
99
4F
Al
20
oc
22
03

ED.
7E

23
08
11
06
08
18
1A
7F
56
3E
18
E1
c8
6F
19
15
10

3
40
20
23
20
21
02
Fé
D1
od
08
ES

‘9o

A8

18

2A
52
cc
06
0c
45
OF
A1
A8
co
()
CF
2A
2A
D
co
FE
s
50
E2
2E
70
cB
E1
£S5
OF

2105 HRS

4
00
ES5
36
20
CA
20
01
co
3E
co
19
13
ED
49
03
20
38
2A
28
oc
FD
EA
3E
88
65

0B

1D

2R
46 .

OA
10
A4
2A
21
0B
28
55
E1

€3
23

6
36
ED
2F
23

co
ZA
02
36
14
13
03
2A
CcB
ES
7B
c3
oc
UE
el
FE
18
Cé4
30
CD
1E
co
(4
FD
13

3B

cb
UF
1p
2A
:
B2
50
18
8A

- 54 -

7
SE
52
FE
2F
87
2E
13
2A
AD
54
13
ED
0c
00
11
)
cé
22
0c¢
18
OF
47
E7
FS
32
00
32
FE
cB
1A
01
4D
ES
22
1F
64
13
cs
co
o8

8
CcD
E3
3cC
FE
FA
14

13
2B
5D
13

- B8

0c
E6
8F
44
18
07
32
22
FO
2A
17
13
02
ED
02
20
Qc
B7
FE
0c
18
03
gF
2o
ES
70
90
G5

3E
c1
20
10
FD
ES
4B
0c¢
AE
bC
ES
12
cD
co
0B
Q2
AF
OF
60
4B
F9
2A
70
13
11
80
(o)
c8
56
Fe
21
DO
D5
CF
ES
29
21
ES5
13
30

MGMT SERVICES LTD

- D R D MWD G R G DD G S G GD W G D D M S S (U I G R D GH G S G I D WD G PSS G . e

A B C
00 36 20
FE 3E 20
06 62 6B
23 02 28
16 77 18
€0 71 14
0B, D5, CD
7C BS 28
E6 7F 28

2A 07 OF
18 €1 E1
TA 13 3E
65 13 22
€D 65 14
Fp ¢B 00
32 FF OF
AF 32 FE
0c 3bp 32
0C 21 1A
21 00 10
OF 7€ 21
¢D 90 13
18 F1 ER
8A 0B CD
EF 3A 00
DE 01 21
C3 89 02
28 13 Cb
D3 18 CD
28 18 3A
FE 21 25
Cb 21 OF
2A 30 01
cb 67 19
cB 5C €4
00 00 22
C4 E7 17
b5 oD E1
3E 22 12

4

21

50
BO
1F
3A
co
cé
oc
B7
08
52
21
13
18
45
FE
0c¢
67
2A
05
08
B7
13
OF
21
00
ES
14
11

3E
FD
3F
co
oc
1F
7¢
ES
5¢
14
Fe

- 55 -

ZEAP 1.0 (C) 197% SIGMA ACCOUNTINSG &

N1719/79 2105 HRS

LOC
1980
1990
1940
1980
19¢0
1900
13e0
19F0
1A400
1410
1A20
1A30
1440
1A50
1A60
1A70
1A80
1A90
1AAQ
1AB0
1ACO
1AD0
1AEQ
1AFD
1800
1810

2. - ZEAP LOADER

G
11
OF
06
3E
9p
a8
DS
14
Cé6
57
14
22
06
Fé
13
8
14
38
D5
49
3F
65
c1
63
Fé6
FF

1
98
DO
07
10
B
b
21
38
D
FS
co
1F
DD
FE
08
15
78
F3
ED
4
FS
28
o
c4
76

2
08
75
co
€2
coh
65

‘A3

F3
Ce
06
32
OF
75
AU
30
FD
cD
€1
5B
10
08
1A
45
c8
3E

3
cp
00
BC
E3
cé
14
0B
co
13
0s
02
FD
FE
28
E3
cB
69
E1
1F
13
F5
7c
F5
15

23

PROGRAM

acs50
0Ccé60
0cvo
0c80
0c90
0CAQ
oceo
occo

31

3E

22
00
6F
08
00
01

00
00
18
31
cb
co
B9
08

50
FE
oc
33

3C

3E
F5
00

co
FF
cp
oc
D2

cp
ED

.

65
DD
14
17
13
2A
18
co
£D
co
F1
c8
bD
F2
FD
F1
12
cB
OF
79
7A
cB
cs
F1
20

51
20
3E
c3
co
77
28
B0

5
14
74
ccC
F1
3E
1¢
22

14

s
D7
FE
a0
74
cD
c8
46
3E
51

ED
B7
R(
72
3E
30
DS

00
FO
00
86
3C
co
02
18

6
Cco
1
B7
F5
31
uF
cb
Fo
Fé6
14
01
9t
FF
ce
Fé6
28
21
28
52
(4]
ul
28
D)
FA
31

co
10
B7
02
02
2B
F1
Al

7
52
0D
14
21
b2
co
69
c8B
D6
3F
28
FD
c3
15
DE
E6
38
10
D1
na
FS
08
B5
FD
F3

3E
F7
20
0E
o
02
E1
FE

f
14
23
F5
00
E3
32
12
EE
38
30
07
(o]
F7
FD
06
7A
52
2B
EB
7A
3E
B7
F5
cB
0OF

00
2A
4E
00
32
co
01

9
co
Do
co
00
17
02
3E
7E
DF
E3
38
F8
1A
8
04
co
cB
2B
78
(B
cB
3E
cB
00
E1

FE
18
EF
co

02

3cC
28
28

MGMT SERVICES LTD

FF

oc
1F
3€
ES
02
05
BC

20
36
2E
00
21
23
co
18

)

F9
20
1F
67
00

40
98B

06
21
00
co
08
F3
02
00

03
8A
co
3e
ES
co
18

.cd

08
31
00
06
3E
AR

- e e s e W we e mw e e e
- i ——— T o — . Wt v o -

Please tear along dotted line

- 56 -
APPENDIX J
COPY NO
ZEAP COMMENT FORM fr

To: Sigma Accounting & Management Services Ltd
c/o Nascom Microcomputers
92 Broad Street . g
Chesham

Bucks Date

From: Name

Address

Comments/Bugs (Fullest possible explanation please including
listings - even if written out by hand)

gg: We regret that no correspondence can be entered into over
-particular queries/suggestions. The aim of the comment form
is to enable your opinions, etc to be incorporated in updates.

PTO for more space

